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Abstract. Business Process Simulation (BPS) refers to techniques de-
signed to replicate the dynamic behavior of a business process. Many ap-
proaches have been proposed to automatically discover simulation models
from historical event logs, reducing the cost and time to manually design
them. However, in dynamic business environments, organizations con-
tinuously refine their processes to enhance efficiency, reduce costs, and
improve customer satisfaction. Existing techniques to process simulation
discovery lack adaptability to real-time operational changes. In this pa-
per, we propose a streaming process simulation discovery technique that
integrates Incremental Process Discovery with Online Machine Learn-
ing methods. This technique prioritizes recent data while preserving his-
torical information, ensuring adaptation to evolving process dynamics.
Experiments conducted on four different event logs demonstrate the im-
portance in simulation of giving more weight to recent data while retain-
ing historical knowledge. Our technique not only produces more stable
simulations but also exhibits robustness in handling concept drift, as
highlighted in one of the use cases.

Keywords: Business Process Simulation · Streaming Process Mining ·
Incremental Process Discovery · Online Machine Learning.

1 Introduction

Business Process Simulation (BPS) is one of the most used techniques for ana-
lyzing and improving business processes. By incorporating key aspects, such as
activities control-flow, task durations, and resource allocation, BPS can capture
a probabilistic characterization of various run-time aspects. Then, they enable
organizations to evaluate different scenarios, anticipate bottlenecks, and make
data-driven decisions. BPS models can be manually designed, requiring extensive
domain knowledge and significant effort. To overcome these limitations, auto-
mated approaches leveraging historical event logs have been developed, enabling
the complete discovery of simulation models (cf. Section 3).
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However, dealing with evolving processes and with their dynamic behavior
remains one of the major challenges. Organizations continuously adapt their pro-
cesses in response to internal policy changes or external factors. Traditional tech-
niques for discovery of simulation models fail to capture these ongoing changes
because they do not feature possibilities to update the discovered models as
changes are observed in the process’ behavior. This affects the process when a
sudden concept drift occurs, as the event log treats both older and newer be-
havior with equal importance in process simulation model discovery. As a result,
the discovered model would simulate behavior from both before and after the
drift as if it were future behavior, likely leading to invalid conclusions.

In this paper, we propose a novel streaming process simulation discov-
ery technique that integrates Incremental Process Discovery [23] with Online
Machine Learning methods. Our technique continuously updates the simulation
model by incorporating new event behaviors while preserving historical knowl-
edge. Specifically, we employ Hoeffding Adaptive Trees [3], which are well-suited
for evolving data streams and can dynamically adapt to process changes over
time. By prioritizing recent data without discarding valuable past information,
our technique enhances the accuracy and stability of simulation models.

The evaluation compares our streaming discovery technique with two base-
lines. A first baseline considers all historical event data, including those before
any process’ behavioral drifts; a second only uses the recent data, which would
not mix process variants with different behavior. This comparison highlights the
effectiveness of our technique and determines when all historical data are nec-
essary. The results show that our technique produces more reliable simulations
and effectively adapts to evolving processes.

The rest of the paper is structured as follows: Section 2 illustrates a mo-
tivational example, Section 3 reviews related works on process simulation and
online learning techniques. Section 4 details our proposed technique, outlining
how it integrates business process simulation discovery with adaptive learning.
Section 5 presents the experimental setup and evaluation results. Finally, Sec-
tion 6 concludes the paper.

2 Motivating Example

In this section, we present an example that highlights the motivation for propos-
ing an online process simulation discovery technique. Consider a loan application
process within a financial institution. Initially, when a customer submits a loan
request, the application is processed through one of two paths: either a manual
review by an expert (50% of probability, with 50 minutes duration) or an au-
tomated approval by a system (50% of probability, with 30 minutes duration).
The process concludes with the notification of the decision. Figure 1a depicts a
simulation model that a process simulation discovery technique would generate
based on historical data.

However, due to internal decisions to optimize the process, the institute de-
cided to enhance its automated system, increasing the probability of automated
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(a) Simulation model before the concept-drift.
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(b) Simulation model discovered after the concept-drift by using tra-
ditional process simulation discovery approaches. Red parts denote
inaccuracies.
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(c) Simulation model discovered after the concept-drift by using online
process simulation discovery techniques.

Fig. 1: Loan application process model examples. The control-flow process mod-
els is illustrated using BPMN notation, where "X" represents a decision point.
Percentages in the arcs represent path probabilities after the decision points.
Clock indicates activities durations in minutes. Resources, where involved, are
represented with icons and calendars.

reviews to 80% while reducing its processing time to 10 minutes. Moreover, rather
than simply concluding with an approval or rejection, the process outcome now
includes a loan offer.

When discovering simulation models using traditional process simulation dis-
covery approaches, we discover the model depicted in Figure 1b. As we incor-
porate all past event data (i.e., with pre- and post-drift behaviors), we fail to
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accurately reflect the changes. Instead, if we properly prioritize the recent data,
we can discover the simulation model described in Figure 1c. At the same time,
previous data information are crucial for capturing additional observations, such
as resource calendars and other event attributes. In this paper, we propose a
technique for incrementally updating previously discovered simulation models,
ensuring they adapt to process changes while maintaining high accuracy.

3 Related Work

The work by Rozinat et al. [20] is one of the first combining Process Mining
techniques to discover multiple perspectives of a process (control-flow, data, per-
formance, and resource aspects) and integrating them into complete simulation
models. In [8], Camargo et al. presented a method to discover business process
simulation models from event log data with the goal to optimize the accuracy of
it. The increasing availability of data and the advancement of new Machine and
Deep Learning techniques led to the integration of these into traditional Busi-
ness Process Simulation methods. Camargo et al. [7] and Meneghello et al. [16]
propose two hybrid approaches where a process model is discovered to model the
process’ control-flow perspective, which is extended with Deep Learning models
for the run-time characterization of the other perspectives. While these studies
primarily aimed to enhance the accuracy of temporal modeling through Ma-
chine Learning, de Leoni et al. [14] focuses on improving control-flow accuracy
by incorporating logistic regression models into the process model.

These discovery techniques aim to generate a process simulation model from
an input event log. However, they assume that the process remains stable over
time, analyzing patterns by averaging past and recent behaviors. In reality, pro-
cesses may be dynamic and evolve over time due to external factors or internal
process optimizations. This phenomenon, known as concept drift, occurs when
the process behavior changes over time, potentially making previously discovered
models inaccurate. To address this, several works proposed approaches for detect-
ing, localizing and dealing concept drifts [4,21]. Recent studies have introduced
techniques and methodologies for detecting concept drift across multiple process
perspectives—including control-flow, resources, and performance—showing how
processes can evolve in complex and multifaceted ways [2,11,12].

Other works proposed approaches for detecting concept drifts from event
streams [15]. Process mining techniques applied to the analysis of data streams
are referred as streaming process mining [5]. These techniques can be used to dy-
namically updating existing process models [6,9,27]. Navarin et al. [18] presented
a technique for discovering declarative process models from event streams that
incorporates both control-flow dependencies and data conditions. In [22] Scheibel
and Rinderle-Ma presented an online decision mining technique using an adap-
tive window technique (ADWIN) [3] to detect changes. However, these works
have primarily focused on the control-flow and decision mining perspectives,
without incorporating multiple perspectives essential for BPS models.
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In the domain of predictive process monitoring, Rizzi et al. [19] evaluated
three different strategies that support either the periodic rediscovery or the in-
cremental construction of predictive models, thereby allowing models to stay
up-to-date with new data. However, these approaches are not specifically de-
signed for the discovery or updating of simulation models.

4 Online Process Simulation Discovery

This section introduces a novel technique for discovering Business Process Sim-
ulation models from event data, designed to remain robust despite changes over
time. We firstly define event streams and Business Process Simulation models,
and then present our discovery technique.

Typically, BPS models consist of a process model represented as graph (e.g.,
Petri nets, BPMN models, or process trees) to capture activity control-flow [1],
enhanced with additional parameters representing various perspectives, such as
time, resources, and data attributes. State-of-the-art methods have introduced
hybrid simulation models that integrate these multi-perspective parameters us-
ing Machine Learning techniques, showing their potential in improving overall
performances [7].

Our technique combines Incremental Process Discovery with Online
Machine Learning to continuously update hybrid BPS models. The general
idea is to start with an initial process simulation model and progressively refine
it using streaming data. The rationale is that we aim to give more weight to
most recent data, then adapting the simulation model to current trends while
still retaining valuable insights from past data.

In the following sections, we first introduce key preliminary concepts, in-
cluding streaming of events and business process simulation models (cf. Sec-
tion 4.1). These concepts provide the foundation for describing our technique in
Section 4.2.

4.1 Preliminaries

Process data are typically collected as sequences of events, defining traces and
event logs [1]. Let E be the universe of events. Given an event e ∈ E we assume
the following projections: case(e) ∈ I the case identifier, act(e) ∈ A the activity
executed, res(e) ∈ R the resource involved, time(e) ∈ N the timestamp, and
attr(e) ∈ V a vector of event attributes, where I, A, R and V represent the
sets of all possible case identifiers, activities, resources and event attributes,
respectively. A trace is defined as a sequence of events ordered by timestamp
and sharing the same case identifier. An event log is a set of such traces.

Process Mining techniques aim to create models and discover process patterns
analyzing event logs [1]. Traditionally, these techniques take as input an entire
set of completed traces and use it for deriving conclusion. In this paper, we
assume to deal with event streams, i.e. a sequence of unique events [26].
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Definition 1 (Event Stream). Let E be the universe of events. An event
stream S = ⟨. . . , ei, ei+1, . . . ⟩ ∈ E∗ is an infinite sequence of events such that,
for any i ≥ 1, time(ei) ≤ time(ei+1).

Streaming process data enable the adaptive discovery of process models. This
paper specifically focuses on the incremental learning of Business Process
Simulation models. We leverage on hybrid process simulation models, which
integrate Process Mining and Machine Learning techniques, resulting in more
accurate simulation models [7,14,16].

Formally, a Business Process Simulation (BPS) model is defined as a tuple
M = (N,D,P ) where N is the activity control-flow process model, D is the set of
descriptive parameters, and P the set of predictive parameters that characterize
temporal and stochastic perspectives.

Specifically, N can be represented as a Petri net model, BPMN diagram or
process tree [1]. The descriptive parameters in D include the set of resources and
what activities they perform, their working calendars, and the event attribute
distributions. The predictive set P consists of models for estimating execution
times of activities, resource waiting times, and case arrival rates. Additionally,
it includes predictive models for determining branching probabilities [14]. In
this paper, we assume all these models to be probabilistic decision trees, ensur-
ing both explainability and the stochastic nature essential for simulation. The
predictive models can then be integrated at runtime during the simulation to
generate complete simulated event logs [16].

These BPS models can be discovered from event data by combining Process
Mining techniques to obtain the process model and descriptive parameters, with
Machine Learning algorithms to train the predictive models [7].

This formulation enables the application of Incremental Process Discovery
techniques to dynamically refine the process model N , while Online Machine
Learning methods can be applied to continuously update the predictive param-
eters P , defined as Machine Learning models.

In this work, we employed Hoeffding Adaptive Trees (HATs) [3] as the core
online learning method for updating the predictive models in P . Like the orig-
inal Hoeffding Tree, HAT leverages the Hoeffding bound to make statistically
sound decisions about node splits based on a limited number of examples, ensur-
ing efficient, incremental learning. The adaptive component of HAT addresses
concept drift by incorporating an adaptive windowing method (ADWIN) that
monitors performance at each node. When a drift is detected, HAT can replace
underperforming branches with alternate subtrees that better capture the cur-
rent concept. This permits the predictive models to evolve continuously, ensuring
the simulation model remains accurate over time.

4.2 Our Discovery Technique

Traditional process discovery techniques rely on analyzing historical event data
in a single batch to derive a process model. These methods assume that the
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process remains static over time, resulting in models that may become outdated
as the process evolves dynamically.

In this paper, we propose a technique for incrementally discovering process
simulation models. The starting point of the technique is a simulation model
Mt0 = (Nt0 , Dt0 , Pt0), which represents a process based on information available
up to timestamp t0. Given a new set of events at timestamp t > t0, the goal
is to produce an updated simulation model Mt = (Nt, Dt, Pt) integrating newly
observed behaviors while refining the existing model.

We formalize this problem by defining a function Φ : M× E∗ → M, where
E is the universe of possible events, and M denotes the universe of all possible
process simulation models. Given an existing process simulation model M ∈ M
and a new sequence of events S ∈ E∗, the function returns an updated simulation
model Φ (M,S) = M ′ ∈ M able to replicate new observations.

The procedure for updating the existing simulation model can be divided into
four key steps. First, data preparation is performed to select and structure the
event sequence for model updating. Next, the control-flow model is refined us-
ing Incremental Process Discovery techniques. Then, descriptive parameters are
updated. Finally, the predictive parameters (models) are adjusted using Online
Machine Learning techniques.

Step 0: Event Data Preparation Conventional Process Mining techniques
are designed to operate on sets of traces as input. Several techniques have been
proposed to extract finite sets of events from event streams for use in Process
Mining [26]. In this paper, we adopt the concept of sliding window, but note
that the technique is generalizable to any other extraction approaches.

Definition 2 (Sliding Window). Let S an event stream. Given a timestamp
t ∈ N, and the window size w ∈ N>0. We define the sliding window of size w at
timestamp t as Sw,t = ⟨e ∈ S | time(e) ∈ [t− w, t]⟩

The rationale is that a process analyst would update the simulation model at
regular time intervals defined by a predefined window size w. This means that a
new model is generated every w time units. For example, if w is set to one week,
the simulation model is updated weekly to reflect the latest observed process
changes during that week. This periodic update mechanism can be formalized
as iteratively refining an initial process simulation model Mt0 at a timestamp t0.
The updated process simulation model at a timestamp t is given by Mt = Mti =
Φ
(
Mti−1

,Sw,ti

)
, where i > 0, ti ≤ t < ti+1, ti = ti−1 + w and Sw,ti represents

the stream of events occurred within the most recent time window of length
w. Figure 2 illustrates this discussion, showing how the simulation models are
obtained over time for a time window of size w. This approach defines a sequence
of simulation models, each corresponding to a specific time window, where one
extends the previous.

Step 1: Control-Flow Model Update The previous process model Nti−1

is incrementally updated to incorporate new observed behaviors from the last
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Fig. 2: Iterative procedure for online process simulation discovery at each times-
tamp ti using window size w. Rectangles represent traces over time. The green
part represents the time window containing the events in Sw,ti used for incre-
mentally updating the simulation model at time ti.

observed data in the sliding window Sw,ti ∈ E∗. We employ Incremental Pro-
cess Discovery techniques to refine the existing process model, resulting in an
updated model Nti able to capture the new observations [23]. Sw,ti may include
incomplete traces - prefixes, infixes or postfixes - in addition to complete traces
(see Figure 2). To effectively handle this, we build upon the work by Schuster et
al. [24] designed for applying an Incremental Process Discover technique using
trace fragments. Trace fragments can be easily reconstructed from the stream of
events by projecting on the case identifiers. Specifically, prefixes refer to cases
that start within the window but are not yet completed, postfixes to cases that
complete in the window but started earlier, and infixes are fragments of on-
going cases that both started before and continue beyond the current window.
We assume that domain knowledge can be used to determine when cases reach
a completion. This knowledge can be given in form of possible activities that
mark the process executions, or alternatively by setting a timeout, namely a
case is assumed to be completed if no new activity is observed within a time
threshold [27].

We acknowledge that this can be a threat of validity in certain settings.
However, this is plausible in other settings. For example, in a loan application
process, a case ends when the offer is either accepted or rejected; in a purchase
process, upon completion of payment; and in a pharmacy retail setting, when
the prescription is fulfilled (see Section 5.1).

Notably, the method by Schuster et al. [24] assumes that the input process
model is a process tree. Process trees can be easily converted into Petri nets
or BPMN diagrams and vice versa under the assumption that they are block
structured [1]. However, this does not pose a limitation to our technique, since
many process discovery algorithms, such as Inductive Miner [13], produce block-
structured models, which ensure soundness and validity.
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Step 2: Descriptive Parameters Update The set of descriptive parameters
Dti−1

is updated by including the new behaviors in the sliding window Sw,ti .
Specifically, when previously unobserved resources appear in Sw,ti , they are in-
tegrated in the set of parameters with their associated working schedules and
the activities they perform. Moreover, for resources already present in Dti−1

,
their calendars are recomputed in the new sequence of events Sw,ti . Similarly,
the event data distribution are adjusted computing them using the events in
Sw,ti . This results in an updated set of parameters Dti .

Step 3: Predictive Models Update Finally, the predictive models in Pti−1

are updated to reflect changes in the process observed within the sliding window
Sw,ti . These updates occur in two ways:

– The updated process model Nti and parameter set Dti may introduce pre-
viously unseen elements, such as new resources, new activities, or new path-
ways in Nti that were not present before. In such cases, new predictive models
are defined. First, for any new activity, we train a new probabilistic decision
tree to estimate its execution time. Second, for any new resource, we train
a new probabilistic decision tree to estimate the waiting times. Finally, if a
new pathway is introduced in the process model, decision trees are defined
to determine the probability of selecting that path. These new models are
then included in the new set of predictive parameters Pti .

– Existing predictive models in Pti−1
are continuously refined using Online

Machine Learning techniques. These methods enable incremental updates,
allowing models to evolve with the latest observed behaviors without dis-
carding previous knowledge. Several Online Machine Learning techniques
exist in the literature; however, we chose Hoeffding Adaptive Trees [3] due
to their explainability and ability to adaptively learn from data streams that
evolve over time, making them robust to concept drift. These trees incremen-
tally update their structure based on incoming data, using statistical tests
to determine when to split nodes, enabling efficient and adaptive learning.
Moreover, Hoeffding Adaptive Trees incorporate drift detection mechanisms,
selectively updating branches of the tree when significant changes in the data
distribution are detected.

Through these updates, the set of predictive models evolves into an updated set
Pti , contributing to the refinement of the overall simulation model. The final
resulting simulation model Mt = Mti = (Nti , Dti , Pti) incrementally incorpo-
rates the behaviors observed in the most recent data window Sw,ti , thus being
representative for the upcoming period.

5 Experiments

In this section, we present the experiments conducted to evaluate the perfor-
mance and applicability of our discovery technique. The goal is to show its
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ability to produce accurate process simulations over time. To this aim, we mon-
itored the accuracy by dividing the temporal dimension into multiple windows
and computing accuracy metrics for each. The evaluation focuses on the dis-
tances proposed by Chapela-Campa et al. in [10], which assess the accuracy of
the simulation discovery technique from various perspectives. The metrics are
based on computing distances between the actual event log and simulated ones.

We compared our results using three different discovery techniques: (a) the
single large batch technique, which uses all previous data, (b) the last small
batch technique, which considers only the data from the most recent time win-
dow, and (c) our proposed online discovery technique. Specifically, (a) and (b)
serve as baseline techniques for comparison. This evaluation aims to assess the
importance of prioritizing the most recent data (online/last vs single batch), and
preserving historical information (online/single vs last batch) (cf. Section 5.1).

5.1 Experimental Setup

We implemented our discovery technique in Python, where the simulator is ini-
tialized with a process model represented as a Petri net [1], and a set of parame-
ters that can be discovered from an event log.4 Once an initial simulation model
is defined, it can be further enhanced through continuous event streaming. We
used the implementation of [24] in the Cortado library [25]. Additionally, we
integrated the River library [17] which implements Hoeffding Adaptive Trees.

We conducted experiments on four different event logs, each representing a
different process:

BPIC17W. It is the subprocess for the workflow-relevant activities, i.e., those
starting with W, in the BPI Challenge 2017 event data, a log of a loan
application process from a Dutch financial institute.5

BPIC12W. It is the same subprocess as BPIC17W but referring to the 2011
process executions, which are recorded in the BPI Challenge 2012 data.6

Purchase to Pay (P2P). It is a realistic purchasing example process with
synthetic event log.7

CVS retail pharmacy (CVS). It refers to a realistic pharmacy retail process
with synthetic event log.8

The temporal dimensions of the event logs have been divided into 10 temporal
windows as follows: we counted the number of weeks from the earliest to the
latest timestamp, and split the weeks in 10 obtaining the windows W1, . . . ,W10.
The choice of 10 windows aims to balance the significance of each window, on
the one hand, and the satisfactory frequency of model updates. Using more than
10 windows would reduce the data per window to less than 10% of the total,
4 https://github.com/franvinci/ProcessSimulationTool
5 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
6 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
7 https://fluxicon.com/academic/material
8 https://zenodo.org/records/4699983

https://github.com/franvinci/ProcessSimulationTool
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://fluxicon.com/academic/material
https://zenodo.org/records/4699983
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(a) Single large batch. (b) Last small batch. (c) Online.

Fig. 3: Illustration of the evaluation methodology. Rectangles depict traces over
time. The blue color indicates the events used for training the simulation model.
The orange indicates the traces used for testing it.

potentially compromising the statistical reliability of each update. On the other
hand, using fewer than 10 windows would result in infrequent model updates.

Denote the latest timestamp in Wi with ti, we consider process simulation
models at timestamps t1, . . . , t10, which we discovered via two baseline techniques
and ours. In particular, the simulation model at timestamp ti is discovered as
follows for two baseline techniques, namely technique (a) and (b), and our tech-
nique proposal, i.e. technique (c):

(a) We employed traditional - not incremental - discovery techniques for process
simulation models (see below), using the traces contained in W1, . . . ,Wi.

(b) We employed traditional discovery techniques for process simulation models,
using the traces in the only window Wi.

(c) Our online discovery technique began by creating an initial simulation model
using completed traces from the first window W1. The simulation model is
incrementally updated using events in W2, . . . ,Wi.

The experimental results at timestamp ti are those measured against the test
set containing completed traces that started in the following window, i.e. Wi+1.
Specifically, the obtained simulation model at time ti is used for generating an
event log that is then compared with the event log containing traces started in
window Wi+1. Notably, for the P2P process, no trace was in W10, preventing the
assessment of the model obtained at timestamp t9, which is thus not considered
in the results. The same has happened for the CVS process where four windows
W7, . . . ,W10 were empty. Figure 3 illustrates the three cases. Note that compared
to other approaches, our online technique allows the use of trace fragments. This
comparison examines whether assigning greater weight to recent data improves
the accuracy of simulation models for predicting the future. At the same time, we
also explore whether retaining historical data is essential for better estimating
simulation parameters.

For the techniques (a) and (b) in the list above, control-flow process models
have been discovered using Inductive Miner [13], while the decision trees model-
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ing the predictive models are obtained via the CART algorithm, and imposing
a maximum depth of 5 for maintaining explainability and avoid overfitting.

For our technique, i.e, technique (c) in the list above, the control-flow model
discovered in the first time window W1, is also obtained via Inductive Miner [13],
while the control-flow model was subsequently adapted, as per Step 1 discussed
in Section 4.2. For the other perspectives, we leverage on Hoeffding Adaptive
Trees, for which we set a maximum depth of 5, as done for techniques (a) and
(b). Moreover, we experimented with various grace periods (100, 500, 1000, 5000,
10000, 50000), which determine the number of instances observed before con-
sidering a split at a node, and using in the simulation model the one with best
accuracy. Particularly, lower grace periods facilitate rapid adaption to sudden
concept drifts, while higher grace periods reduce the risk of overfitting and pro-
mote more stable decisions. Details of the experiments using fixed grace periods
are in Appendix B.

5.2 Results

To assess the accuracy of our proposed technique, we ran simulations for each
time window and computed the distances between the event logs obtained via the
different simulation techniques, and the original ones. Distances were computed
using the metrics proposed in [10]. Specifically, CFLD and 3GD assess control-
flow related distances, AED and RED measure number of events distributions
over time, in absolute or relative terms, respectively. CED and CWD evaluate the
simulator’s ability to accurately replicate events within the circadian dimension
(day and hour of the week). CAR quantifies the accuracy of case arrivals, and
CTD measures the difference in cycle time distributions, implicitly capturing the
accuracy of execution waiting times [10].

For each use case, we conducted five simulations and computed the average
distances between the obtained event logs for each time window. The final results
are presented in Table 1, where the column with the green background highlights
our technique. The reported values represent the average distance across all
time windows, with standard deviations provided in parentheses. Since they are
distances, lower average values indicate better performances. Additionally, lower
standard deviation values suggest greater stability and consistency in accuracy
across the temporal dimension.

The results demonstrate that in general our technique outperforms the base-
lines. Indeed, we achieve equal or superior average results across all metrics,
highlighting its effectiveness. Notably, the last batch technique consistently yields
poor average results, emphasizing the importance of not just ignoring older por-
tions of event-data sets. Looking at the control-flow measures (CFLD and 3GD),
we can notice that they are very close to those obtained using the single batch
technique. This suggests that no significant process changes were detected in
these control-flow metrics. Very good results are achieved with the Cycle Time
Distribution (CTD) and the Relative Event Distribution (RED) distances, con-
sistently outperforming the other techniques. These results indicate that our
technique effectively adapts to temporal perspective changes.
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Table 1: Average results of simulations between time windows per each technique.
Numbers in parentheses indicate standard deviations. The online technique re-
sults are highlighted with a green background.

Measure Event Log Single Batch Last Batch Online

CFLD

BPIC17W 0.16 (0.05) 0.17 (0.04) 0.18 (0.02)
BPIC12W 0.25 (0.08) 0.42 (0.07) 0.17 (0.05)

P2P 0.2 (0.03) 0.39 (0.18) 0.2 (0.03)
CVS 0.02 (0.0) 0.07 (0.08) 0.02 (0.0)
Avg. 0.16 (0.04) 0.26 (0.09) 0.14 (0.03)

3GD

BPIC17W 0.18 (0.07) 0.19 (0.05) 0.19 (0.04)
BPIC12W 0.26 (0.11) 0.54 (0.06) 0.25 (0.09)

P2P 0.22 (0.02) 0.4 (0.19) 0.22 (0.02)
CVS 0.03 (0.0) 0.1 (0.1) 0.03 (0.0)
Avg. 0.17 (0.05) 0.31 (0.1) 0.17 (0.04)

AED

BPIC17W 1205.86 (643.01) 1260.28 (579.05) 1100.72 (680.09)
BPIC12W 736.2 (530.88) 717.86 (548.07) 687.44 (518.25)

P2P 1475 (622.17) 869.08 (504.36) 1132.41 (626.99)
CVS 60.63 (24.5) 5711.09 (10952.39) 38.54 (16.89)
Avg. 869.42 (455.14) 2139.58 (3145.97) 739.78 (460.56)

RED

BPIC17W 41.52 (21.68) 83.74 (22.57) 24.01 (11.11)
BPIC12W 72.96 (28.24) 156.32 (41.07) 44.61 (22.36)

P2P 616.65 (270.55) 676.77 (351.08) 535.81 (252.49)
CVS 51.95 (13.74) 47.4 (10.0) 20.19 (3.0)
Avg. 195.77 (83.55) 241.06 (106.18) 156.16 (72.24)

CED

BPIC17W 1.38 (0.9) 1.42 (1.22) 0.82 (0.61)
BPIC12W 2.89 (1.22) 2.45 (1.55) 2.45 (1.5)

P2P 0.88 (0.22) 2.34 (0.86) 1.06 (0.15)
CVS 0.27 (0.15) 1.06 (0.6) 0.13 (0.03)
Avg. 1.36 (0.62) 1.82 (1.06) 1.12 (0.57)

CWD

BPIC17W 1.25 (0.87) 1.33 (1.18) 0.69 (0.39)
BPIC12W 2.77 (1.16) 2.27 (1.53) 2.37 (1.51)

P2P 0.85 (0.13) 2.13 (0.89) 0.96 (0.14)
CVS 0.22 (0.06) 0.71 (0.54) 0.19 (0.05)
Avg. 1.27 (0.56) 1.61 (1.04) 1.05 (0.52)

CAR

BPIC17W 1262.21 (678.0) 1272.08 (574.62) 1241.19 (761.5)
BPIC12W 791.45 (628.59) 718.37 (524.64) 778.33 (590.46)

P2P 1025.01 (431.99) 617.11 (478.91) 799.21 (452.99)
CVS 25.28 (18.66) 5759.53 (10963.3) 18.51 (13.66)
Avg. 775.99 (439.31) 2091.77 (3135.37) 709.31 (454.65)

CTD

BPIC17W 63.6 (41.46) 99.07 (34.12) 36.82 (17.78)
BPIC12W 94.26 (41.86) 194.03 (37.21) 60.39 (23.75)

P2P 729.88 (357.63) 900.86 (504.84) 647.69 (294.34)
CVS 95.75 (27.28) 85.95 (23.21) 41.07 (3.66)
Avg. 245.87 (117.06) 319.98 (149.85) 196.49 (84.88)

Analyzing individual event logs and metrics, our technique achieves the best
results in 24 out of 32 cases (i.e. 75% of the cases), compared to 8 cases (25%) for
the single batch technique and only 4 cases (12.5%) for the last batch technique.
Note that there are 4 cases where our technique and the single batch technique
yield identical average results. Standard deviation analysis further supports the



14 F. Vinci et al.

Fig. 4: Cycle Time Distribution (CTD) distance over time for each use case.

robustness of our technique. In 24 out of 32 cases, our technique demonstrates
greater stability and consistency over time compared to the other two techniques.

We also visually explored the results through time windows. Figure 4 illus-
trates the Cycle Time Distribution (CTD) distance over time for each use case.
Our technique consistently outperforms the others in BPIC12W and CVS. In
some cases, such as BPIC17W and CVS, the last batch technique yields bet-
ter results than the single batch technique. Overall, our technique demonstrates
greater stability, producing more consistent results over time. Plots for each
metric are available in Appendix A.

The BPIC17W use case was one for which our technique has most remarkably
outperformed the baseline, especially in the comparison metrics related to the
time and resource perspectives. Previous work has indeed highlighted a presence
of significant drift related to the increase of the resource workload [2]. For this
case study, we conducted a more thorough assessment related to activity Vali-
date Application: the average duration of the activity shows a reduction of 38%
at week 28 (see Figure 5a). In particular, we computed the Wasserstein distance
between the simulated and real execution time distributions for Validate appli-
cation. Figure 5b shows these distances over weeks, where one could clearly see
that our technique certainly leads to lower Wasserstein distances after the con-
cept drift, except for two weeks, if compared with the baseline techniques. This
also implicitly contributes to better CTD results after week 28 (see Figure 4).

6 Conclusion

Traditional Business Process Simulation discovery techniques rely on analyzing
finite sets of historical traces. These methods assume the process does not change
over time, treating both past and recent event behaviors equally. However, real-
world business process can evolve over time due to internal policies changes
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(a) Median duration over weeks (in min-
utes) of the Validate Application activity.

(b) Wasserstein distances between the ac-
tual distribution of durations and those
obtained via simulations over weeks.

Fig. 5: Validate application execution time results. The vertical red lines indicate
when the concept drift has been detected in [2].

aimed at process improvement or external influencing factors. In this paper, we
proposed a simulation discovery technique able to adapt to evolving processes.

State-of-the-art research has demonstrated that hybrid process simulation
models can produce more accurate simulations [7]. To maintain high accuracy,
we combined Incrementally Process Discovery [23] with Online Machine Learn-
ing [3] techniques. As new process instances are executed, the simulation model
is updated. The control-flow perspective of the simulation model is updated us-
ing the technique proposed by Schuster et al. [24], while the other perspectives
rely on predictive models that are based on Hoeffding Adaptive Trees [3], which
can adaptively learn from data streams that evolve over time.

The conducted experiments (cf. Section 5) reveal the potential effectiveness of
our technique. The evaluation uses four distinct processes and their associated
event logs. The results show that our technique can potentially lead to more
accurate results across various perspectives, and it is more stable over time.

We acknowledge that the work by Schuster et al. [24] does not explicitly
remove unobserved behaviors from the process model, and this is an open chal-
lenge in the fields of Incremental Process Discovery and Repair. However, this
does not pose major challenges in our studies, since we rely on predictive models
to estimate branching probabilities at decision points, rare or unobserved paths
are naturally assigned near-zero probabilities. However, we acknowledge that the
readability of the models would be improved, if those “unused” parts were not
in the model. We plan to work on this as an avenue of future work, especially in
a event-log streaming settings.
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A Distances Over Time

This section presents detailed visualizations for each evaluation metric in all use
cases. Figures 6–13 offer a comprehensive overview of how metrics evolve over
time for each technique (cf. Section 5.2). In particular, they illustrate how the
online method generally produces more accurate and stable performance across
metrics.

Fig. 6: Control-Flow Log Distance (CFLD) over time for each use case.

Fig. 7: 3-Gram Distance (3DG) over time for each use case.
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Fig. 8: Absolute Event Distribution (AED) distance over time for each use case.

Fig. 9: Relative Event Distribution (RED) distance over time for each use case.

Fig. 10: Circadian Event Distribution (CED) distance over time for each use
case.
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Fig. 11: Circadian Workload Distribution (CWD) distance over time for each use
case.

Fig. 12: Case Arrival Rate (CAR) distance over time for each use case.

Fig. 13: Cycle Time Distribution (CTD) distance over time for each use case.
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B Distances Over Time per Grace Period

This Appendix provides a detailed analysis of the experiments conducted using
fixed grace periods of 100, 500, 1000, 5000, 10000, and 50000. These experiments
aimed to evaluate the impact of the grace period parameter on model perfor-
mance across different scenarios. Figures14–21 illustrate how varying the grace
period affects the balance between adaptability and stability. Particularly, lower
grace periods facilitate rapid adaption to sudden concept drifts, while higher
grace periods reduce the risk of overfitting and promote more stable decisions.
The results guided the selection of the optimal grace period used in the simula-
tion model.

Fig. 14: Control-Flow Log Distance (CFLD) over time for each use case per grace
period.
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Fig. 15: 3-Gram Distance (3DG) over time for each use case per grace period.

Fig. 16: Absolute Event Distribution (AED) distance over time for each use case
per grace period.

Fig. 17: Relative Event Distribution (RED) distance over time for each use case
per grace period.
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Fig. 18: Circadian Event Distribution (CED) distance over time for each use case
per grace period.

Fig. 19: Circadian Workload Distribution (CWD) distance over time for each use
case per grace period.
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Fig. 20: Case Arrival Rate (CAR) distance over time for each use case per grace
period.

Fig. 21: Cycle Time Distribution (CTD) distance over time for each use case per
grace period.
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