
Generating Decision-Aware Models & Logs:
Towards an Evaluation of Decision Mining

Toon Jouck1, Massimiliano de Leoni2, and Benôıt Depaire1

1 UHasselt - Hasselt University, Hasselt, Belgium
2 Eindhoven University of Technology, Eindhoven, The Netherlands

toon.jouck@uhasselt.be;m.d.leoni@tue.nl;benoit.depaire@uhasselt.be

Abstract. During the last decade several decision mining techniques
have been developed to discover the decision perspective of a process
from an event log. The increasing number of decision mining techniques
raises the importance of evaluating the quality of the discovered deci-
sion models and/or decision logic. Currently, the evaluations are limited
because of the small amount of available event logs with decision infor-
mation. To alleviate this limitation, this paper introduces the ‘DataEx-
tend’ technique that allows to evaluate and compare decision-mining
techniques with each other, using a sufficient number of event logs and
process models to generate evaluation results that are statistically signif-
icant. This paper also reports on an initial evaluation using ‘DataExtend’
that involves two techniques to discover decisions, whose results illustrate
that the approach can serve the purpose.

Keywords: decision mining; evaluation, log generation

1 Introduction

Automated process discovery from event logs has mainly focused on the control-
flow perspective of processes. The control-flow perspective can be considered as
the process backbone; however, many other perspectives should also be consid-
ered to ensure that the model is sufficiently accurate. The decision perspective
(a.k.a. the data or case perspective) focuses on how the routing of process-
instance executions is affected by the characteristics of the specific process in-
stance, such as the amount requested for a loan, and by the outcomes of previous
execution steps, e.g. the verification result. The representation of this decision
perspective on a process in an integrated model or as separate tables is nowadays
gaining momentum due to the introduction of the Decision Model and Notation
(DMN) standard [1]. Decision mining focuses on discovering the decision per-
spective of a process from an event log. Some techniques (e.g. [2,3]) augment the
routing decisions of a control-flow model with the decision logic induced from
the data attributes in the event log. Other techniques (e.g. [4,5]) have focused
on discovering a decision model in the form of a Decision Requirements Diagram
(DRD).

2 Toon Jouck, Massimiliano de Leoni, Benôıt Depaire

The increasing number of decision mining techniques raises the importance
of evaluating the quality of the discovered decision models and/or decision logic.
Currently, no standard evaluation framework has been proposed in literature.
The techniques presented in [2,4,5] have been evaluated informally. The first two
papers ([2,4]) demonstrate their techniques on some example routing decision
logic/example decision model, while the latter technique ([5]) is demonstrated
on a real-life data set. In contrast, the techniques of [3,6] have been formally
evaluated, yet they have applied their techniques on a small number of data
sets. Due to their small scale, no statistical tests can be applied to determine
the significance of the results.

Current decision mining evaluations have used only 5 logs from the publicly
available repository of event logs3. Moreover, the repository does not contain
a reference process and decision model and thus the characteristics of the real
underlying process are unknown. As a consequence, the evaluations cannot gen-
eralize the results to conclude that technique A on average outperforms technique
B when confronted with certain process and decision characteristics. However,
this is necessary to gain insights in the strengths and weaknesses of the existing
decision mining techniques.

This paper introduces an artificial data generation approach that enables to
evaluate and compare decision mining techniques with some guarantee that the
results are statistically significant, and, hence, generally valid. The approach,
which is presented in Section 2, extends random artificial control-flow models
with a decision dimension and simulates those into event logs. It allows users to
control for the process and decision characteristics of the generated event logs as
needed during evaluation. An initial validation was conducted on two techniques
in Section 3. Related work is discussed in Section 4 and Section 5 summarizes
the paper with conclusions and future work.

2 Data Generation Approach

Decision mining algorithms discover the decision perspective of a process based
on an event log that contains both control-flow and decision perspectives. Ar-
tificially generating such event logs is challenging. It requires to generate an
artificial sound process model and a decision model with decision rules (i.e.
data dependencies) first and then simulate the process model and rules into a
multi-perspective event log. Soundness is a necessary condition for the generated
models with rules as otherwise runtime errors can occur during simulation [8]:

– Deadlock: a case gets stuck in the middle of the process where it is not
possible to execute any activities.

– Dead activity: an activity part of the process can never be executed for any
case.

Simply adding decision rules to random process models generated by existing
control-flow based techniques, e.g. [7], would not guarantee soundness. On the

3 https://data.4tu.nl/repository/collection:event_logs_real

https://data.4tu.nl/repository/collection:event_logs_real

Generating Decision-aware Models Logs 3

other hand, the only existing method for generating multi-perspective models
and logs [9] is not tailored for adding decision information to the control-flow
model (see Section 4). Therefore, this paper introduces the ‘DataExtend’ ap-
proach for generating artificial event logs with both control-flow and decision
perspectives. In the next part of this section (2.1) we will present the idea be-
hind the ‘DataExtend’ using an example. The final part of this section (2.2)
formally describes the steps of ‘DataExtend’.

2.1 Illustration of Generating Multi-perspective Logs

The make-to-order process as illustrated in Fig. 1 will be used as an exam-
ple throughout the rest of the paper. The process handles the production of a
customer order: it starts with issuing the customer order, then materials are
prepared, the products are produced, possibly followed by an inspection, then
products are packaged, and finally, the products are delivered or the order is
canceled when something went wrong. It contains three XOR-splits (indicated
in the figure as ‘choice x’) where choices between multiple activities need to be
made:

– the first choice is whether to use new materials or mixed (recycled and new)
materials,

– the second choice is about the inspection of the produced products: no in-
spection, a normal inspection or a thorough inspection,

– the third choice is whether the products will be delivered or canceled.

Fig. 1. Make-to-order process

The process model in Fig. 1, without the tasks in grey and the data object,
presents the control-flow perspective of the process, i.e. it does not contain infor-
mation on the decision perspective of the process. In this paper we assume that

4 Toon Jouck, Massimiliano de Leoni, Benôıt Depaire

the decision perspective consists of a decision model and rules that explain the
choices in the process. From DMN [1] we adopt the DRD as a decision model
that visualizes the dependencies between decisions and the inputs (here case
attributes). This paper assumes that each exclusive choice (XOR-split) in the
process is preceded by a decision that is modelled in Fig. 1 using a business rule
task: ‘Determine materials’ (choice 1), ‘Decide inspection’ (choice 2), and ‘De-
cide delivery’ (choice 3). Each decision in the DRD corresponds to one business
rule task in the process model. For each of the decisions in the DRD we can
specify the logic as rules in a decision table.

In the example, the ‘Determine materials’ (see Fig. 1) decision cannot depend
on an earlier made decisions in the process as it is the first decision in the
process. It can depend on case attributes, but it is not necessary. Suppose that
in this process the decision between new and mixed materials relies upon some
contextual information not embedded in the underlying information system. In
that case we do not generate decision rules but rather represent the decision
stochastically by assigning a probability of choosing each decision output: on
average for 50% of the orders the activity ‘prepare new materials’ is executed
and for 50% of the orders the activity ‘prepare mixed materials’ is performed.

The ‘Decide inspection’ decision (see Fig. 1) can depend on the decision about
the used materials and case attributes. In this example the inspection decision
depends on the outcome of the first decision and a case attribute ‘premium’
which is related to the type of the customer placing the order. This results in
the DRD in Fig. 2 where the ‘Determine materials’ decision and the customer
type are inputs of the inspection decision. The policy is that products produced
with mixed materials always need to be inspected thoroughly regardless of what
the customer type is. Products consisting of new materials are only inspected
for premium customers, otherwise the inspection is skipped to save costs. Such
decision logic can be represented as rules as illustrated in Table 1.

Rule Materials Premium? Inspection

1 new material True inspect normally
2 new material False (skip inspection)
3 mixed material True inspect thorougly
4 mixed material False inspect thorougly

Rule OK quality? Delivery

1 True deliver
2 False cancel

Table 1. Decision tables for ‘Decide inspection’ (left) and ‘Decide delivery’ (right)

Finally, the ‘Decide delivery’ decision could depend on the outcome of the
first and second decision and some case attribute(s). Suppose that the inspection
results in an inspection report (the data object in Fig. 1) based on which the
quality of the products is labeled as acceptable or non-acceptable. If an inspec-
tion was skipped, acceptable quality of the products is assumed. A delivery will
only be executed if the quality of the products are acceptable, otherwise the
order is cancelled. These decision dependencies can be illustrated in the DRD in
Fig. 2 and the decision logic as shown in table 1.

Generating Decision-aware Models Logs 5

The control-flow model together with the above decision model and rules can
then be simulated into an event log. The simulator evaluates the rules tied to
each decision in the process in order to decide which outcome, i.e. choice branch,
to activate. An example case is shown in Table 2. Notice that we only displayed
the inputs of each decision as case attributes to save space.

Fig. 2. Decision require-
ments diagrams of exam-
ple process

Event
Activity Materials

OK
Premium?

ID quality?

1 issue True
2 prep. mixed mater. mixed material True
3 produce mixed material True
4 inspect thoroughly mixed material True True
5 package mixed material True True
6 deliver mixed material True True

Table 2. Example case of the produce order process

2.2 Formal Method for Generating Multi-perspective Logs

This subsection formalizes the steps of the ‘DataExtend’ method we propose
to generate an event log containing both control-flow and decision perspectives.
‘DataExtend’ starts from a random sample of control-flow models that is drawn
from a known process model population. This is essential as to guarantee valid
generalizations of the decision mining evaluation results to that model popu-
lation. Furthermore, ‘DataExtend’ requires that the input models are sound.
The ‘PTandLogGenerator’ presented in [7] meets these requirements as it gen-
erates random block-structured models, which are inherently sound, from a user
specified model population. The population in the ‘PTandLogGenerator’ is char-
acterized by setting the size of the generated models and the probabilities of the
basic workflow patterns as defined by Russell [10], i.e. sequence, parallelism, ex-
clusive choice, multi-choice and loop. Of course, other data generators can be
used together with ‘DataExtend’ as long as they meet the requirements.

‘DataExtend’ involves the following three steps:

1. Randomly build a decision model
2. Randomly generate decision logic for decisions in the decision model
3. Simulate control-flow model with decision model and logic into event log

Step 1: Randomly Build Decision Model This step will initiate the deci-
sion perspective that is added on top of the generated control-flow model. This
paper assumes that the routing of the cases throughout the process depends on
decision outcomes. This corresponds to adding the business rule tasks before
each exclusive choice in the model of the example in Fig. 1, e.g., the outcome
for ‘Determine materials’ influences whether activity ‘prepare new materials’ or

6 Toon Jouck, Massimiliano de Leoni, Benôıt Depaire

‘prepare mixed materials’ is executed for a particular case. Adding these deci-
sions creates the DRD that contains a decision for each exclusive choice in the
model. As such, we will not add decisions before multi-choice and loop constructs
in this paper. In a next step, we randomly determine the inputs of the decisions
in the DRD. Here we assume that a decision can depend on a case attribute or
a previously made decision.

‘DataExtend’ generates a decision di ∈ D for each exclusive choice in the
generated control-flow model. Then, it assigns zero or more attributes as in-
puts, either a case attribute or a previous decision, to each decision. A decision
without attributes means that it is based on some information not embedded
in the information system (e.g. the ‘Determine materials’ decision in the above
example).

Definition 1 (Assign). Given a set D of decisions and a set V of case at-
tributes (including previous decisions), Assign: D 7→ P(V) is a function that
labels each decision di with a set V ′ ⊆ V of attributes which di is based upon.

The attribues Assign(di) used in decision di can take on values on the basis
of decisions that ‘precede’ di:

Definition 2 (Precedence). Precedence: D 7→ P(D) is a function that labels
each decision with a set of preceding decisions. The precedence is based on the
sequences of decision nodes in the process model: d1 precedes d2 if d2 can only
occur after d1.

Consider again the example in Section 2.1. The ‘Decide inspection’ decision (d2)
is preceded by the ‘Determine materials’ decision (d1): Precedence(d2)7→ {d1}.
Then, in the example, the ‘Decide inspection’ decision is assigned the ‘Determine
materials’ decision and ‘premium’ as attributes: Assign(d2) 7→ {d1, premium}.
The assigned attributes of each decision are visualized in the DRD as shown in
Fig. 1 where ‘Determine materials’ and ‘Customer type’ are inputs of the ‘Decide
inspection’ decision.

Step 2: Randomly Generate Decision Logic This step will specify the deci-
sion logic for each decision in the decision model generated in the previous step.
More specifically, each decision influences a choice between multiple alternative
branches in the process model. The values of the assigned attributes of each
decision restrict the possible branches that can be activated. These restrictions,
also called decision dependencies, can be expressed as decision rules. A decision
rule is defined as a mapping:

Definition 3 (Decision Rule). A decision rule is a mapping

V1 ./ q1, . . . , Vw ./ qw 7→ XORjk

where Vi ∈ V is the set of attributes, ./ is a relational operator ∈ {<,≤, >,≥,=
, 6=}, q1, . . . , qw are constants, XORjk denotes outgoing branch k of choice XORj
after decision j.

Generating Decision-aware Models Logs 7

The set of all decision rules related to a routing decision can be represented as
a decision table such as Table 1, where rule 1 of the left table expresses the deci-
sion rule: materials = ‘new materials’, premium? = ‘True’ 7→ ‘inspect normally’
(i.e. the second outgoing branch of the second decision ‘Decide inspection’).

‘DataExtend’ initially generates all possible decision rules, i.e. each possi-
ble combination of attribute values can lead to any of the outgoing branches.4

Numerical variables are discretized to a random number of intervals to make a
finite number of decision rules for each decision. For example, consider Table 3
that shows the initial set of decision rules for decision ‘Decide inspection’ in the
make-to-order example process. When a case has the following attribute values:
materials = ‘new materials’ and premium? = ‘True’, then the three outgoing
choice branches containing activities ‘inspect thoroughly’, ‘inspect normally’,
and skip inspection are all possible according to rules 1, 2 and 3 which makes
the decision non-deterministic.

Randomly removing rules from
Rule Materials Premium? Inspection

1 new material True inspect thorougly
2 new material True (skip inspection)
3 new material True inspect normally
4 new material False inspect thorougly
5 new material False (skip inspection)
6 new material False inspect normally
7 mixed material True inspect thorougly
8 mixed material True (skip inspection)
9 mixed material True inspect normally
10 mixed material False inspect thorougly
11 mixed material False (skip inspection)
12 mixed material False inspect normally

Table 3. Example complete decision table for
the ‘Decide inspection’ decision in the make-
to-order example process.

the initial set of decision rules re-
stricts the decision outcomes, i.e.
the possible outgoing branches at
the choice impacted by each de-
cision. In this way, ‘DataExtend’
creates decision dependencies. How-
ever, it cannot restrict the behav-
ior too much as this could create
unsound behavior in the form of
deadlocks and dead parts which break
the simulator in the next step. There-
fore, the following soundness con-
straints are imposed on the rule re-
moval step:

– each decision table has at least one rule for each possible outgoing choice
branch to prevent dead activities

– each decision table has at least one rule for each value combination of the
attributes values to prevent deadlocks

Additionally, the user can set a stopping criterion for the removal of random
decision rules. Without such a stopping criterion, ‘DataExtend’ will remove rules
until no removal can happen without violating the soundness constraints. This
results in fully deterministic decisions, i.e. for any combination of attribute val-
ues there is only one outgoing branch possible. However, business rules are often
non-deterministic and this ‘cannot be solved until the business rule is instanti-
ated in a particular situation’ [11]. This ambiguity can occur due to conflicting
rules or missing contextual information. Therefore, the approach allows users to
set a determinism level as stopping criterion. The determinism level is defined
as the number of decision rules removed relative to the maximum amount of
decision rules that could possibly be removed (without violating the soundness

4 Impossible combinations happen when a decision depends on two other decisions
that are mutually exclusive. Such combinations are removed from the decision table.

8 Toon Jouck, Massimiliano de Leoni, Benôıt Depaire

constraints). The maximum determinism level of 1 results in a fully deterministic
decisions. The minimum value of 0 denotes the initial state, i.e. any combination
of attribute values can lead to all possible decision outcomes. The user specifies
the target determinism level, which is the average determinism level over all de-
cisions with input attributes after the removal of rules. We explicitly leave out
decisions without assigned attributes, e.g. ‘Determine materials’ decision in the
make-to-order example. This is because such decisions always have a determin-
ism level of 0, i.e. no rules can be removed, which makes it impossible to reach
an average determinism level of 1.

Definition 4 (Determinism level). Let di be a decision and #rule(di) be the
number of rules in di. Let d̄i be a decision obtained from di after removing a
number of rules, then:

DeterminismLevel(di, d̄i) =
#rule(di)−#rule(d̄i)

#rule(di)−#minimum(di)

where #minimum(di) is the minimum number of rules to ensure soundness and
is determined by taking the maximum of the number of possible decision outcomes
for di and the number of attribute value combinations of Assign(di).

In the make-to-order example (see Section 2.1) the desired determinism level
is set to 1. This means that as much rules as possible have to be removed from
the decision table of the ‘Decide inspection’ and ‘Decide delivery’ decisions.
The initial decision table for ‘Decide inspection’ (see Table 3) contains 12 rules.
The soundness constraints imply that at least one rule for each of the three
possible decision outcomes should remain to avoid dead activities. Additionally,
the soundness constraints require that the decision table should contain at least
one rule for unique combination of case attribute values: {‘prepare new’, ‘prepare
mix’} × {‘True’, ‘False’} = 4 thus #minimum = max(3, 4) = 4. Removing rules
1, 2, 4, 6, 8, 9, 11 and 12 from Table 3 results in the decision Table 1 with
a maximum determinism level: 12−4

12−4 = 1. Similarly, decision rules are removed
for ‘Decide quality’ which ends in the decision Table 1 with determinism level
1. This makes the average determinism level equal to 1 as all routing decisions
with assigned attributes are fully deterministic.

Algorithm 1 summarizes the steps 2 and 3 of ‘DataExtend’.

Step 3: Simulate Control-Flow Model with Decision Perspective into
Event Log ‘DataExtend’ will simulate the models with decision rules into an
event log. It takes a user specified number of cases to be generated, the process
model, and the set of decision rules as input. Then, each attribute, except the
ones that correspond to a previous decision5, are initialized with a random value.
For example, in the make-to-order process the ‘premium’ case attribute gets
value ‘True’.

5 These attributes are initialized with the decision outcome when it is executed.

Generating Decision-aware Models Logs 9

Algorithm 1 : Extend process model with decision perspective
1: Input: M : process model, dl : target determinism level

2: Output: M : process model, R : set of decision rules

3: Start ExtendModel(M,dl)

4: for each exclusive choice inM do

5: Assign(di) 7→ randomSubsetOf(V)

6: Rdi
← initial decision table di

7: R ← R∪ Rdi

8: end for

9: while AverageDeterminismLevel(PT) < dl do

10: Remove random rule fromRwithout violating soundness constraints

11: end while

12: return R

The simulation algorithm will execute each activity in the model according
to the control-flow semantics and include this in the resulting event log. When it
encounters a decision di (business rule task) it will execute the decision using the
generated decision rules Rdi ∈ R. Therefore, ‘DataExtend’ will collect the values
of each of the assigned attributes {V1, . . . , Vw} to make a state of the current
case. Then it will iterate over all the decision rules to collect the possible decision
outcomes. A decision outcome is possible if a rule condition matches with the
state. Finally, the decision outcome leads to a particular outgoing choice branch
to be executed after the decision.

The simulation of a process model with the decision perspective yields an
event log with both control-flow and case information as needed for decision
mining evaluation.

3 Demonstration

This section presents an empirical analysis of two decision mining algorithms
to validate ‘DataExtend’. ‘DataExtend’ has been implemented in the ProM
framework as part of the ‘PTandLogGenerator’ package.6 It enables the eval-
uation of decision mining techniques that discover a decision model from an
event log (e.g. [4,5]) or techniques that discover the decision logic from an event
log (e.g. [3,6]). Due to a lack of space and because their integration within ProM,
the experiments will focus on the latter type of techniques.

Experiment Setup The experiment will evaluate the mutually-exclusive tech-
nique [3] that discovers fully-deterministic decision rules based on case attributes
in the input event log, and the overlapping technique [6] that allows to discover
non-deterministic decision rules. The goal is to determine the effect of different
determinism levels of the generated decision rules by ‘DataExtend’ on the qual-
ity of the discovered decision rules. We have generated a random sample of 129

6 see https://svn.win.tue.nl/repos/prom/Packages/PTAndLogGenerator/

https://svn.win.tue.nl/repos/prom/Packages/PTAndLogGenerator/

10 Toon Jouck, Massimiliano de Leoni, Benôıt Depaire

process models for each miner from six model populations defined as discussed
in [7] and shown in Table 4, i.e. one population for each value combination for
the determinism level {0.5,0.75,1} and infrequent paths7 {0 (False),1 (True)}
parameters. The other process characteristics are fixed for each model popula-
tion. The probability of the sequence, exclusive choice and parallelism patterns
is fixed at values 46%, 35% and 19%, respectively based on the analysis of a
large collection of real-life models by Kunze et al. [12]. The size of the models
varies between 6 and 10 activities, with a mode of 8 activities. Furthermore,
we have specified that the case attributes introduced by ‘DataExtend’ are of
three different types: boolean, string and numerical. Each numerical attribute
is discretized to a random number of intervals, between 1 and 4, following a
uniform distribution. Secondly, the number of case attributes that are assigned
to a decision varies between 0 and 3 following a discrete uniform distribution.
Each model with rules is simulated into an event log containing between 200 and
1000 cases. The size of the event logs was chosen such that the majority of the
event logs were complete with regard to the behavior in the model.

Parameter MPdata

No visible activities (6,8,10)
Sequence (Π→) 0.46
Parallel (Π∧) 0.19

Choice (Π×) 0.35

Infrequent paths (ΠIn) Y

Sample size (# models) 129

Logs per model 1
Number of cases [200,1000]

Determinism level X
attribute type ∈ {bool, string, numer}
intervals ∼ uniform(1, 4)
assigned attributes ∼ uniform(0, 3)

Table 4. Model population parameters
for the experiments, where X and Y are
assigned all 6 combinations of values in
{0,5.75,1} and {0 (False),1 (True)} respec-
tively.

For each generated control-flow
model, ‘DataExtend’ will first gener-
ate decision rules and an event log.
Each generated log is split into a
training log (90% of the cases) and a
test log (10% of the cases). The gener-
ated control-flow model and the train-
ing log are used as input of the de-
cision mining techniques to discover
decision rules. Then, we evaluate the
discovered rules using a classification
approach. We first alter the attributes
of half of the cases in the test log such
that they do not comply with the gen-
erated decision rules. Next, the dis-
covered rules are used to classify the
cases in the test log as fitting or non-
fitting (violating the discovered rules).
This enables us to quantify the qual-
ity of the discovered rules using the
quality metrics recall (how much fit-

ting cases are classified as fitting) and precision (how much cases classified as
fitting are actually fitting). We combine the recall and precision in the F1 score,
i.e. the harmonic average of recall and precision, to make the comparisons be-
tween algorithms in both dimensions easier.

7 Infrequent paths make some outgoing branches of an exclusive choice more likely to
occur than others.

Generating Decision-aware Models Logs 11

Fig. 3. F1 scores for decision mining tech-
niques for different levels of determinism

Analysis of Results The graph in
Fig. 3 illustrates the average F1 scores
for the two decision mining techniques
over different determinism levels. The
bars indicate the 95% confidence in-
terval for the averages. The graph in-
dicates a positive trend, i.e. increas-
ing the determinism level has a pos-
itive effect on F1 scores. To deter-
mine if the positive effect of deter-
minism level on decision mining tech-
nique is statistically significant, we
first divide the test results in subsets
grouped by technique. Then, we apply
the Kruskall-Wallis test (KW) [13] to determine if the differences in F1 scores be-
tween fully-deterministic (determinism of 1) and non-deterministic decision rules
(determinism of 0.5 or 0.75) are statistically significant for both techniques. This
is the case for the mutually-exclusive technique. For the overlapping technique
only the differences in F1 score between the largest and the smallest determinism
levels are statistically significant. Therefore we can conclude that the determin-
ism level has an effect on the quality of the two decision mining techniques.
This effect is smaller for the overlapping technique than the mutually-exclusive
technique. A direct comparison of the two techniques indicated that the differ-
ences in recall, i.e. overlapping > mutually-exclusive, are statistically significant.
These results confirm the theory that the overlapping technique outperforms the
mutually-exclusive technique in discovering non-deterministic decision rules as
included in the experiments.

4 Related Work

PLG2 [9] allows for extending control-flow models with data attributes, but
in a more general sense. It can add case attributes to activities such that an
activity can either generate a case attribute or require a case attribute. The latter
is implemented by automatically generating the required case attribute before
the execution of that activity. The user cannot control that this case attribute
requirement happens to activities after a decision in the process.8 Nevertheless,
this is necessary for the evaluation of decision mining techniques as they focus
on discovering the decision model and rules.

8 This is for the random model generator. PLG2 allows users to add the requirements
also manually, however, that would not lead to random samples and thus obstruct
the generalization of evaluation results.

12 Toon Jouck, Massimiliano de Leoni, Benôıt Depaire

5 Conclusion and Future Work

This paper has introduced the ‘DataExtend’ framework that allows to evalu-
ate and compare decision-mining techniques using a sufficient amount of event
logs and process models to detect statistically significant quality differences.
For the generation of event logs enriched with data attributes we developed a
novel approach. A demonstration of ‘DataExtend’ involved two decision mining
techniques and its results illustrated that the novel approach can serve the eval-
uation purpose. Future work needs to provide a more extensive evaluation that
includes more techniques, such as [4] and [5]. Furthermore, we want to extend the
framework so as to incorporate the loop and multi-choice patterns that involve
decisions. The initial evaluation is also based on an implementation that requires
a lot of tedious and manual repetition of the application of the techniques for
each of the generated event logs. Therefore, as future work, we aim to integrate
it in a scientific-workflow tool to automate the experiments.

References

1. Object Management Group: Decision Model And Notation 1.1 (June 2016)
2. Rozinat, A., van der Aalst, W.M.: Decision mining in ProM. In Dustdar, S.,

Fiadeiro, J.L., Sheth, A.P., eds.: Business Process Management, Vienna, Austria,
Springer (2006)

3. de Leoni, M., van der Aalst, W.M.: Data-aware process mining: discovering de-
cisions in processes using alignments. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, ACM (2013) 1454–1461

4. Bazhenova, E., Buelow, S., Weske, M.: Discovering Decision Models from Event
Logs. In: International Conference on Business Information Systems, Springer
(2016) 237–251

5. De Smedt, J., Hasic, F., Vanthienen, J., others: Towards a holistic discovery of
decisions in process-aware information systems. In: Proceedings of BPM 2017,
Barcelona, Josep Carmon, Gregor Engels, Akhil Kumar (2017)

6. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.: Decision Mining
Revisited-Discovering Overlapping Rules. In: CAiSE. Volume 9694. (2016) 377–392

7. Jouck, T., Depaire, B.: Generating Artificial Data for Empirical Analysis of
Control-flow Discovery Algorithms: A Process Tree and Log Generator. Business
& Information Systems Engineering (March 2018) 18

8. Van Der Aalst, W.M., Ter Hofstede, A.H.: Verification of workflow task structures:
A petri-net-baset approach. Information systems 25(1) (2000) 43–69

9. Burattin, A.: PLG2: Multiperspective Process Randomization with Online and
Offline Simulations. In: BPM (Demos). (2016) 1–6

10. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
controlflow patterns: A revised view. Technical Report 06-22 (2006)

11. Rosca, D., Wild, C.: Towards a flexible deployment of business rules. Expert
Systems with Applications 23(4) (2002) 385–394

12. Kunze, M., Luebbe, A., Weidlich, M., Weske, M.: Towards Understanding Process
Modeling - the Case of the BPM Academic Initiative. In: International Workshop
on Business Process Modeling Notation, Springer (2011) 44–58

13. Siegel, S., Castellan Jr, N.J.: Nonparametric statistics for the behavioral sciences.
2 edn. Mcgraw-Hill Book Company, New York (1988)

	Generating Decision-aware Models & Logs: Towards an Evaluation of Decision Mining

