
Mobile Process Management through Web Services
Massimiliano de Leoni, Massimo Mecella
Dipartimento di Informatica e Sistemistica

SAPIENZA - Università di Roma, Rome, Italy
{deleoni,mecella}@dis.uniroma1.it

Abstract—Nowadays, process-aware information systems
(PAISs) are widely used for the management of “administrative”
processes characterized by clear and well-defined structures.
Besides those scenarios, PAISs can be used also in mobile and
pervasive scenarios, where process participants can be only
equipped with smart devices, such as PDAs. This paper illustrates
ROME4EU, a fully-fledged PAIS that can be entirely developed
on Windows Mobile PDAs. To our knowledge, all existing PAISs
are equipped with an engine meant to run only on laptop/desktop.
And this prevents them from being used in mobile scenarios, such
as emergency management. ROME4EU is based on a mobile Web
service middleware and a WS-BPEL orchestrator engine. The
feasibility for mobile settings introduces new challenging issues
to face with, such as reduced computational power, small screen
size, battery consumption, automatic adaptability to anomalous
events. The paper details also an evaluation of the ROME4EU’s
performances and illustrates its use by civil protection operators
to manage the aftermath of a (simulated) emergency.

I. INTRODUCTION

Over the last decade there has been an increasing interest
in process-aware information systems (PAIS), a.k.a Process
Management Systems (PMSs) or formerly Workflow Man-
agement Systems (WfMSs). A PAIS is, according to [1],
“a software that manages and executes operational processes
involving people, applications, and information sources on
the basis of process models”. The elementary pieces of work
are called tasks, e.g., “Approve travel request XYZ1234”. A
PAIS is driven by some process model which defines (among
the others) the tasks comprised in the processes and control
flow, i.e., what tasks have to be executed beforehand and
afterwards. Indeed, tasks cannot be performed in any order;
certain tasks can be executed only when other tasks have been
already completed. Moreover, typically processes define some
variables which somehow routes the process execution. Indeed,
according to the values of such variables (i.e., the state), some
tasks may need to be executed several times, whereas others
may be skipped because they are not required any longer.

The core of a PAIS is an engine that manages the process
routing and decides which tasks are enabled for execution, by
taking into account the control flow, the value of variables
and other aspects. Once a task is ready for being assigned, the
engine is also in charge of assigning it to proper participants;
this step is performed by considering the participant “skills”
required by the single task: a task will be assigned to those
participants that provide all of the skills required.

Participants are provided with a client application, part of
the PAIS, named Task Handler or Task-list Handler. It is aimed

at receiving notifications of task assignments. Participants can,
then, use this application to pick the next task to work on.

Nowadays, PAISs are widely used for the management of
“administrative” processes characterized by clear and well-
defined structures. The usual processes in pervasive and mobile
scenarios (such as emergency management, healthcare, etc.)
are characterized for being as complex as typical business
processes of banks and insurances and for involving teams
of tens of members. Therefore, the exploitation of PAISs
to support the process enactment seems to be very helpful.
Let us consider a typical pervasive scenario that is gaining
momentum in the last period: emergency management. After
the occurrence of a disaster, such as an earthquake, a rescue
team is sent to the affected area in order, firstly, to give support
to the involved people and, then, to make an assessment. Team
rescue operators are equipped with low-profile devices, such as
PDAs, and they should use them for coordinating the activities
in accordance with a certain process specification. One of
operators is elected as leader, of whom device hosts the PAIS
engine.

To the best of our knowledge, all of current PAISs are
characterized by engines that can run only on desktop or
laptop machines that acts as servers. Task handlers typically
are deployed on desktops/laptops, and if strictly needed can
be deployed – with reduced functionalities – on PDAs or
smartphones (in order to allow operators to work “out of the
office”), but they continuously need to interact with the back-
end engine deployed at the headquarters of the organization.
Conversely, in emergency management, carrying out laptops
is infeasible, as would greatly reduce moving capabilities of
the team. Therefore, both full-fledged task handlers should be
able to work on smart devices and the engine must reside on
a certain device on the spot. Moreover, automatic adaptability
to some anomalous events (disconnections of devices, crashes,
etc.) should be present, as these events are much more frequent
than in classical business scenarios.

In the light of the above considerations, we have con-
ceived and developed a PAIS, namely ROME4EU (the Roman
Orchestration Mobile Engine for Emergency Units), whose
engine resides on a PDA. In the ROME4EU’s vision, processes
are executed through the orchestration of several services,
of which some rely on some actions executed by humans
and others are totally automatic (e.g., for retrieving data
from sensor networks). The enactment of services to execute
human-based tasks are mediated through task handlers, which
are in charge of managing the interaction between the engine



and process participants. Task handlers are installed on the
PDAs of all participants, and the engine is installed on the
PDA of the leader.

ROME4EU had to overtake interesting challenges to be
actually working on smart devices in pervasive environments.
Firstly, it takes into account that mobile networks provide re-
duced communication bandwidth and low reliability. Secondly,
smart devices are battery operating and, thus, the engine has
to deal with the issue of minimizing the power consumption
in order to guarantee its continuous functioning for a certain
number of hours. It is also worthy mentioning that reduced
screen sizes limit the amount of information which can be
visualized at the same time; therefore, we had to carefully
study how to position enough information all together on the
screen. Finally, ROME4EU takes into account that pervasive
and dynamic scenarios are characterized as being very instable.
Several unexpected events may happen, which break the initial
assumptions and, hence, make impossible the process to be
carried out successfully. These unforeseen events are far from
being infrequent and, hence, the process can often be inval-
idated. ROME4EU provides a high degree of flexibility and
is able to restructure the process specification automatically.
Adaptability is based on some sensors that are monitoring
the status of the surrounding environment, such as network
coverage, devices’ location, speed, distance or battery level.
On the basis of the monitoring, ROME4EU learns when some
exogenous events happen or are about to happen and adapts
the process schema accordingly.

ROME4EU has been developed in concert with several
classes of end users and their feedback has guided the design
throughout the development life-cycle. According to the User-
Centered Design methodology [2], several prototypes have
been developed, where every new prototype was closer to the
final product.

In the context of a research project, ROME4EU has been
concretely showcased for emergency management in an on-
the-field drill that took place in Calabria (south region of Italy)
in June 2009. Different storyboards were executed in collab-
oration with the Italian Civil Protection.1 The corresponding
processes were carried out not only by rescue operators of the
Italian Civil Protection but also of other organizations that are
typically involved in managing the aftermath of an emergency,
such as Fire Brigades and Red Cross.

A video that shows the drill is available on YouTube at
http://www.youtube.com/watch?v=48Hs5Qwg0ho.

II. THE ROME4EU’S ARCHITECTURE AND PROCESS
MODEL

Figure 1 shows the reference architecture that ROME4EU
relies on. As introduced in Section 1, different rescue operators
need to be located on the affected area and equipped with
low-profile devices, like PDAs. All software components, both
client and server ones, are installed on such small devices,

1According to the adopted method, a storyboard is a small and complete
execution of a realistic use case through the system.

Fig. 1. The ROME4EU’s Deployment

which are connected with each other through mobile networks.
ROME4EU works indifferently over any (mobile) network
and, hence, the figure abstracts out the specific mobile network
used.

Among the rescue operators, the leader’s device hosts the
ROME4EU engine, which drives the execution of emergency
management tasks. The device of every rescue operator, in-
cluding the leader one, comes with a set of services. Such
services are software applications that range from those to
drive a certain hardware to those to retrieve data from back-
end servers/sensors to those for visualizing maps and tracking
locations of colleagues [3].2 The interaction between the
ROME4EU engine and the pool of services is mediated by the

2For instance, a service may be the application that provides a set of
primitives to instruct a robot or an articulated arm to execute some activities,
but it may also be a sensor to monitor some environmental parameters (e.g.,
humidity, raining intensity). Services are logically the entities that execute
tasks, although in many cases they act only as proxy for a certain hardware
component, which are the actual task executors.



Service Handlers. The service handler of the device of a certain
operator is in charge of routing the requests of task assignment
made to that device to the appropriate service running on it.
When a service completes the execution of an assigned task,
it returns the result to the service handler in term of output
values. The service handler, in turn, forwards values to the
ROME4EU engine, which updates the process variable values
accordingly.

Among offered services, every operator PDA always hosts
a special service, the Task Handler, which is a sort of proxy
for the human operator. From the ROME4EU’s perspective,
the task handler is like any other service, but, differently
from any other, it is a GUI-based application used to manage
the execution of those tasks that require an interaction with
the users. For the other services, when a task is assigned
to them, the execution can start immediately by using the
appropriate hardware/sensor/application. In fact, since the user
is not needed, there is no reason to wait for the user to be free
from any other duty. Conversely, when a task is assigned for
being executed through the task handler, that means the task
can only be executed with the support of an operator; the
assigned task is not automatically started by using a certain
application, but the operator is requested to give the proper
acknowledgement when she is able to execute it. Once given,
the task handler invokes the proper GUI-based application,
needed for the task performance. Then, the operator uses that
application and, when the application is closed, the task is
considered as concluded. At this stage, the task handler returns
the output to the service handler, which, in turn, will forward
to the ROME4EU engine similarly to other services.

ROME4EU relies on a service oriented architecture where
tasks are, generally speaking, executed through services that
range from the Task Handlers to automatic applications.
Therefore, in the light of this service-oriented view, processes
specifications are naturally given in form of WS-BPEL.

As far as the resource perspective, tasks need to be assigned
to proper services. The appropriateness of a service is driven
by the mechanism of the so-called capabilities. From the
one side, services declare to provide some capabilities, e.g.,
“able to build a tent” (for an operator able to do it) or
“headquarters connection” (for the automatic application able
to act as gateway). From the other side, tasks declare to require
some capabilities. Every task is assigned to and executed by
a service that provides all required capabilities.

Emergency management processes are highly critical and
often need to be carried on within strict deadlines. Therefore,
the only effective way to make a task assignment is to give
a task to one service for performance and to assign no more
than one task to a single service.

Network solutions. The system has been thoroughly tested
on MANETs and Wireless Mesh Networks (WMNs). A
MANET is a self-configuration network of mobile devices
connected by wireless links. Since no infrastructure is needed
(e.g., access points), it can be built up ad-hoc in a few
minutes and, hence, suits emergency managements very well.
A different alternative is a WMN, which is characterized by

a backbone composed by several routers connected with each
other through multi-hop paths of intermediate routers. Mobile
devices can connect to one of the routers and, consequently,
communicate with any device connected to any router of the
same WMN. When devices move in the area and, hence,
switch transparently from the coverage of a router to a second
one, WMNs guarantee a seamless communication, even during
the handoff. 3 Unlike MANETs, WMNs perform dedicated
routing and path discovery in the routers, thus reducing the
work load of devices. On the other hand, WMNs need routers,
which are very unlikely available and, consequently, need to
be taken to the area together with some power generators (if
some power supply is unavailable).

III. THE ROME4EU INTERNALS

The internal architecture of ROME4EU is depicted in
Figure 2 and is composed by two main subsystems: the
ROME4EU Engine, and the ROME4EU Client. In addition
there is the external Process Design Tool, which is used to
define the process to be executed.

ROME4EU is completely developed on the .NET Compact
Framework. The interaction between the engine and clients
is based on web-service invocations. Specifically, we started
from a pre-existing Mobile Web Server4 that has been ex-
tended to handle complex data types, required to exchange
complex input/output data sets, and one-way Web service
invocations. In particular, one-way Web service invocations
is a key requirement in mobile settings since it is difficult
and battery consuming to keep alive TCP/IP connections (and,
hence, SOAP) for long times.

The process execution is driven by our own implementation
of a WS-BPEL engine, developed in Microsoft .NET C#,
which has been later integrated with the Mobile Web Service
mentioned before. As previously stated, emergency manage-
ment scenarios are highly dynamic and the environment is
very instable and changing. In order to deal with unforeseen
events, which may invalidate process executions, ROME4EU
adopts an adaptability approach driven by context-awareness.
Context-aware Information Systems allow gathering infor-
mation, which makes possible for other systems to adapt
their own behavior according to the current environmental
context without explicit user intervention. ROME4EU uses
contextual information managed and stored by COSINE [4].
This includes, e.g., the GPS position of team members or the
status of the battery of their PDAs.

The Engine subsystem is constituted by the following com-
ponents:

• Core manages and coordinates the execution of pro-
cesses. It performs task assignments, manages and stores
information about involved team members, tasks to be
completed and variables produced or modified during
tasks’ executions.

3In mobile telecommunications, the term handoff refers to the process of
transferring a data session from one channel connected to an antenna to
another one

4It is available at http://msdn2.microsoft.com/en-us/library/aa446537.aspx



Fig. 2. The overall ROME4EU’s architecture.

• Launchers are modules responsible for processing the
information coming from COSINE and launching the
appropriate exception to the Exception Handler, after an
unexpected event. Their role is to monitor the whole
context in which the Engine works. Every Launcher is
developed to control a well defined context portion; when
the managed contextual data highlight an unexpected
event, the Launcher triggers an exception to the upper
level, which is supposed to take the correct remedial
action.

• Exception Handler processes the exception received
from the Launchers and invokes the appropriate Handler
to manage that specific error condition.

• Handlers are software components that implement the
logic required to manage a specific event. When an
Handler is notified about the occurrence of an event (e.g.,
battery drops below 20%, a device is disconnecting, etc.)
it performs a set of activities in order to adapt the process
to the unexpected event. Each Handler is able to query the
Core to get information about process execution status.
On the basis of such an information and context data,
an Handler is able to restructure the process. Process
restructuring is performed applying to the original process
schema a set of adaptation patterns, which mainly require
tasks insertions and/or deletions.

The Service Handler subsystem provides a unique end-
point, on each team member PDA, for the communication
with the Engine (i.e., manages remote calls to/from it). When
receiving requests for task assignments from the engine,
the Service Handler forwards the request to the appropriate
services that will be later performing the respective tasks.

An insight into the ROME4EU’s adaptivity feature

In the ROME4EU architecture, launchers are the modules
computing information from the sensing layer and throwing
appropriate exceptions to exception handlers, in order to

handle that specific error condition. To be able to manage a
new kind of error/exception, the system requires the definition
of an appropriate module to interact with the sensing layer
(launcher) and of a module to organize corrective actions
(handler). The exception handler module (a kind of dispatcher)
offers in the Notify interface the operation:

void notify(String exceptionName, Service service)

It catches the exception thrown by the launcher and activates
the appropriate handler. The handler is informed of the module
to be invoked thanks to some information of handlers stored
into a XML file. This file is a sort of registry structured as
a list of pairs < launcher, handler > Each pair is made up
by a launcher and an handler and defines where these can be
reached over the network. There are also additional informa-
tion concerning the sensors required for making function that
module.

The adaptivity in ROME4EU is needed in order to cope
with anomalous events, very frequent in mobile scenarios. In
particular, so far we have identified three main categories:

• Disconnections. These events refer to the situation in
which a device is going outside of the connection range of
the mobile network. A solution is to predict the movement
of the devices in the network, in order to know in advance
the devices that are probably going to disconnect and to
take the right recovery actions to maintain the network
connected [5].

• Consumption of device resources. These events concern
with the physical state of the devices in use (e.g., the
battery level of a device could go down under a certain
threshold, or the storage space of a device could be full).

• Crashes. These events signal an unexpected unavailabil-
ity of a device, caused by accidental circumstances (a
damage of the device), a sudden interruption of network
connectivity, a software crash in the service handler
component.



These events, if not managed in the right way, could cause
problems; in particular, at the system level, the exchange of
data among the engine and the clients may not be completed
and the mission could not reach the normal termination; at the
network level, in such cases in which the underlying network
relies on the connection mutually provided by the devices
(i.e., the mobile network is a MANET), the unavailability of
a node could cause one or more partitions in the network.
The approach used to manage external events is to have
specific techniques for each type of events realized in the
handlers, adapting the process according to specific adaptation
patterns [6].

It worthy concluding WS-BPEL concepts such as fault/-
compensation handlers are not used here. We do not want
some external services to be invoked upon exogenous events.
The ROME4EU system itself should take care of enacting
appropriate actions to recover.

IV. A WORKING EXAMPLE: EMERGENCY MANAGEMENT

ROME4EU was completely deployed in a realistic setting
in accordance with the architecture described previously. In
particular, we simulated the occurrence of an earthquake in
the surrounding of the small village of Pentidattilo (Reggio
Calabria, Italy) on 18 June 2009. Real users from different
rescue organizations were asked to face against the situation
by using ROME4EU.

Two storyboards were executed. The first concerned build-
ing some medical tents to provide health support to injured
people, whilst a second dealt with saving people trapped into
some buildings, such as in their own houses or offices, and
assessing such buildings. These storyboards are stemmed from
a thorough analysis on the operational procedures of the Civil
Protection and of other organizations involved in emergency
management (for further details please refer to [7]). Space
limitations prevent us for providing a deeper explanation of
showcases. Further information is available in [8].

The most important graphical user interface is used by
human participants to start executing interactive tasks and
invoking the required software application. Figures 3 shows
some screenshots of the application. It is worthy highlighting
that users can switch to colors that are more suitable in case
of adverse environmental light (e.g., in the evening or under
direct sun); the choice of highly contrasting colors follows the
guidelines in [9], which stems from a deep cognitive analysis
with users. Since the participants to rescue operations could
not have both of hands free, the use of the PDAs’ stylus should
be prevented as much as possible. Thus, the buttons and the
other widgets of Task Handlers are sized so as to be touchable
directly with fingers.

V. SYSTEM EVALUATION

This section aims to show the practical feasibility of
ROME4EU on PDAs. Firstly, we illustrate the ROME4EU
requirements in term of CPU and memory consumption and
how these are compatible with modern PDAs. Secondly, we
show that the ROME4EU can be flexible and adapt process

(a) When a human partic-
ipant joins by Task Han-
dler, she retrieves infor-
mation about the mission
goals pursued through the
process.

(b) Task Handler allows
participants to choose the
capabilities they can pro-
vide.

(c) When the engine de-
cides to assign a non-
automatic task to a cer-
tain human participant, she
is informed through Task
Handler. Then, by clicking
on button “Start Task”, the
application to execute that
task is launched.

(d) Users can switch to col-
ors that are more suitable
in case of adverse environ-
mental light. Here is the
same interface as in Fig-
ure 3(b) but with colors
changed.

Fig. 3. The graphical user interface of Task Handler

specifications to fit occurring changes in the environment. The
feasibility is motivated by the fact that the computation time
to reason over the process and decide how to restructure the
schema is of orders of magnitude smaller than the process
execution time; hence, it is feasible.

As far as the users’ acceptation of ROME4EU, details are
provided in [8]. It is only worthy telling here that over 70% of
users judged ROME4EU as effective and, hence, worthwhile to
improve emergency management, and nearly everyone found
the system easy to use.



Fig. 4. CPU and memory usage patterns

a) CPU and Memory Consumption: The first set of tests
aims to evaluate the use of resources (mainly, CPU and mem-
ory) in case of heavy use. Tests have been conducted loading
a process composed by 30 tasks. Concurrent requests were
simulated by Apache JMeter5. In the specific case, JMeter
simulated requests by team members such as the notification
of the beginning of a task execution, to which ROME4EU
replies by enclosing the value of input task variables, or the
notification of a task completion, which includes the value
of the output variables. Figure 4 provides a detailed view
of CPU and memory usage, as measured when processing
30 concurrent requests. In the first half of the chart there
are two CPU peaks and some memory usage growths in
correspondence with the ROME4EU activation and the process
loading. When processing concurrent requests CPU usage
reaches a peak of roughly 80% and memory usage increases
up to 5 MB; once all requests have been processed, memory
usage returns approximately to its starting level. Recalling that
typical front-end teams are composed by nearly 10 members,
peaks of memory usages of 5 MBs are by far acceptable.
Modern PDAs are typically equipped with 128/256 Megabytes
of memory of which 30/40 MBs are available in normal
configurations. In terms of the CPU, the load is less than
5-10%, except during the set-up phases when ROME4EU is
started and the process is loaded.

A second set of tests have been performed in order to eval-
uate ROME4EU during the execution of an entire process in
normal and heavy-load conditions. For this purpose, we have
performed some laboratory tests by executing the processes
associated to the storyboards that were later showcased in the
demo drill in Calabria (see Section IV). The input and output
data sets were approximately of 200 KBs. Test results are
shown in Figure 5. In the first part of the chart (i.e., t < 125)
it is possible to identify CPU and memory usage patterns
corresponding to ROME4EU activation, process loading and
team set up. It should be clarified that execution time is not
relevant, since for testing purpose tasks have been executed
and completed in a few seconds, without affecting test results:
in a real scenario performing a task may last even tenths

5http://jakarta.apache.org/jmeter/

Fig. 5. Resources needed for process execution in case of data set of 200
KBs.

of minutes, but while team members execute their tasks no
interaction occurs with ROME4EU.

In correspondence to notifications of the completion of
tasks, CPU usage peaks of 35% have been measured. As far
the memory use, peaks have been experimented during the
initial start-up and when team is being built. Small peaks are
also measured when tasks complete because of the incoming
data to be processed. Indeed, the input/output data of tasks are
kept in memory in order to improve the parsing performance
of content. During the testing phase, has been experienced a
situation in which 15 tasks completed almost concurrently;
since the content to be parsed was nearly 200 KB per task, 3
Megabytes were required to be free in the many memory.

It is worthy pointing out that input/output data sets of 200
KB are by far a case more than pessimistic. In real scenarios,
the data exchanged as input/output variables are, in fact, on
average smaller. However, even in case of data sets of 200 KB,
these results are also acceptable since CPU is not overloaded
and the quantity of memory used is compatible with the
current-day PDA configuration, in which 30/40 Megabytes are
available in main memory.

b) Efficiency of the Adaptability Features: Here we want
to discuss the efficiency of ROME4EU to adapt processes
when unexpected events occur that can prevent processes from
being carried out successfully. Specifically, we have performed
some tests to detect the time elapsed from the moment when
the invalidating events occur to when the process is restruc-
tured to cope with them. This time includes both the time
amount to recognize their occurrence and that to restructure
the process accordingly, possibly reassigning tasks to other
members/services.

Tests have been conducted to measure the reaction of
ROME4EU to three kinds of events: battery discharges, device
crashes and disconnections of nodes. The test bed consisted of
eight real PDAs, of which one was running the ROME4EU’s
engine and the others provided services, including Task Han-
dler.

As far as the events of battery discharges and device crashes,
those were made occur by, respectively, letting reach the



Fig. 6. Time required to adapt processes

battery level of PDAs under a certain established threshold
or switching off suddenly PDAs.

For what concerns disconnections, such events were simu-
lated through an emulator which, among other things, gener-
ates and handles a map with the virtual position of the nodes.
Specific modules are installed on every PDA and instruct the
emulator through special commands to move the virtual nodes
on the map. These modules are also periodically querying for
the node positions, which are used to predict disconnections.6

Firstly, it is worthy pointing out all crashes and discharges
of nodes are correctly detected. Whenever a recovery existed
to manage such events, ROME4EU adapted the process cor-
rectly. Ten test rounds were performed. For each test round,
we simulated the occurrence of ten consecutive events, and
ROME4EU was in charge of adapting the process to manage
sequentially all of them.

Figure 6 shows the time amount needed to adapt processes
upon unexpected invalidating events. Axes x and y measure,
respectively, the progressive number of events occurred and
the time amount to sense the event and adapt accordingly. The
results show that the operations to recover from unexpected
events are quite efficient, especially if compared with the
execution of single tasks, which last from few to tenths of
minutes. It has been noticed that the time required to adapt
the process grows linearly as new events happen. This is
motivated by the fact that adapting the process requires some
data to be read and other to be stored from/into certain
structures. Consequently, as new events occur, the size of these
structures becomes bigger, and, hence, the access to them
requires additional time. However, the adaptation requires only
18 seconds after 10 unexpected events. In prospect, if the
growing trend remains unchanged, after managing 30 events,
the time to adapt show be less than 40 seconds. The fact that
the process would come to a halt for 40 seconds is not a big
issue, since this timing is significantly lower than the typical
execution times of tasks and processes.

6In real scenarios, these modules still exist, but they do not instruct the
emulator to move nodes. In addition, the position of nodes are harvested by
the GPS hardware of PDAs.

VI. RELATED WORK

To the best of our knowledge, the majority of the existing
Process-aware Information Systems cannot be fully deployed
on smart devices, such as PDAs or smartphones. This holds
both for open source products, e.g., jBPM7 and Together
Workflow8, as for commercial systems, e.g., SAP Netweaver9,
Flower10 or TIBCO’s iProcess Suite11. In any case, a desktop
or laptop machine is needed on which the engine has to
be installed. Moreover, they do not consider other critical
issues of mobile and pervasive scenarios, such as the battery
consumption, the intrinsic slowness and unreliability of the
mobile network as well as the reduced power of smart devices.
The recent literature provides some interesting developments
of PAISs running on mobile devices. CiAN [10] is a language
and system that supports collaboration through workflows
involving mobile devices and participants. It has been targeted
at mobile networks and, hence, addresses some of the issues
of mobile environments introduced before. Unfortunately, the
prototype has been implemented in Java using J2SE 5.0 and,
consequently, it cannot be installed on PDAs. Moreover, it
does not provide enough flexibility to handle those exogenous
events which take the system to situations where processes
cannot carried out successfully. The lack of flexibility is also
the main issue of other mobile PAISs, such as the Nokia’s
implementation [11] or WHAM [12]. Additionally, WHAM
binds every task to a specific service at design time. Therefore,
it is unable to integrate new external services that may become
available later at run time.

The BPEL4People and WSHumanTask standards [13] are
currently under definition to extend BPEL processes to sup-
port activities performed by humans. As ROME4EU does,
BPEL4People models every human as a service covering
some roles and the interaction with each service, including
humans, is modeled as message exchanged by some com-
munication protocols. Nevertheless BPEL4People is not yet
standard and is still under debate [14]. Since its definition is
still ongoing, the current implementations are only partially-
fledged prototypes. Moreover, BPEL4People does not address
explicitly the challenging issues of mobile Process-aware
Information System. The most valuable implementation is
VieBOP [15], but it runs only on desktop/laptop machines.
Moreover, BPEL4People shows some limitations, as also
discussed in [16]. There is no support for a detailed definition
of specific resources to distribute tasks (e.g., as ROME4EU
defines via capabilities), nor there are facilities to improve the
process throughput (e.g., by optimizing the tasks’ assignment).
As previously motivated, these aspects are key requirements
in many mobile and pervasive scenarios, such as emergency
management.

7http://www.jboss.com/products/jbpm
8http://www.together.at/together/prod/tws/
9http://www.sap.com/usa/platform/netweaver
10http://global.pallas-athena.com/products/bpmflower_product/
11http://www.tibco.com/software/business_process_management/



VII. LESSON LEARNED AND CONCLUSION

The results of the system performance evaluation and the
feedbacks from users have allowed drawing some conclusions
and useful guidelines for future developments. Firstly, the
vision of looking at emergency management as a set of
processes to carry on is also well understood by end users,
who recognize the usefulness of ROME4EU and, in general,
of process management.

It is also worthy highlighting that the current-day tech-
nology provides PDAs and smartphones that are powerful
enough to run complex systems, such as ROME4EU. The
outcomes of the ROME4EU testing phase have shown that
ROME4EU guarantees response times that are of several
orders of magnitude lower than the execution times of the
entire processes. Therefore, running ROME4EU (or any other
PAISs) on PDAs is feasible in practice.

In addition, the effort of thinking of emergency manage-
ment from a process-oriented perspective has allowed people
working in civil protection departments to analyze carefully
the current-day procedures for facing against disasters. This
analysis has resulted in systemizing thoroughly the procedures
followed to manage emergencies, which finally translates to a
better process control. Surprisingly, during the initial phases
of user-requirement collection, we learned that civil-protection
operators did not have clearly in mind the actual procedures
and activities that they followed to face against emergencies.
In sum, the adoption of ROME4EU would guarantee a more
systematic management of the aftermath of emergencies, thus
yielding to an overall improvement of the response time that
is not only motivated by the mere use of the system.

Stemming from the experience acquired during the demo
drill, in pervasive scenarios, such as emergency management,
information processing and task execution is fully integrated
with the physical environment and its objects. The physical
interaction with the environment increases the frequency of
unexpected contingencies with respect to classical scenarios.
Being pervasive scenarios very dynamic and turbulent, provid-
ing a higher degree of operational flexibility/adaptability is a
key requirement of every PAIS for pervasive scenarios. And
this requirement is adequately met by ROME4EU.

From a visualization viewpoint, Task Handlers and other
client applications supporting the execution of tasks should
be conceived for being used in extreme conditions and under
direct sunlight. Therefore, the use of highly-contrasting colors
is important (e.g., white on black, yellow on blue). Moreover,
users might not have free hands to use PDA’s stylus. Therefore,
the GUI widgets should be sized in a way that the use of
styluses can be avoided (e.g., participants should be able to
touch and press buttons by fingers).

ACKNOWLEDGEMENT

This work has been partly supported by the FP6 project
WORKPAD and the 2009 University/Faculty grant METRO.
Authors wish also to thank all people who contributed to
the development of the system, namely Daniele Battista,

J. Valerio Franchi, Daniele Graziano, Paolo Manfre’, Andrea
Marrella, Alessandro Russo.

REFERENCES

[1] M. Dumas, W. van der Aalst, and A. ter Hofstede, Process-Aware
Information Systems: Bridging People and Software Through Process
Technology. Wiley, 2005.

[2] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human Computer Interaction
(3rd Edition). Prentice Hall, 2004.

[3] M. Bortenschlager, “Location-oriented Coordination in Pervasive Envi-
ronments for Collaborative Work Scenarios,” Journal of Location Based
Services, vol. 3, no. 4, pp. 229–248, 2009.

[4] L. Juszczyk, H. Psaier, A. Manzoor, and S. Dustdar, “Adaptive Query
Routing on Distributed Context - The COSINE Framework,” in MDM
2009: Proceedings of the 10th International Conference on Mobile Data
Management. IEEE Computer Society, 2009, pp. 588–593.

[5] M. de Leoni, M. Mecella, P. Manfre’, J. V. Franchi, and D. Graziano,
“Disconnection prediction in mobile P2P networks using publish/sub-
scribe,” in ICUMT ’09: International Conference on Ultra Modern
Telecommunications & Workshops. IEEE, 2009.

[6] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features - Enhancing flexibility in process-aware infor-
mation systems,” Data & Knowledge Engineering, vol. 66, no. 3, pp.
438–466, 2008.

[7] S. R. Humayoun, T. Catarci, M. de Leoni, A. Marrella, M. Mecella,
M. Bortenschlager, and R. Steinmann, “Designing Mobile Systems in
Highly Dynamic Scenarios. The WORKPAD Methodology,” Journal on
Knowledge, Technology & Policy, vol. 22, no. 1, pp. 25–43, 2009.

[8] M. Mecella, M. de Leoni, A. Marrella, T. Catarci, M. Bortenschlager,
and R. Steinmann, “The WORKPAD Project Experience: Improving the
Disaster Response through Process Management and Geo Collabora-
tion,” in Proceedings of the 7th International Conference on Information
Systems for Crisis Response and Management (ISCRAM2010), 2010.

[9] T. Agostini and N. Bruno, “Lightness contrast in CRT and paper-and-
illuminant displays,” Perception & Psychophysics, vol. 58, no. 2, pp.
250–258, 1996.

[10] R. Sen, R. Gruia-Catalin, and C. Gill, “Cian: A workflow engine
for manets,” in Proceedings of the 10th international conference on
Coordination Models and Languages (Coordination’08), 2008, pp. 280–
295.

[11] L. Pajunen and S. Chande, “Developing workflow engine for mobile de-
vices,” in Proceedings of 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), 2007, pp. 279–286.

[12] J. Jing, K. E. Huff, B. Hurwitz, H. Sinha, B. Robinson, and
M. Feblowitz, “Wham: Supporting mobile workforce and applications
in workflow environments,” in Proceedings of the Tenth International
Workshop on Research Issues on Data Engineering: Middleware for
Mobile Business Applications and E-Commerce (RIDE 2000), 2000, pp.
31–38.

[13] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von
Riegen, P. Schmidt, and I. Trickovic, “WS-BPEL Extension for People
- BPEL4People,” 2005.

[14] J. McEndrick, “BPEL4People Advances toward the Main-
stream,” Blog entry prompted on December 4th, 2008 at
http://blogs.zdnet.com/service-oriented/?p=1061., 2 2008.

[15] T. Holmes, M. Vasko, and S. Dustdar, “VieBOP: Extending BPEL
Engines with BPEL4People,” in Proceedings of the 16th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP 2008), 2008, pp. 547–555.

[16] N. Russell and W. M. P. van der Aalst, “Work Distribution and
Resource Management in BPEL4People: Capabilities and Opportuni-
ties,” in CAiSE ’08: Proceedings of the 20th international conference
on Advanced Information Systems Engineering. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 94–108.


