
Repairing Process Models through Simulation
and Explainable AI

Francesco Vinci and Massimiliano de Leoni

University of Padua
francesco.vinci.1@phd.unipd.it, massimiliano.deleoni@unipd.it

Abstract. A process model is one of the main milestones for Business
Process Management and Mining. They are used to engage process stake-
holders into discussions on how processes should be executed, or are
alternatively used as input for Process-aware Information Systems to
automate processes. Desirable models need to be precise and only al-
low legitimate behavior (high precision), while enabling the executions
that have been observed (high fitness). Often, models fail to achieve
these properties, and need to be repaired. This paper proposes a model-
repair framework that compares the behavior allowed by the model with
what observed in reality, aiming to pinpoint the distinguishing features.
The framework creates a Machine Learning model that discriminates the
traces of the real event log w.r.t. those of a synthetic event log obtained
via simulation of the process model. Explainable-AI techniques are em-
ployed to make the distinguishing features explicit, which are then used
to repair the original process model. Our framework has been imple-
mented and evaluated on four processes and various models, proving the
effectiveness of enhancing the original process model, in the harmonic
means of fitness and precision. Our results are then compared with those
obtained through the state of the art, which tend to prefer fitness over
precision: the comparison shows that our framework outperforms the
literature in balancing fitness and precision.

Keywords: Process-Model Repair · Business Process Simulation · Machine
Learning · Explainable AI

1 Introduction

A process model is one of the main milestones for Business Process Management
and Mining. They are used to engage process stakeholders into discussions on
how processes should be executed, or are alternatively used as input for Process-
aware Information Systems to automate processes. Desirable models need to be
precise and only allow legitimate behavior, while they should be able to represent
the valid executions that have been observed (high fitness).

Process models generally fail to achieve these properties, and need to be
repaired. However, fitness and precision are often contrasting: improving one

2 Francesco Vinci, Massimiliano de Leoni

Real Event Log

Simulated Event Log

RecommendationsEnd

Simulate

Yes

No

Process Model

Repair

Are they
significant?

Compute feature
importance

Discriminator

Create traces dataset

Dataset

Train

Step 1

Step 2

Step 3

Step 4

Fig. 1: The schema of the proposed framework. Step 1 provides a simulated
event log; in Step 2 a dataset of real and simulated traces is created for training
a Machine Learning discriminator model; Step 3 regards the computation of the
feature importance, providing recommendations for repairing the model; in Step
4 the recommendations are used for automating process model repairs.

may worsen the other. This paper reports on a novel model-repair technique
that tries to improve the harmonic means of fitness and precision.

The proposed framework can be summarized by the schema illustrated in
Figure 1. The key idea is to leverage on business process simulation: the original
process model, namely before any repair, is used to generate a set of simulated
traces. These traces are then compared with those of a real event log to high-
light the differences. This comparison is based on training a Machine Learning
(ML) model that, given an execution trace, is capable to classify whether it is
from the real or simulated event log. The rationale is that, if the process model
is characterized by high fitness and precision, the ML model is not capable to
determine whether a trace belongs to the real or simulated event log. In other
words, the lower is the harmonic means of fitness and precision in a process
model, the higher is the accuracy of the ML model. When the ML model accu-
racy is high, it is possible to pinpoint which trace characteristics are used for the
determination whether the trace is from the real or simulated event log. In this
paper, we use the SHAP (SHapley Additive exPlanations) method to pinpoint
the differences. These trace characteristics are then employed to automatically
improve the process model, aiming to achieve a process model that, once simu-
lated, would produce traces that are indistinguishable from the real event log.
This paper introduces different primitives to concretely repair the model.

To demonstrate the effectiveness of our proposed technique, we conducted
evaluations on five distinct processes and various models. The results showcase
the technique’s ability to enhance the original process models, improving on
both fitness and precision. The evaluation also compares the resulting repaired

Repairing Process Models through Simulation and Explainable AI 3

models with respect to those obtained by Fahland et al. [8], again highlighting
how we achieve a better balance.

The paper is organized as follows. Section 2 reports on preliminary concepts,
Section 3 introduces the framework, Section 4 outlines the evaluation and results.
Section 5 reports the related works, and finally Section 6 concludes the paper.

2 Preliminaries

This section introduces the preliminary concepts useful to discuss the framework.
First, basic definitions of events, traces, and event logs are presented, subse-
quently, a subsection recalls the notions on Petri nets. A final subsection provides
the definitions related to the explainability of a Machine Learning model.

2.1 Events, Traces, Event Logs

Usually process transactional data are collected as event logs. An event log is a
collection of traces, where a trace is a sequence of events with their attributes.
In this paper, we abstract the events as the activities that are executed, thus
ignoring the other event attributes because they are irrelevant for our technique.

Definition 1 (Traces & Event Logs). Let A be the set of activity labels. A
trace σ = ⟨start, e1, . . . , em, end⟩ ∈ A∗ is a sequence of activities. An event log
LA is a multiset of traces, i.e. LA ∈ B (A∗).1

We define a trace to always have the special activities start, end ∈ A, as this
will be useful for defining later the set of trace features.

In the following we define a relation function, which will be used to encode
the traces for the training of the discriminator model.

Definition 2 (Footprint Relation). Given a trace σ = ⟨e0, . . . , em⟩ ∈ LA, a
pair (a, b) ∈ A×A belongs to the footprint relation >σ iff ∃ i ∈ {0, . . . ,m− 1}
s.t. ei = a and ei+1 = b.

In the remainder, we use the notation a >σ b to indicate (a, b) ∈>σ.

2.2 Petri Nets

In this paper we use Petri nets for modeling and representing processes with a
set of recorded instances LA. We opted for Petri nets because they have a simple
yet formal syntax and semantics, sufficiently reach to model the aspects relevant
for our framework.

Definition 3 (Petri Net). A Petri net is a triple (P, T, F), where P is a finite
set of places, T is a finite set of transitions, and F ⊆ (P × T)∪ (T × P) is a set
of arcs.

1 B (A∗) indicates the set of all the multisets with element in A∗.

4 Francesco Vinci, Massimiliano de Leoni

In the remainder, for any t ∈ T , t• = {p|(t, p) ∈ F} and •t = {p|(p, t) ∈ F} are
the set of places with arcs coming from or going to t, respectively. The state of
a Petri net is identified by its current marking:

Definition 4 (Marking). A marking m of a Petri net (P, T, F) is a function
m : P → N which assigns for each place p ∈ P the number m (p) of tokens at
this place. A Petri net system is a Petri net with an initial marking mi and a
final marking mf .

A Labelled Petri net system N =
(
P, T, F, λ,mi,mf

)
consists of a Petri net

(P, T, F), a labelling function λ : T → A∪{τ} where A is a set of activities and
τ denotes the label of invisible transitions, mi the initial marking and mf the
final marking. Hereafter, we use the term Petri net to indicate a Labelled Petri
net system, without causing ambiguities.

Since Petri nets are used to model business processes, we assume that they
are in fact Workflow Nets [1]: there exist an input place i ∈ P and an output
place o ∈ P that have no incoming or outgoing arcs, respectively, as well as every
node is in a path between i and o.

The behaviour of a Petri net can be represented as a so-called reachability
graph, which is a way of representing the states of Petri nets. A reachability
graph of a Petri net N is a directed graph GN = (V,E), where:

1. V is the set of nodes where each node v ∈ V represents a reachable marking
(from the initial mi);

2. E is the set of edges, each of which is a triple (mi, t,mj), which indicates
that t can fire at marking mi, leading to marking mj .

In the remainder, given two activities a and b, a >N b is used to indicate that,
according to N , activity b can be immediately executed after a, namely E con-
tains a set of edges {(m1, t1,m2), . . . , (mn−1, tn−1,mn)} such that λ(t1) = a,
λ(tn−1) = b and, for all 1 < k < n− 1, λ(tk) = τ .

This paper aims to obtain sound models. Since we focus on Petri net, we
base on the soundness criteria introduced in [1], according to which a Petri net(
P, T, F,mi,mf

)
is sound iff:

– Option to complete: For any reachable marking m, it is possible to reach
marking mf .

– Proper completion: The only reachable marking that contains a token in the
final place o is the marking mf .

– Absence of dead transitions: There are no dead transitions, i.e. it does not
exist a transition that is not enabled at any reachable marking.

2.3 Explanations of ML Models

In Machine and Deep Learning, the highest accuracy is often achieved by using
complex models that are difficult to interpret and, therefore, are often referred
to as black box models. In a general sense, a classifier or regressor can be ab-
stracted as a function ψ that returns the estimated value of the target variable,

Repairing Process Models through Simulation and Explainable AI 5

defined over a domain Y . The ψ’s domain is defined over the Cartesian prod-
uct over the domains X1, . . . , Xn of the independent features f1, . . . , fn, namely
ψ : X1 × . . .×Xn → Y .

Several approaches have been introduced to address the problem of the
accuracy-interpretability trade-off. One of the most widespread is based on com-
puting Shapley values, which can be efficiently computed via the method SHAP
(SHapley Additive exPlanations) [11]. Shapley values are computed for each
feature of each potential element x⃗ = (x1, . . . , xn) ∈ X1 × . . .×Xn: given a fea-
ture fi, the Shapley value ϕx⃗i intuitively expresses how much the feature value
xi contributes to the model prediction when the input is x⃗. The contribution
is computed as the average prediction difference with respect to a certain base
value, when feature fi takes on value xi and each other feature is either discarded
or retained. The base value is computed as the average of the predictions when
a given multiset X ∈ B (X1 × · · · ×Xm) is used as input (usually the model’s
training set). Space limitation prevents us from providing a full introduction of
the SHAP theory. Interested readers can refer to [11] for further details.

Shapley values are computed for individual input vectors and individual fea-
tures. However, we need to obtain a general contribution value for each individual
feature, fairly independent of the specific input. We thus introduce the following
explanation function, used thereafter in the paper, that returns the average of
the Shapley values when a feature assumes a certain value.

Definition 5 (Explanation function). Let F = {f1, . . . , fm} be the set of all
the features, with Xj be the domain of fj. Let ψ : X1 × · · · × Xm → Y be a
regressor or a classificator model. Let X ∈ B (X1 × · · · ×Xm) be a multiset of
elements in X1 × · · · ×Xm. Let us consider any fi ∈ F . Given a value x ∈ Xi,
we define

ϕfi (x,X) = avg
x⃗=(x1,...,xm)∈X

xi=x

(
ϕx⃗i

)
(1)

as the average of the Shapley values ϕx⃗i computed over the set of input values
x⃗ ∈ X , when the feature fi assumes values x ∈ Xi.

Intuitively, ϕfi (x,X) expresses the expected impact of feature fi taking on value
x, i.e. how much the fact fi = x influences the prediction.

3 Framework

The overall idea of this paper is to run simulations over a process model, to ob-
tain a simulated event log and then compare it to the real one using a Machine
Learning discriminator model. Then, SHAP is used to compute the discriminat-
ing features, pinpoint the differences between the two event logs, and repair the
process model in an automated iterative way.

The framework can be divided into four steps (see Figure 1). In Step 1, the
initial process model is used to generate a simulated event log. In Step 2, the
traces of the real and simulated event logs are encoded yielding to a dataset used

6 Francesco Vinci, Massimiliano de Leoni

by a ML discriminator model to detect the inaccuracies of the process model.
Step 3 focuses on the identification of the discriminating features, measuring the
SHAP feature importance, which is then used in a Step 4 to repair the process
model. If the discriminations are significant, the four steps are repeated; oth-
erwise, the repairing procedure terminates. Sections from 3.1 to 3.4 introduces
details the four steps of the framework, while Section 3.5 introduces an alter-
native, greedy approach to incorporate some process-model changes, which
are expected at Step 4. Hereafter, we refer to the original, non-greedy approach,
namely exactly as described in Section 3.4, as the complete approach.

3.1 Step 1: Process Simulation

The framework takes in input an event log Lr
A over an activity set A, along with

a Petri net N =
(
P, T, F, λ,mi,mf

)
with λ : T → A∪ {τ} (cf. Section 2.2).

The event log is temporally split into training and validation sets: the first
part of the traces is allocated to the training set and the remaining traces to
the validation set. The former is used to train the model and discover the dis-
criminatory features, while the latter to validate the tuning of hyper-parameters,
aiming to avoid underfitting and overfitting of the discriminator model.

Petri nets are converted into Stochastic Labelled Petri nets [6], which assign a
firing probability to each transition. In particular, we compute these probabilities
as discussed in Burke et al. [6], on the basis of the frequencies of transition firings.

The simulation is executed for a number of process instances equal to the
number of traces in the original event log Lr

A. A simulated trace is in fact ob-
tained by looking at the occurrence sequence of the fired, labelled transitions.
The simulated event log Ls

A is then divided into a train and a validation set,
with the same number of traces of the splitting in the real event log. This bal-
anced distribution facilitates a fair comparison and evaluation of the framework
performance against real data.

3.2 Step 2: Detection of Inaccuracies of Simulation Models

In the second phase, the real and simulated event logs, Lr
A and Ls

A, are used to
discover the log-footprint feature set F>

A = {fa>b | (a, b) ∈ A × A}. Note that,
since we define a trace to always have the activities start, end ∈ A, features
fstart>a and fa>end belong to F>

A , with a ∈ A \ {start, end}.
The creation and population of these features are in accordance to the fol-

lowing mapping function:

Definition 6 (Trace-to-Feature Mapping Function). Let LA be an event
log over a set of activity labels A. Let F>

A be the set of log-footprint features.
We define a trace-to-feature mapping function ρLA : LA → (F>

A → {0, 1}) s.t.
ρLA (σ) = νσ where, given σ ∈ LA, ∀fa>b ∈ F>

A :

νσ (fa>b) =

{
1 if a >σ b

0 otherwise
(2)

Repairing Process Models through Simulation and Explainable AI 7

Table 1: Training dataset example: each row represents the encoding of a trace,
target is equal to 1 if the trace is real, 0 if simulated. For space reasons, we
only show the relevant features, namely those that are not always assigned a
value of zero.

fstart>a fstart>c fa>b fa>c fa>d fb>d fc>d fd>end fc>end target

⟨start, a, b, d, end⟩ 1 0 1 0 0 1 0 1 0 1
⟨start, a, c, end⟩ 1 0 0 1 0 0 0 0 1 1
⟨start, c, d, end⟩ 0 1 0 0 0 0 1 1 0 1
⟨start, a, b, d, end⟩ 1 0 1 0 0 1 0 1 0 0
⟨start, a, c, d, end⟩ 1 0 0 1 0 0 1 1 0 0
⟨start, a, d, end⟩ 1 0 0 0 1 0 0 1 0 0

With these concepts at hand, the training dataset TLr
A,Ls

A
of the discriminator

model is constructed as follows:2

TLr
A,Ls

A
=

⊎
σ∈Lr

A

(ρL
r
A(σ), 1) ⊎

⊎
σ∈Ls

A

(ρL
s
A(σ), 0) (3)

where 1 and 0 indicate that the trace belongs to the real and simulated event
logs respectively.

Example 1. Given a set of activity labels A = {start, a, b, c, d, end}, a real event
log Lr

A = ⟨⟨start, a, b, d, end⟩, ⟨start, a, c, end⟩, ⟨start, c, d, end⟩⟩, and a simu-
lated one Ls

A = ⟨⟨start, a, b, d, end⟩, ⟨start, a, c, d, end⟩ ⟨start, a, d, end⟩⟩, Ta-
ble 1 describes the training dataset: each row represents the encoding of a trace,
where the last column indicates if the trace belongs to the real or simulated
event log (1 if real, 0 otherwise), and the others the correspondent features.

The constructed dataset may have variables with a high correlation, leading to
collinearity. When collinearity exists, it can be a challenge to interpret the indi-
vidual effects of these variables on the target variable. In fact, it becomes difficult
to discern whether a feature has a significant impact on the target variable in-
dependently or whether its effect is captured by other correlated features in the
model. To overcome these issues, a feature selection is performed, considering
the correlation between the features: the framework iterates across the features,
and for each one, it considers the set of the features with an absolute correlation
greater than a given threshold, only retaining one for each of these correlation
groups, whose choice can be arbitrarily done.3 Furthermore, the features that
are associated with a variance lower than a fixed threshold are removed. The
validation set is then constructed following the same procedure and using the
same features selected by the feature selection phase described above.

Then a ML model is developed to predict if traces are real or simulated: the
output of the model has to be intended as the probability that the input trace is

2 Symbol ⊎ indicates the union of multisets.
3 Usually, suitable thresholds are above 0.9. In our evaluation, we set it to 0.99.

8 Francesco Vinci, Massimiliano de Leoni

real. The model is trained using the training set TLr
A,Ls

A
, defined in Equation 3,

and the validation set is used to validate the procedure and fine-tune the hyper-
parameters of the model.

3.3 Step 3: Identification of the Discriminating Features

Once the model is trained, we create a multiset X true that is obtained from the
training-set instances that the ML model has correctly classified, projected over
the independent features (i.e., removing the target variable).4 This is done in
order to understand the set of features that enable a correct discrimination. We
compute the impact of the features in the output for the samples in X true to
provide explanations of certain classifications (cfr. Section 2.3). For each activity
pair a, b ∈ A:

– If the feature fa>b taking value 1 (or 0) increases (decreases, resp.) the
probability for a trace to belong to the real event log, i.e. ϕfa>b

(1,X true) > 0
(ϕfa>b

(0,X true) < 0, resp.), it means that the model does not sufficiently
allow for a being followed by b. Therefore, the model needs to enable this.

– If ϕfa>b
(1,X true) < 0 (or ϕfa>b

(0,X true) > 0), the feature fa>b taking value
1 (0, resp.) impacts the prediction to classify a trace as belonging to the
simulated (real, resp.) event log. This means that the real event log does not
show that behavior.

In the remainder,R andR are respectively the set of features related to behavior
that needs to be included or not to the model, namely the first or second case in
the list above. At this stage, the features that were removed because they were
strongly correlated are considered again: any feature exhibiting a strongly posi-
tive correlation with another within the set R is incorporated into R. Similarly,
if any feature is negatively correlated to any other in R, then it is added to R.

3.4 Step 4: Process Model Repair

In a final step, the set of features R is used for repairing the Petri net N =(
P, T, F, λ,mi,mf

)
, with λ : T → A∪{τ}, where A is a set of activity labels, and

GN = (V,E) is the reachability graph. We assume the Petri net N to be sound
and safe [1]. This is not very limiting: several process-discovery algorithms, such
as Inductive Miner [10] and Split Miner [4], produce Petri nets for which safety
holds; also BPMN models with the typical constructs (AND and XOR splits
and joins) can be modeled as a safe Petri net. Assuming soundness is also very
reasonable: unsound process models cannot be used to enact processes, making
them impractical and essentially futile. Repairing models to ensurer soundness

4 The ML model returns a probability value between 0 and 1. Therefore, an instance
with a true value of 1 is considered as correctly classified if the probability value is
larger than 0.5. Similarly, an instance with a true value of 0 is correctly classified if
the value is smaller than 0.5.

Repairing Process Models through Simulation and Explainable AI 9

(a) Reachability graph: ta, tb ∈ T . (b) Petri net: ta, tb ∈ T .

(c) Reachability graph: ta ∈ T , tb /∈ T . (d) Petri net: ta ∈ T , tb /∈ T .

(e) Reachability graph: ta /∈ T , tb ∈ T . (f) Petri net: ta /∈ T , tb ∈ T .

Fig. 2: Petri net repairs. Red and dashed parts denote repairs. We indicate visible
transition with label l with tl, i.e. λ

−1(l) = tl if l ̸= τ . We assume, without loss of
generality, that in category (i) (Figure 2b), there is only one parallelism involving
a single transition. For categories (ii) and (iii) (Figures 2d-2f), we consider places
to be disjoint. Any differences are negligible.

is orthogonal to what proposed here, and may be a preliminary step before
applying our framework.

To keep the discussion simple, we assume each visible transition to be as-
sociated to a different label. However, the alignments can easily be used to lift
this up, similarly to what is done, e.g., to compute precision [2]. Hereafter, we
indicate with tl the transition with label l ∈ A, i.e. λ (tl) = l.

For any feature fa>b ∈ R we should consider four categories: (i) when there
exist net transitions with labels a and b in the original Petri net N , (ii) and (iii)
when one of them is missing, (iv) when both are missing. The model is repaired
differently for each category:

(i) If a ≯N b and ta, tb ∈ T , we alter the Petri net such that the correspond-
ing reachability graph contains one edge (m′

i, τij ,m
′′
j), for each marking

m′
1, . . . ,m

′
n ∈ V reached after firing transition ta and for each marking

10 Francesco Vinci, Massimiliano de Leoni

m′′
1 , . . . ,m

′′
q ∈ V in which tb is enabled. This is pictorially represented in

Figure 2a. The transitions τij with 1 ≤ i ≤ n and 1 ≤ j ≤ q are invisi-
ble (i.e. λ(τij) is set to τ) and added to the Petri net. Figure 2b illustrates
the resulting Petri net, in a case in which n = 2 and q = 2, where the in-
serted invisible transitions are shown in red. The above-mentioned changes
in the reachability graph correspond to these specific changes in the Petri
net because the Petri net is safe.

(ii) If tb /∈ T , we alter the Petri net as follows:

– for each p ∈ t•, we remove the arc (ta, p) from F ;

– we introduce a visible transition tb with λ(tb) set to b, an invisible τ , and
a place p;

– for each p ∈ t•, we add the arcs (tb, p) and (τ , p), along with the arcs
(ta, p), (p, tb), (p, τ).

These changes are visually depicted in Figure 2d, which refers to a case
where the outgoing places from ta are two. Note the category (ii) is directly
elaborated with respect to the Petri net, because the discussion is simpler. Of
course, these changes in the Petri net imply modifications in the reachability
graph, as illustrated in Figure 2c.

(iii) If ta /∈ T the procedure is similar to the category (ii) where now we consider
the places in •tb. Space limitation prevent us from discussing this case in
detail, but Figures 2f and 2e ought to be sufficient for a full understandability.

(iv) If ta, tb /∈ T , then no repair is carried out. However, if fa>b is a discriminatory
feature, there is surely a feature fd>a (or fb>d, resp.) for some activity d.5

The model would then be repaired wrt. fd>a (or fb>d, resp.), namely the
category (ii) or (iii) would be applied. This would incorporate transition ta
(or tb) in the model, bringing this repair to category (ii) or (iii), which will
be incorporated through the subsequent framework iteration.

The proposed repairs guarantee the soundness and safeness of the repaired Petri
net if the original one is sound and safe:

Theorem 1. Let N =
(
P, T, F,mi,mf

)
be a sound and safe Petri net system,

then the Petri net system N ′ obtained after applying all repair changes related
to every category, namely (i), (ii) or (iii), is sound and safe.

Due to space constraints, the proof of Theorem 1 is available in an extended
version in the reproducibility package [18].

Note that, since the repaired Petri net is kept sound and safe after each
change, the different changes can be applied in order. Also, after applying all
changes, the entire four phases of our framework can be reiterated. Indeed, during
each iteration, the Machine Learning model may uncover new discriminating
features, as the training set adapts in response to the evolving process model.

5 It might unlikely be the case that d is not present, either. However, this would not
invalidate the reasoning, because one can reiterate it until one transition is found.

Repairing Process Models through Simulation and Explainable AI 11

(a) The reachabilility graph after repairing.

(b) The repaired Petri net.

Fig. 3: Petri net greedy repairs. Red and dashed parts denote repairs. Markings
in the reachability graph are indicated as multisets. We indicate visible transition
with label l with tl, i.e. λ

−1(l) = tl if l ̸= τ .

3.5 Extension for a Greedy Repair

Category (i) introduced in Section 3.4 triggers the introduction of several arcs
between markings in the reachability graph GN = (V,E), and consequently
brings the introduction of multiple invisible transitions in the original Petri net
N =

(
P, T, F, λ,mi,mf

)
. The allowance of new behavior may negatively affect

the resulting Petri net models, due to the reduction of model simplicity.
To tackle this challenge, we propose a greedy approach to include relation

a >N b between two transitions ta, tb ∈ T . This greedy approach comes from
the observation that, given any marking ma ∈ GN reached after firing ta and
any marking mb ∈ GN where tb is enabled, it is sufficient to add arc (ma, τ,mb)
to formally incorporate a >N b into the Petri net. In particular, the approach
picks the marking ma with the shortest path in GN from the initial marking
mi, along with marking mb with the short path to the final marking mf . The
approach is motivated by the fact that, by selecting such these two nodes, fewer
paths are included in the reachability graph: this leads to a minimization of the
behaviour additionally included into the Petri net model, thereby reducing the
negative impacts on the precision.

Example 2. Given the Petri net N illustrated in black in Figure 3b, if we want
to introduce the relation a >N b using the greedy approach, only one invisible

12 Francesco Vinci, Massimiliano de Leoni

transition is added to the Petri net model which corresponds to the new arc in
the reachability graph highlighted in red in Figure 3a.

Of course, we acknowledge that this approach only introduces a subset of the
potential changes needed to maximize fitness, and, even if we want to introduce a
single invisible transition, the choice does not guarantee to be the best to repair
the model. This explains why the approach is indeed labelled as greedy. Note
that Theorem 1 is still valid for the greedy approach, because we apply a subset
of the changes of the complete approach, and each change guarantees soundness
and safety, if taken in isolation.

4 Evaluation

In this section, we present the evaluation of our framework, showing our ap-
proach is capable of improving the overall accuracy of process models. The ex-
periments conducted focus on computing fitness and precision of the repaired
process models at each iteration, and compare them with the state of the art.

4.1 Case Studies

To assess the accuracy and effectiveness of our framework, we evaluated it on
five different case studies comprising various business processes:

– P2P: a synthetic event log describing a purchasing example process.6

– BPIC12W: the subprocess for the workflow-relevant activities, i.e. those
starting with W, in the BPI Challenge 2012 event data, a log of a loan
application process from a Dutch financial institution.7

– BPIC17W: the same subprocess as BPIC12W but referring to the 2016 pro-
cess executions, which are recorded in the BPI Challenge 2017 event data.8

– RTF: process of managing road traffic fines by a local police force in Italy.9

– Sepsis: a real life event log obtained from an Enterprise Resource Planning
(ERP) system of a regional hospital in The Netherlands.10

The original Petri net models, i.e. before repairs, for the first three case stud-
ies were generated by converting the BPMN models publicly available in the
repository of the reproducibility package of [7], which were discovered through
Split Miner [4]. For all case studies, we also employed the Inductive Miner [10]
to mine additional models. To gain insights into the framework’s impact on the
initial fitness and precision of the models, we experimented with four different
noise thresholds (0.25, 0.5, 0.75, 1). It’s worth noting that we could obtain the
same models using varying noise thresholds. We also performed experiments

6 https://fluxicon.com/academic/material
7 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
8 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
9 https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

10 https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

https://fluxicon.com/academic/material
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

Repairing Process Models through Simulation and Explainable AI 13

with a noise threshold equal to 0: with fitness already equal to 1, our greedy and
complete technique did not alter the model, and neither did the technique by
Fahland et al. [8]. In other words, when the models had fitness equal to 1, all
repair techniques returned the original models without any change.

4.2 Experimental Setup

The framework has been implemented in Python: it takes in input an event log
in XES format, and a Petri net in Petri Net Markup Language (PNML) [18].

The event log is temporally split into train, validation, and test sets: with
respectively 60%, 20% and 20% of the total traces. The training and the vali-
dation logs are used by the framework as described in Section 3, while the test
log is employed for evaluation. In Step 2, CatBoost [15], a ML method based on
gradient boosting over decision trees, is used as discriminator model.

The qualities of the obtained model is measured as harmonic means of fitness
and precision [2]. The harmonic means aims to quantify the improvement in
fitness and/or precision, and their balance. Harmonic means is preferrable over
aritmetic means because the former yields more penalization than the latter
when fitness or precision is significantly lower than the other (i.e., balancing
less). Separately, we also report the simplicity of the models as introduced in [5].
Results have finally been also compared with the approach by Fahland et al. [8].

4.3 Experimental Results

The results are reported in Table 2, where fitness, precision, their harmonic mean
and simplicity are reported for the original model (label O), namely before the
repair, our framework using or not greedy repairs (respectively label RG and R
and highlighted with a gray background), and the best result by the work of
Fahland et al. [8]. Each row indicates a different model. IM(0.25), . . . , IM(1)
denote the original models discovered via Inductive Miner with noise threshold
0.25, . . . , 1, while [7] refers to the original “reference” models that are available
in the reproducibility package of [7], i.e. obtained by using Split Miner.

The reported results are computed on the test event log, not used for repair.
Both the complete and the greedy approach revealed themselves to be effective
for almost all models employed in our experiments: compared with 16 out of the
original 19 models (85%), they both provide models that improve the harmonic
means of fitness and precision, while consistently outperforming the method pre-
sented by Fahland et al. [8] (except for one case, where the harmonic means is the
same). In fact, the improvement with respect to Fahland et al. [8] is unsurpris-
ing, since the method in [8] maximizes fitness by incorporating all the behaviour
of the event log into the Petri net model, leading to models with perfect fit-
ness but low precision, whereas our method only adds the most discriminating
behaviour without penalizing precision, yielding to a balanced process model.
Considering the three original models where we do not improve on the harmonic
means, they are already characterized by a high means, which does not allow
further improvement. In fact, in an attempt to improve, we worsen the quality

14 Francesco Vinci, Massimiliano de Leoni

Table 2: Experimental results using the models obtained via Fahland et al. [8],
and through our complete (R) and greedy approach (RG). Results are compared
through fitness, precision, their harmonic mean, and simplicity. Column O illus-
trates the values for the original models, namely before repairing, which were
either mined through process-discovery techniques or present in literature. The
best harmonic mean for each model is highlighted in bold.
Case Input Fitness Precision H. Mean Simplicity
Study Model O [8] R RG O [8] R RG O [8] R RG O [8] R RG

P
2
P

[7] 0.64 1.00 0.95 0.95 0.99 0.13 0.82 0.85 0.77 0.23 0.88 0.89 0.92 0.63 0.78 0.81
IM(0.25) 0.63 1.00 1.00 1.00 1.00 0.13 0.81 0.81 0.77 0.23 0.89 0.89 0.96 0.64 0.75 0.75

IM(0.5,0.75,1) 0.63 1.00 1.00 1.00 1.00 0.13 0.81 0.81 0.78 0.23 0.89 0.89 1.00 0.64 0.75 0.75

B
P
IC

1
2
W [7] 0.68 1.00 1.00 1.00 0.91 0.38 0.49 0.49 0.78 0.55 0.65 0.65 0.82 0.55 0.60 0.62

IM(0.25) 0.84 1.00 1.00 1.00 0.91 0.42 0.65 0.65 0.87 0.60 0.79 0.79 0.71 0.59 0.61 0.61
IM(0.5,0.75) 0.62 1.00 0.91 0.91 0.65 0.36 0.49 0.49 0.63 0.53 0.64 0.64 0.78 0.53 0.60 0.60

IM(1) 0.61 1.00 1.00 1.00 0.55 0.36 0.36 0.36 0.58 0.53 0.53 0.53 0.68 0.48 0.55 0.55

B
P
IC

1
7
W

[7] 0.73 1.00 1.00 1.00 1.00 0.54 0.73 0.73 0.84 0.70 0.84 0.84 0.79 0.59 0.64 0.64
IM(0.25) 0.85 1.00 1.00 0.98 0.74 0.46 0.70 0.79 0.79 0.63 0.82 0.87 0.68 0.55 0.48 0.56
IM(0.5) 0.57 1.00 0.91 0.79 0.71 0.42 0.61 0.79 0.63 0.59 0.73 0.79 0.73 0.51 0.35 0.44
IM(0.75) 0.58 1.00 0.78 0.67 0.63 0.42 0.57 0.67 0.61 0.59 0.66 0.67 0.67 0.51 0.32 0.47
IM(1) 0.46 1.00 0.79 0.78 0.36 0.42 0.50 0.55 0.40 0.59 0.61 0.65 0.71 0.49 0.29 0.42

R
T
F

IM(0.25) 0.96 1.00 0.99 0.99 0.52 0.44 0.54 0.55 0.68 0.61 0.70 0.70 0.70 0.55 0.36 0.58
IM(0.5) 0.89 1.00 1.00 0.98 0.67 0.45 0.45 0.70 0.76 0.62 0.62 0.81 0.73 0.57 0.17 0.52
IM(0.75) 0.93 1.00 0.98 0.98 0.76 0.51 0.78 0.78 0.84 0.68 0.87 0.87 0.77 0.54 0.59 0.66
IM(1) 0.61 1.00 0.99 0.99 0.75 0.43 0.78 0.75 0.67 0.60 0.87 0.86 1.00 0.52 0.49 0.57

S
ep

si
s IM(0.25) 0.87 1.00 0.93 0.91 0.49 0.20 0.49 0.49 0.63 0.33 0.64 0.64 0.67 0.56 0.05 0.56

IM(0.5) 0.58 1.00 0.95 0.76 0.78 0.20 0.30 0.73 0.67 0.34 0.45 0.74 0.75 0.51 0.11 0.33
IM(0.75,1) 0.52 1.00 0.83 0.55 1.00 0.82 0.44 0.78 0.63 0.34 0.57 0.65 0.77 0.50 0.11 0.54

Avg. 0.69 1.00 0.95 0.91 0.76 0.38 0.60 0.67 0.70 0.50 0.72 0.76 0.78 0.55 0.45 0.58

of those models: this clearly does not invalidate our technique, because one can
easily check whether or not the repaired is actually a better model, and can
discard the changes when they are counterproductive. Comparing our complete
approach with our greedy one, we observe that the greedy produces repaired
models with higher or similar harmonic means of fitness and precision.

We also compared the level of simplicity of the original and repaired models.
Clearly, since our approaches incorporate additional behavior, the repaired mod-
els are inevitably less simple. However, comparing the simplicity of the models
generated by Fahland et al. [8] and by our two approaches, we observe that,
on average, our greedy approach produces simpler repaired models: the aver-
age simplicity is 0.55 for the approach by Fahland et al. while it is 0.58 for
our greedy approach. A visual inspection of the models repaired via our greedy
approach shows that the models are clearly readable. Space limitations prevent
us from showing how models are repaired for the different case studies. All the
models can however be inspected in the Python notebook that belongs to the
reproducibility package of this paper [18]. In general, it follows that our greedy
approach is able to produce simpler models with a higher harmonics means of fit-
ness and precision, if compared with Fahland et al. [8], namely the only relevant
approach that we were put in the condition to test.

Repairing Process Models through Simulation and Explainable AI 15

Table 3: Average, standard deviation, and median of computational times (in
seconds) between the analyzed case studies, using the Fahland et al. [8] approach,
our complete and greedy approach.

Fahland et al. [8] Complete Repair Greedy Repair
Avg (seconds) 292 948 192
Std (seconds) 940 1701 124

Median (seconds) 32 240 171

Last, we monitored the computational times using the three approaches, run-
ning the experiments on the same machine equipped with an Intel Core i5-8300H
CPU @ 2.30GHz and 16GB RAM. Table 3 summarizes key statistics of compu-
tational times across the experiments. Detailed times for each experiment are
available in the extended version in the reproducibility package [18]. Our find-
ings indicate that the method by Fahland et al. [8] is in general faster than ours,
but there are some cases where it exhibits significantly higher computational
times. This is due to the generation of complex intermediate models that make
it hard to compute model-to-trace alignments, thereby increasing the computa-
tional times.

5 Related Works

The work by Fahland et al. in [8] is among the first ones that address the
model-repair problem to enhance fitness, but is not the only. Polyvyanyy et
al. [13] puts forward methods to define process model repair as an optimization
problem, where costs are assigned to various repair actions. However, this work
aims to maximizing the fitness, as authors also clearly state, relegating precision
as second-class citizen.

Mitsyuak et al. [12] proposes a model-repair approach able to achieve a high
level of fitness, but, as authors themselves admit, at a cost of dropping precision.
Other works address the model repair and try to improve the model precision [9,
16]. For the technique in [16], the implementation only works when the original
model is mined through Inductive Miner and is fully fitting the event log.

In spite of the limitations mentioned above, we still aimed to compare our
technique with those by Polyvyanyy et al. [13], Kalenkova et al. [9]. However,
we did not manage to run the corresponding reference implementations, and we
thus restricted our comparison with the implementation by Fahland et al. [8].

Other existing literature proposes interactive frameworks for process model
repair, in which possible differences between the model and the log are displayed
to the user who manually repairs the process model [3,14]. These research works
do not aim at an automated model repair, which serves a different purpose:
repairing the model, using feedback from humans.

Incremental process discovery (see, e.g., [17]) is also related to model repair,
but the goal is different as the former does not aim to obtain models that are as
close as possible to a reference original process model.

16 Francesco Vinci, Massimiliano de Leoni

6 Conclusion

This paper proposes a novel model-repair technique that aims to improve an
initial process model so as to maximize the harmonics means of fitness and pre-
cision. In fact, a higher harmonics means guarantees that their balance is better.
In a nutshell, the process model is run to generate a simulated event log that is
then compared with a real event log using a ML discriminator model. Since an
accurate process model would generate logs that are indistinguishable from the
original event log, the ML model should perform poorly. If it is conversely able
to discriminate, SHAP is used to explain and pinpoint the discriminatory model
features. These features are now actionable to allow for an automated model
repair: this paper illustrates how to use them to this aim.

The implementation and evaluation of our framework on five distinct pro-
cesses and various models have proved its ability to generally enhance the original
process models and better balance the fitness-precision trade-off. Furthermore,
we compared our results with the state of the art, and highlighted that our tech-
nique can produce models with a better balance of fitness and precision. As a
matter of fact, two repairing approaches are proposed: one more complete, one
more greedy in deciding how to repair. While both generally outperform the
state of the art, the greedy approach is also applicable to larger models. Fur-
thermore, the experiments have shown that greedy approach is better capable
to balance fitness and precision, while producing simpler repaired models.

This work assumes that the simulated event logs are nearly complete with
respect to the process model [19]. We acknowledge that this assumption can be
a threat of validity, and we aim in the future to evaluate the completeness of
the simulated event log. As future work, we also plan to repair multi-perspective
process models, by extending the set of features used for comparison, and by in-
corporating those related to other perspective, such as data, time and resources.

Acknowledgements. The research work by F. Vinci is financially supported by
MUR (PNRR) and University of Padua. The work by M. de Leoni has been
partly supported by the European Union – Next Generation EU under the Na-
tional Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Invest-
ment 1.1 - Call PRIN 2022 PNRR No. 1409 of September 14, 2022 of Italian
Ministry of University and Research; Project P20222XM58 (subject area: SH -
Social Sciences and Humanities) Emergency medicine 4.0: an integrated data-
driven approach to improve emergency department performances.

References

1. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems and Computers (1998)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining and Knowledge Discovery (2012)

Repairing Process Models through Simulation and Explainable AI 17

3. Armas-Cervantes, A., van Beest, N.R.T.P., La Rosa, M., Dumas, M., Garćıa-
Bañuelos, L.: Interactive and incremental business process model repair. In: Pro-
ceedings of the On the Move to Meaningful Internet Systems. OTM 2017 (2017)

4. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L.: Split miner: Discovering accu-
rate and simple business process models from event logs. In: 2017 IEEE Interna-
tional Conference on Data Mining, ICDM 2017, Proceedings (2017)

5. Blum, F.R.: Metrics in process discovery. In: Technical Report TR/DCC-2015-6,
Computer Science Department, University of Chile (2015)

6. Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight
estimation. In: Process Mining Workshops - ICPM 2020 International Workshops,
Proceedings (2021)

7. Camargo, M., Dumas, M., González-Rojas, O.: Discovering generative models from
event logs: data-driven simulation vs deep learning. PeerJ Computer Science (2021)

8. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Information Systems (2015)

9. Kalenkova, A.A., Carmona, J., Polyvyanyy, A., La Rosa, M.: Automated repair
of process models using non-local constraints. In: Application and Theory of Petri
Nets and Concurrency - 41st International Conference, PETRI NETS 2020, Pro-
ceedings (2020)

10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - A constructive approach. In: Application and
Theory of Petri Nets and Concurrency - 34th International Conference, PETRI
NETS 2013, Proceedings (2013)

11. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, Proceedings (2017)

12. Mitsyuk, A.A., Lomazova, I.A., Shugurov, I.S., van der Aalst, W.M.P.: Process
model repair by detecting unfitting fragments. In: Supplementary Proceedings of
the Sixth International Conference on Analysis of Images, Social Networks and
Texts (AIST 2017) (2017)

13. Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.:
Impact-driven process model repair. ACM Transactions on Software Engineering
and Methodology (2017)

14. Pourbafrani, M., van der Aalst, W.M.P.: Interactive process improvement using
simulation of enriched process trees. In: Service-Oriented Computing - ICSOC 2021
Workshops - AIOps, STRAPS, AI-PA and Satellite Events, Proceedings (2021)

15. Prokhorenkova, L.O., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Cat-
boost: unbiased boosting with categorical features. In: Advances in Neural Infor-
mation Processing Systems 31: NeurIPS 2018, Proceedings (2018)

16. Rennert, C., van der Aalst, W.M.P.: Improving precision in process trees using
subprocess tree logs. In: ICPM 2023 International Workshops, Proceedings (2023)

17. Schuster, D., Föcking, N., van Zelst, S.J., van der Aalst, W.M.P.: Incremental dis-
covery of process models using trace fragments. In: Business Process Management
- 21st International Conference, BPM 2023, Proceedings (2023)

18. Vinci, F., de Leoni, M.: Reproducibility package for “Repairing Process Mod-
els through Simulation and Explainable AI”. https://doi.org/10.5281/zenodo.
11521005 (2024)

19. Yang, H., van Dongen, B., ter Hofstede, A., Wynn, M., Wang, J.: Estimating
completeness of event logs. BPM Center Report (2012)

https://doi.org/10.5281/zenodo.11521005
https://doi.org/10.5281/zenodo.11521005

	Repairing Process Models through Simulation and Explainable AI

