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Abstract. Business process simulation (BPS) has emerged as a crucial tool that offers
a risk-free virtual environment to analyze, test, and optimize complex service compo-
sitions and orchestrations in cloud and edge computing environments. BPS enables
the evaluation of alternative scenarios (a.k.a. “what-if” scenarios) by capturing the
dynamic behavior of service interactions, including control-flow, task durations, and
resource utilization. Several techniques to discover BPS models employ black-box
predictors to characterize the run-time simulation aspects. The downside of these
approaches is that the rules guiding the predictors cannot be provided in an intelligible
form. This means that service architects and process analysts cannot modify or explore
the decision-making logic that drives service orchestration and composition in these
simulations. Moreover, these models are often deterministic and thus unable to capture
uncertainty, which is essential to realistically simulate dynamic environments. This
paper presents white-box predictors based on probabilistic decision trees, which are
intelligible and easy to configure. The experiments show that white-box predictors can
improve the simulation accuracy and variability, while being naturally intelligible.

Keywords: Business Process Simulation - Service Composition - Machine Learning
- Explainable Al - Probabilistic Decision Trees

1 Introduction

Service-oriented business processes have become the backbone of modern enterprise archi-
tectures, where complex workflows are executed through the composition and orchestration
of distributed services [11]. In cloud and edge computing environments, these processes
typically coordinate multiple external services, microservices, and APIs to deliver end-to-end
business functionality. The dynamic nature of such architectures poses significant challenges
in understanding and predicting process behavior [21].

Business process simulation (BPS) has emerged as a key tool in service-oriented comput-
ing, offering a risk-free virtual environment to analyze, test, and improve service compositions
and orchestrations [4419]. In the first phase, BPS allows the identification of potential delays
(e.g., slow services or bottlenecks) and the validation of process design. In the second phase,



2 E. Vinci et al.

analysts can define what-if scenarios by adjusting resource allocations, modifying SLAs, or
replacing human tasks with automated services [10].

The starting point in service-oriented BPS is a process model that describes service
composition and orchestration logic, extended with an accurate run-time characterization of
different service perspectives, primarily data flow, guards, resource allocation, and tempo-
ral behavior [20]]. However, traditional approaches often fail to reflect real-world behavior.
Current state-of-the-art works show that integrating deep learning models into BPS can lead
to more realistic run-time characterization [7]. However, deep learning models are black-box:
the rules guiding these predictors are not explicitly provided as analytic expressions, thus
not being intelligible. As such, it becomes impossible to alter these rules to define what-if
scenarios and test the consequences on process performance via BPS. Moreover, since deep
learning models usually require a large amount of data, deep learning-based BPS models
cannot be constructed when the real process data are limited or missing. In addition, these
models are often deterministic, which reduces their ability to generalize across different
scenarios and limits their applicability in dynamic or uncertain environments.

This paper addresses these limitations by proposing a simulation approach specifically de-
signed for service-oriented business processes, where the run-time characterization is based on
probabilistic decision tree models. These white-box models essentially consist of decision rules
that service architects and process analysts can inspect and alter to test what-if scenarios involv-
ing different service configurations, SLA modifications, or infrastructure changes. We intro-
duce Decision-Aware Business Process Simulation models, which are basically process mod-
els extended with the run-time characterization of BPS based on decision trees (cf. Section ).
Our technique discovers decision trees from service execution data, using machine learning to
capture service selection rules and dependencies across various features (e.g., service attributes,
timing, workload) (cf. Section [3.3). We also present a method for interacting with these deci-
sion trees to define what-if scenarios for service-oriented processes, enabling service architects
to evaluate the impact of service changes or new service compositions (cf. Section [3.4).

We evaluated our approach in five case studies to assess its accuracy in reproducing the
behavior of the real process (cf. Section[d). The results demonstrate that our Decision-Aware
Business Process Simulation (DBPS) approach consistently outperforms the state-of-the-art
white-box simulation method, namely Simod [9] and achieves competitive accuracy compared
to black-box approaches [5i17]] while offering superior interpretability for service management
decisions. Additionally, our method demonstrates greater realism and variability in simulation
outcomes, making it particularly suitable for dynamic service-oriented environments that
demand transparent, configurable, and realistic behavioral modeling for effective service
orchestration and composition management.

2 Related Work

The work by Rozinat et al. [20] is one of the first combining process mining techniques to
discover multiple perspectives of a process (control-flow, attributes, service performance, and
resource aspects) and integrating them into complete simulation models. In this work, the au-
thors propose the use of decision tree models as decision guards in the control-flow perspective.

The increasing availability of data and the advancement of new machine and deep learning
techniques led to the integration of these into traditional process simulation methods. Camargo
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Table 1: Comparison of various simulation approaches across different perspectives (Control-
Flow, Temporal, and Resource). A o symbol indicates that the perspective is modeled using a
white-box approach, while e denotes a black-box approach. P and D indicate if the models
are probabilistic or deterministic, respectively. A gray box indicates the use of machine/deep
learning techniques for the underlying rules. The last column indicates whether the simulation
model is centered around the control-flow perspective, particularly relevant for service-
oriented processes.

Approach Process Perspective Control-Flow
PP Control-Flow Temporal Resource| ~ Centric
Rozinat et al. [20] op op op v
SlmOd [9] op op op \/
DSim [5] op [ Jp) op \/
RIMS [17] op oD op v
Agent Simulator [12] op op op
’ Our H op op op ‘ v ‘

et al. [7]] investigated the benefits of employing deep learning techniques compared to the tra-
ditional methods, referred to as “data-driven”. The authors found that deep learning techniques
produce more accurate simulations, although their technique does not enable what-if analyses.

Camargo et al. [5]] and Meneghello et al. [[17]] propose two hybrid approaches, respec-
tively named DSim and RIMS, where a process model is discovered to model the process’
control-flow perspective, which is extended with deep learning models for the run-time char-
acterization of the time perspectives. However, as mentioned in Section[I] the use of black-box
models makes it impossible to conduct specific what-if analyses. Additionally, deep learning
models are usually “data greedy”, making these approaches less suitable in case of scarcity of
process data for one or more perspectives, or even impossible when no process data is available
for different perspectives (e.g. event logs without resource information). Moreover, these mod-
els are inherently deterministic, always producing the same output for a given input. This lack
of variability introduces a limitation in service-oriented business process simulation, where
incorporating noise and randomness is essential to generate realistic and insightful simulation
results. As a consequence, their deterministic nature reduces their ability to generalize across
different scenarios, limiting their applicability in dynamic or uncertain service environments.

Some body of research exists that focuses on defining white-box models to characterize
the run-time BPS aspects. In [[14], the authors have proposed to train logistic regression models
to define data-dependent probabilistic guards, but they do not consider the perspectives on
resource and time. The same limitation is also shared with RIMS as well as with Simod [9],
another BPS approach that focuses on discovering and modelling data-dependent branching
probabilities using rule-aware models. Recently, Kirchdorfer et al. [12] have proposed Agent
Simulator, an agent-based approach for discovering BPS from an event log, providing high
interpretability and adaptability. This approach reverts the center of simulation attention from
the control-flow to the resource perspective, using resource models as backbone for BPS
models: it follows that can be challenging to perform what-if analyses heavily focused on the
control-flow perspective. In a context of service-oriented business process, approaches that are
not control-flow centric, such as Agent Simulator, focus primarily on individual services. As a
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result, it becomes more difficult to directly experiment with alternative ways of orchestrating
a set of services to execute business processes. This orchestration is, in fact, the main focus
of the control-flow perspective.

provides a comparative summary of state-of-the-art process simulation approaches
across the key process perspectives (control-flow, temporal, resource), highlighting the nature
of the modeling techniques employed and whether or not they are centered on the control-flow,
which is sensible for service-oriented business process simulation. The last row refers to the
approach proposed in this paper, which - along with Simod - is the only approach that employs
probabilistic methods to model the run-time characterization of the process’ perspectives on
control-flow, time and resource. As mentioned, a probabilistic characterization allows sim-
ulations to be more accurate and more generalized, while white-box methods are preferable
over black-box because the former makes it extremely easier to configure process simulation
models for alternative what-if analyses. Among the white-box, probabilistic approaches,
Simod uses simple distributions and probabilities to characterize the temporal and resource
perspective, which naturally do not provide outcomes that are as accurate as those provided
by machine learning approaches. In fact, our approach focuses on stochastic decision trees,
highly intuitive and easily configurable. In summary, allows one to conclude that
our approach is more accurately capture real-world uncertainties, incorporating noise and
stochasticity for greater realism, while easily enabling what-if analyses. The experiments
presented in Section [ provide evidence supporting these claims.

Note that every approach discussed so far, including those reported and ours,
uses methods that capture correlations. These correlations are not used directly for root-cause
analysis and process improvements but are merely used to guide the simulation, which is
conversely used for root-cause analysis and improvement. There is a large body of research on
causal reasoning methods, such as by Alaee et al. [2]], which certainly provides more rigorous
methods for causal inference but, on the other hand, do not easily enable what-if analyses.

3 Decision-Aware Business Process Simulation

In this paper, we introduce Decision-Aware Business Process Simulation models (DBPS),
where decision models govern control-flow and temporal simulation parameters based on
feature values of simulation instances. These decision models operate within defined feature
spaces, allowing users to interact with and modify service rules to perform what-if analyses.

We first introduce some preliminary concepts in Section In Section [3.2] we formally
define DBPS, while Section [3.3|presents a technique to discover them from an input event
log L. Finally, Section [3.4] illustrates how users can leverage these simulation models for
interactive what-if analysis.

3.1 Preliminaries

In this section, we introduce key preliminary concepts essential for discussing our proposal.
First, basic process mining definitions are presented, including events, event logs, and Petri
net models [1]. Finally, we explore (probabilistic) decision tree models and their application
in service-oriented BPS settings.
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Process Data. Event logs are collections of traces [[1]], each recording a process execution
(ak.a. case) as a temporally ordered sequence of events [1]. Each event carries a data payload.
LetZ, A, and R denote the sets of all possible case identifiers, activities, and resources, respec-
tively. For an event e, we have case(e) €Z, act(e) € A, res(e) € R, and time(e) €N, cor-
responding to the case identifier, executed activity, involved resource, and timestamp, respec-
tively. The latter induces the ordering within traces. Moreover, li fe(e) € { start,complete}
indicates whether e marks the start or completion of the activity. Finally, let )V and ¢/ denote
the sets of attribute names and values; then attr(e) : V — U maps each v €V to its value
attr(e)(v) €U, inherited from the trace to which e belongs.

Event timestamps define key elements to model in a process simulator. The inter-arrival
times are the times between the arrival of two consecutive cases; the waiting time of an
event is the time between the start of that event and the time is enabled to start; the service
execution time of an event is the time needed for executing an activity.

Process Models. In this paper, we use
Petri nets to model and represent the activ-
ity control-flow of service processes with a
set of recorded traces £ [[1]]. We opted for
Petri nets because they have a simple yet
formal syntax and semantics for defining
the control-flow stochasticity. However, the
discussion remains valid even using other
process model notations, such as process
trees or BPMN models. A Petri net is a tu-
ple (PT,F,.A ), where P is a finite set
of places, T is a finite set of transitions,
FC(PxT)U(Tx P) is a set of arcs, and
A: T — AU{r} is a labelling function
where 7 denotes the label of invisible tran-
sitions. A Petri net marking is a function
m: P — N, that assigns to each place the
number of tokens it contains, representing the current state of the net.

A transition ¢ € T' is said to be enabled in a marking m if each of its input places contains
at least one token. When an enabled transition fires, it consumes one token from each of its
input places and produces one token in each of its output places, resulting in a new marking
that reflects the updated state of the net.

For modeling the inherent stochasticity of the process simulations, we used the concept of
stochastic Petri nets following the procedure described in [[14], where each transition t € T is
associated with a weight 6, (X') >0 dependent on some values X . Specifically, the probability
of firing a transition ¢t € T" at a certain marking m is defined as

0+ (X) :
P(t,m)= { 2 em(m) b (X) ift€ E(m)

Fig. 1: Example of a Stochastic Labelled Petri
net. The black dots (e) represent the current
marking. Transitions of the enabled transitions
are annotated with weights depending on the
variable X.

0 otherwise

where E(m)CT is the set of transitions enabled at m.
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Example 1 (Stochastic Labelled Petri Net). Let N be a Petri net as shown in [Figure 1}
with the current marking m highlighted with black dots. The set of enabled transition is
then E(m) = {b,c,d}. The probability of firing the transition b is computed as P(b,m) =
1
x __2
e A

Probabilistic Decision Trees. In this paper, we leverage probabilistic decision tree mod-
els for their interpretability, explainability, and ease of user interaction. Their white-box,
interpretable nature makes them very suitable to enable what if analyses, where deep learn-
ing models fail (cf. Section [2). Other white-box models, such as logistic regression, rely
on counterintuitive coefficient, making them less practical for domain analysts who aim
to define what-if analyses. Probabilistic decision trees make predictions by hierarchically
splitting the feature space into distinct regions based on specific decision rules. In these
models, internal nodes and arcs define the decision criteria based on features in F, while leaf
nodes represent probability distributions. The use of probabilistic distributions make them
be different from traditional decision tree, where leafs are associated to single static values.

In the BPS domain, stochasticity plays
a crucial role. Traditional deterministic deci-

sion tree models may be inadequate, as they
always produce the same output without ac-
counting for noises or variability. Through
stochastic decision tree, the final output is

then generated by sampling from the distri-

False True

o)

[ Amount Requested

A \
> 5000 <5000

bution associated to the interested leaf.
> 700 <700

Example 2. In a loan application process,

@) service times of certain activities may de-
pend on rules based on previous activities

Fig. 2: Example of a stochastic decision tree and/or on process attributes. [Figure 2]illus-
that models the execution time of the activity trates an example of a decision tree mod-
Close Application in a credit loan process. C'(¢t) eling the execution time of the closure ap-
indicates a constant distribution with value ¢, plication activity. If the loan has not been
Exp(t) the exponential distribution with mean approved the application closes immediately.
t, N(u1,0) the normal distribution with mean Otherwise, for requested amounts below
1 and standard deviation o. Numbers at leaf 5000, the duration follows a normal distribu-
values are in minutes. tion with mean 5 and standard deviation 2.
For higher amounts, service time increases

and depends on the applicant’s credit score. For example, for higher requested amount from

customers with a low score the closure time follows an Exponential distribution with average
15.

&

Given a set of features F, a deterministic decision tree is defined as a function 6 € (F —
R) — R, where, for a given input « € (F — R), that assigns a numerical value to each
feature, 6(x) represents the decision tree prediction. A probabilistic decision tree is a function
0p € (F—R)— P, where P denotes a set of possible probability distributions. For a given
input 2 € (F — R), the output 0p(x) represents a probability distribution over possible
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predictions. Hereafter, 7 = (F —R) — R and 6% = (F —R) — P indicate the set of all
possible deterministic and stochastic decision trees built using features F, respectively.

3.2 Definition

Business process simulation models are typically defined by combining a process model
with a set of simulation parameters. Indeed, process models offer a clear and understandable
structure for representing the activity control-flow of a process.

We define a Decision-Aware Business Process Simulation (DBPS) model as a tuple
(N,D,P) where:

o N=(PT,F.AM\) is aPetri net describing the activity control-flow.

e D represents descriptive parameters, including resource calendars, the set of possible
resources R, and distributions of trace service attributes.

o P=(pF pFT pWT 9AT) is the tuple of predictive parameters:

— p°F . T — ©7cF assigns to each transition a decision tree that determines the
transition weights (cf. Section [3.1)) based on the set of control-flow-related features
Fcr. These features include trace history (i.e., how many times an activity occurred
in past executions of the same trace) and trace attributes, following approaches such
as those in [14]], where past executions and trace-level context influence branching
decisions.

— pFT: A— 97},-” maps each activity to a probabilistic decision tree that predicts its
service execution time. The set of features F g7 includes the resource involved in the
event, the trace history, and the trace attributes. This is consistent with state-of-the-art
works where execution duration is shown to depend on who performs the task [16];

— pWT :R— @g‘” returns, for each resource r € R, a probabilistic decision tree that

predicts waiting times of events performed by r. The features in Fy 1 incorporate
the resource workload (i.e. the current amount of events performed by the resource
1), trace history and attributes. Waiting time is thus defined as resource-dependent,
coherently with classical process simulator approaches, where waiting times are
driven by resource availabilities and queues;

64T ¢ @7{“ is a probabilistic decision tree that predicts inter-arrival times of new
process instances. The feature set F 4 includes global context features - specifically
weekday and hour of the day - since arrival times are externally driven and must be
modeled independently of the internal process execution.

Once a DBPS model is defined, it can be used to simulate the process. The predictive models
are then integrated at run-time, following the approach of [17]]. This enables the generation of
event logs that contain a specified number of traces, starting from a given initial timestamp.

3.3 Discovery

In this section, we present a methodology for discovering Decision-Aware Business Process
Simulation models from an input event log £. The objective is to identify service rule patterns
within the event log data for building decision tree models.
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The Petri net model N = (P,T,F,.A,\) can be obtained using process discovery algorithms
such as Inductive Miner [13]], while the set of descriptive parameters D can be obtained using
several techniques proposed in the literature, e.g. [15].

The event log £ is then aligned with the control-flow model NV, resulting in an event log
L compliant with N. This alignment procedure serves as a basis for the construction of the
training datasets required by predictive models, namely, the decision trees, used in the DBPS.
The predictive parameters are then discovered as follows.

Transition Weights. For each transition ¢ €T a training dataset is constructed following a
procedure similar to that proposed in [14], but using decision trees instead of logistic
regression models. Specifically, the training dataset is generated by collecting feature
values of For (i.e., trace history and trace attributes), whenever ¢ is enabled in the aligned
event log L. The goal is to predict if ¢ will be fired or not. A decision tree is then trained
as a binary classifier. Finally the leaf values are computed as the proportion of correctly
classified samples in each leaf, representing the probabilities of firing the transition ¢
when enabled. Each decision tree defines the transition weight function p“¥ (t) € ©F ¢
foreachteT.

Execution Times. For each activity a € A, we observe the events e € £ such that act(e) =a,
and build a training set of feature values of F g, which includes resource res(e), trace
history and trace attributes attr(e) with their values, aiming to predict the execution
time of e. A decision tree is then built for each activity a € A. Finally, for each leaf, a
best fitting distribution is determined from a set of predefined ones by filtering the data
based on the corresponding decision rules. The distributions are discovered following the
procedure in [6], which aims to minimize the Wasserstein distance. The set of predefined
distributions P include: Normal, Exponential, LogNormal, Uniform, and Constant. This
results in probabilistic decision trees (cf. Section defining p?'(a) € @gET for each
activity a € A.

Waiting Times. For each resource r € R we observed the events e € £y such that res(e) =r
and build a training set of feature values in Fyy 1 (i.e., resource workload, trace history
and trace attributes) with the goal of predicting the waiting time. Specifically, the waiting
time can be computed from the aligned event log by looking at the time between the start
timestamp of the event e and the time the correspondent transition, in the aligned event
log, is enabled. This results in a probabilistic decision tree p"V'7'(r) € 97'§WT for each
resource € R that models the waiting time distribution for each leaf.

Inter-Arrival Times. A training dataset is built as follows: for each trace o € L, the feature
values of F 41 (i.e., the current weekday and hour) are retrieved in order to predict the
arrival time of 0. A decision tree is then trained to estimate the arrival time from these
feature values. The same procedure as for execution and waiting time is then followed to
build the probabilistic decision tree 847 ¢ @;AT.

3.4 User Interaction for What-If Analysis

In service-oriented business process simulation, explainability is the key. The user aims to
interact with the simulator to investigate several what-if scenarios, enabling them to evaluate
the potential impacts of changes without putting them in production.

Since DBPSs are defined via (probabilistic) decision trees, such analyses are based on
their modifications, which are of three types:
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Close application execution time: What-i f analysis:
Approved Approved
False True False True
[ Amount Requested ] [ Amount Requested ]
7 \ 7 \
> 5000 <5000 > 5000 <5000 2000 < 5000 v/

Fig. 3: User interaction example on the decision tree illustrated in C(t) indicates a
constant distribution with value ¢, Exp(t) the exponential distribution with mean ¢, N'(u,0)
the normal distribution with mean y and standard deviation o. Rules are modified by removing
a decision tree and adding a new one in a different branch. The new rule satisfies the constraint
of the parent node (2000 < 5000).

1. Change leaves values, namely distribution parameters in a certain leaf are altered.
2. Remove subtrees, namely a subtree is replaced by a single leaf.
3. Add subtrees, namely a composite tree replaces a single leaf.

Note that these interactions can also be combined, and the user can also define new decision
tree models (e.g. when including more resources or new activities in the process models).
When including new resources the user must also model the waiting time for them, which
may depend on some features in Fyy 7. Alternatively, users can also reuse existing decision
trees from other resources to mimic the same behaviors. Also, when including a new activity,
i.e., new transitions in the process model with a new activity label, the user can similarly
introduce new decision trees for each new transition defining the probability of firing that
transition when enabled.

Example 3. illustrates an example of interacting with the decision tree from
to perform a what-if analysis. In this new scenario, the service execution time of
Closure is no longer dependent on the Credit Score for requested amounts exceeding 5000.
Additionally, for requested amounts below 2000, the service time is reduced. This adjustment
allows evaluating how the process performance is affected by these changes.

4 Experiments

This section presents the experiments conducted to evaluate the performance of our approach
compared with the state-of-the-art works. The goal is to show the ability of DBPS in producing
accurate and realistic simulations from various perspectives.

Accuracy evaluation focuses on computing distances between the distributions observed
in the simulated event logs and the real ones [8]. We compared our results with those obtained
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by state-of-the-art methods (cf. Section [2), showing that our approach outperforms the white-
box simulation model Simod [9], and often achieves competitive or superior performance
compared to the black-box methods [5/17].

Beyond the overall simulation accuracy, our method also demonstrates high precision in
reproducing decision behavior, thanks to explicit modeling of decision rules. Furthermore, our
simulations exhibit greater generalization and variability, key indicators of realistic behavior,
as evidenced by the entropy analysis.

4.1 Experimental Setup

The simulator has been implemented as a Python package: the user can manually define each
element of the DBPS or can discover one by giving an input event log and/or a Petri net
modelfl

We temporally split each event log into train and test sets with respectively 80% and 20%
of the total traces. The train set is used to discover the simulation parameters as described in
Section [3.3] while the test set is employed for the final evaluation.

To ensure a fair evaluation of the different methods, we used the same control-flow model
as the backbone of the simulation models of the different methods. Specifically, we employed
the models used in [S]] and [[17].

Decision trees have been discovered using the CART algorithm. To maximize accuracy,
we performed a 3-fold cross-validation with hyperparameter optimization. Specifically, we
defined the hyperparameter search space for the maximum tree depth by varying its values in
the range 1 to 5. In fact, the more terminal nodes and the deeper the tree, the more difficult it
becomes to understand the decision rules of a tree [18].

4.2 Processes & Event Logs

To assess the accuracy of our approach, we discovered the DBPS models (cf. Section [3.3)
using available event logs from five different business processes:

— CVS retail pharmacy (CVS), which focuses on a retail pharmacy process

— Academic Credentials Recognition (ACR), which records the executions process at the
University of Los Andes in Colombia.’

— BPIC12W, which captures the execution of the subprocess for the workflow-relevant
activities, namely those starting with W, of a loan application process run by a Dutch
financial institution in 2011

— BPIC17, which refers to the same sub-process as BPC12W, but related to the executions
in 2016, when the process underwent some significant changesﬂ

— Purchase to Pay (P2P), which registers executions of a purchasing processElF]

The use cases include two synthetic and three real-life event logs. The BPIC12W and
BPIC17W event logs also contain trace attributes that are used in the simulations.

Shttps://github.com/franvinci/prosit
®https://fluxicon.com/academic/material
"https://zenodo.org/records/4699983

8 https://doi.org/10.4121/uuid:3926db30-£712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5£3067df-£10b-45da-b98b-86aedcTa310b
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Table 2: Simulation distances results. For each case study, correspondent metric results are
reported for each method: Simod [9]], our approach DBPS, DSim [5], and RIMS [17]. The
best results are highlighted in bold. Cells highlighted in green indicate best results among the
white-box methods (i.e. Simod and DBPS). Last rows, denoted with Avg., indicate average
results for each metric and method across the case studies.

White-Box Black-Box
Simod [9] DBPS |DSim [5] RIMS [17]
NGD 0.58 0.35 0.60 0.59
P2P CTD || 453.62 432.12| 584.30  578.33
CAR || 73143 669.17| 770.54  773.02
NGD 0.53 0.23 0.25 0.23
ACR CTD || 716.05 190.08| 70.19 46.28
CAR || 250.33 180.24| 236.81 233.66
NGD 0.58 0.12 0.34 0.38
CVS CTD || 26993 5990 | 52.43 99.25
CAR 5.39 17.78 | 20.37 20.26
NGD 0.79 0.35 0.66 0.63
BPICI2W | CTD 19192 32.08 | 153.37 92.28
CAR 28.74 79.71| 97.49 92.74
NGD 0.81 0.32 0.58 0.58
BPIC17W | CTD 148.79 5497 | 114.31 36.53
CAR || 14596 53.72| 2433 82.29

NGD 0.66 0.28 | 049 0.48
Avg. CTD || 356.06 153.83| 19492  170.53
CAR || 23237 200.12| 22991  240.39

Case Study|Metric

4.3 Accuracy Evaluation

The goal of the accuracy evaluation is to assess how realistic the simulation conducted with
our method is and to compare it with Simod [9]], which also uses white-box models, as well as
with RIMS [17] and DeepSimulator (DSim) [S]], which are hybrid BPS methods that leverage
deep learning techniques.

Since Agent Simulator [12] does not have an explicit control-flow model, this method
cannot be compared against the others, which conversely have the control-flow model as
backbone. After all, Agent Simulator has a distinct goal, focusing on resources as the main
process perspective, whereas the others highlight the control-flow perspective.

To assess the accuracy of our proposed method, we conducted simulations and computed
distances between the event logs obtained by the different simulation methods and the original
ones, which were used to build the BPS models. We used three key distance metrics introduced
by Chapela-Campa et al. [8], each targeting a specific perspective of process behavior that
aligns with the focus of our approach: N-Gram Distance (NGD), with N =3 for measuring
the control-flow quality; Cycle Time Distribution distance (CTD) to measure the ability of
the model for capturing the times of process instances; Case Arrival Rate distance (CAR)
to computes the difference in the temporal distribution of case arrivals throughout the process
timeline.
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Table 3: Rule-based distance results. Each row reports a case study. Results are grouped by
metric (Rule-CFD, Rule-ATD, Rule-ETD, Rule-WTD), with Simod [9] and our approach
(DBPS). The best results are highlighted in bold. Averages are reported in the last row.

Case Study Rule-CFD Rule-ATD Rule-ETD Rule-WTD
Simod [9] DBPS|Simod [9] DBPS |Simod [9] DBPS|Simod [9] DBPS
P2P 0.16 0.05 | 768.31 786.06| 128.82 24.76 | 1525.20 1706.52
ACR 0.28 0.13 | 136.77 81.43 6.22 10.54| 36492 742.67
CVS 0.24 0.01 0.37 0.60 323 0.70 | 1222.63 515.57
BPICI2W 0.26 0.08 5.26 2.26 1035 3,57 | 471.85 224.02
BPIC17W 0.23 0.08 2.35 191 11.71 895 | 827.22 87344

[ Avg. [ 023 0.07 ] 18261 17445 3207 9.70 | 83237 812.44|

For each case study, we ran five simulations to obtain event logs containing the same
number of traces as the real ones, and computed the average distances between the obtained
event logs. presents the results of simulation distances across five case studies,
comparing our approach (DBPS) with both white-box (Simod [9]]) and black-box (DSim [5]],
RIMS [17]) methods. Across nearly all metrics and datasets, DBPS consistently outperforms
Simod, except for two metrics, establishing it as the most effective white-box method. Notably,
our method even matches or comes close to the performance of state-of-the-art black-box
methods RIMS and DSim.

Although both Simod [9] and RIMS [[17] incorporate decision models within the control-
flow, our approach demonstrates superior effectiveness. This can be attributed to two key
factors: (1) unlike Simod and RIMS, which rely solely on event attributes, our method also
leverages process history as a predictive feature; and (2) we model transition behavior using
weighted probabilities on transitions, allowing us to capture priority in concurrent executions
(see[Example TJ), while Simod and RIMS apply decision trees only at XOR gateways.

To further evaluate the accuracy of our method in modeling decision rules, we analyzed the
behavior of simulated and real event data at the level of decision tree leaves. For time-related
decision trees (i.e., arrival time, execution time, and waiting time; see Section E]), we used the
Wasserstein distance to compare distributions (respectively indicated with Rule-ATD, Rule-
ETD, Rule-WTD). For decision trees modeling transition weights, we computed the absolute
difference in transition firing frequencies (Rule-CFD). We compared our approach with
Simod [9], as DSim [5] and RIMS [[17] either do not produce resource information - used as
features in some decision trees - or lack the necessary trace attribute (cf. Section 3.2).
summarizes the results across the four rule-based metrics. Our approach (DBPS) outperforms
Simod [9] in the vast majority of cases, achieving the lowest average distances in all four
metrics. In particular, DBPS shows substantial improvements in Rule-CFD and Rule-ETD,
indicating more accurate modeling of control-flow decisions and execution time distributions.
These results confirm the enhanced precision of our simulations in replicating the decision
logic within the process.

We attribute the superior and competitive performance of our method compared to black-
box ones to its inherently probabilistic nature. While RIMS [17] and DSim [5] rely on
deterministic deep learning models to generate execution times — often resulting in rigid,
overfitted behavior with limited temporal variability — our method leverages probabilistic
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Table 4: Average entropy of execution time distributions. For each case study, correspondent
results are reported for each method: Simod [9], our approach DBPS, DSim [5], RIMS [17],
and our deterministic approach DBPS-det. Best results are highlighted in bold. Red back-
ground is used to indicate the worst results. Last row, denoted with Avg., indicate average
results for each metric and method across the case studies.

Case Study Probabilistic (Partly) Deterministic
Simod [9] DBPS |DSim [5] RIMS [17] DBPS-det
P2P 1.33 1.38 1.16 1.20 0.56
ACR 1.01 115 | 074 0.59 0.85
CVS 064 036 | 0.57 0.57 0.08
BPIC12W 1.65 225 | 0.56 0.56 0.60
BPIC17W 1.97 221 | 061 0.61 0.76

Avg. | 132 147] 073 071 057

decision trees to effectively capture uncertainty and reflect the natural variability observed in
real-world processes. To further support this claim, we computed the entropy of execution
time distributions across all activities on the simulated event logs. Entropy has been widely
used in the literature as an indicator of variability and generalization capacity of process
data [3]]. Higher entropy reflects a greater ability to reproduce the variability found in real
processes, which is desirable for realistic simulation. Specifically, since execution times are
continuous variables, we approximated their entropy by discretizing the observed simulated
values into bins by,...,bx. The optimal number of bins is based on the Sturges’ rule, which
computes the number of bins as k = [log, (n) + 17, where n is the number of observed
samples. Then the entropy of a probability distribution p® of execution time of activity a is
computed as H (p*) = —Zle pflog(p¢), where p¢ expresses the probability of a value being
in the bin b;. The average execution time entropy is then obtained as ﬁza caH(p?), with
A the set of possible activities.

reports the average execution time entropy values, with methods grouped into
Probabilistic and Deterministic categories. We also include DBPS-det, a deterministic variant
of our method that replaces probabilistic decision trees with deterministic ones. As expected,
all deterministic approaches exhibit substantially lower entropy, confirming their limited
ability to capture temporal variability. This statement is particularly confirmed if we compare
the entropy values of our approach DBPS with DBPS-det: the simple replacement in the latter
of probabilistic decision trees with deterministic ones causes a significant drop in the entropy
values, further pointing out that the improvement is certainly related to being probabilistic. Our
approach (DBPS) achieves higher entropy on average and across all case studies, except for
CVS. The CVS dataset warrants special attention. As noted by its authors, it is synthetically
generated, likely without emphasizing behavioral variability. Consequently, it exhibits limited
behavior variability, which explains the relatively lower entropy observed in this case.

These findings underscore the effectiveness of our method in generating behaviorally
accurate, realistic, and diverse simulations while maintaining full interpretability. We consis-
tently outperform the white-box Simod [9], not only in overall simulation accuracy but also
in faithfully modeling decision rules. Moreover, our method achieves competitive accuracy
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when compared to black-box state-of-the-art approaches, while offering greater realism by
capturing a higher degree of behavioral variability, as demonstrated by the entropy analysis.

5 Conclusion

The simulation of business processes that involve human resources and/or services is based
on a model that describes how activities are executed, along with a characterization of how
the perspectives on data, resource, and time are simulated. This characterization refers to
new process-instance arrival times, activity durations, resource assignment, data-dependent
probabilistic guards, etc.

While several approaches exist for discovering business process simulation models and
characterizing their run-time behavior, most rely on deep learning and/or deterministic models.
Deep learning models are typically black-boxes and do not expose their decision logic in
an interpretable, analytical form. This limits their configurability and hinders the ability
to perform meaningful what-if analyses. Deterministic models, in turn, fail to capture the
inherent stochasticity and uncertainty of real-world processes.

This paper proposes a novel approach that uses probabilistic decision trees for run-time
characterization. These decision models are both white-box, allowing for easy interpretation
and configurability, and stochastic, enabling the simulation of natural process variability.

Our technique has been compared with those existing related techniques that are based
on black-box and/or deterministic models as well as with the only technique from the state
of the art that is based on stochastic, white-box models. Five different processes were used
in the evaluation, and the results outline that our method enables running business process
simulations that are more realistic than and generalize more than these existing techniques.

We acknowledge that the current evaluation is largely quantitative on the ability of decision
trees to adequately characterize the run-time characterization of business simulation. As future
work, we aim to assess the human usability and interpretability of stochastic decision trees
to conduct what-if analyses. So we plan to investigate the trade-off between usability and
interpretability, on the one hand, and decision tree depth, on the other hand: we hypothesize
that deeper trees, while potentially more accurate, may hinder users’ ability to understand
and effectively utilize them for whar-if analyses. We plan to conduct user studies with
process experts using consolidated techniques for human-computer interaction and cognitive

psychology.
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