Adaptive Process Management in Highly Dynamic and
Pervasive Scenarios

Massimiliano de Leoni
Dipartimento di Informatica e Sistemistica
SAPIENZA - Universita di Roma

deleoni@dis.uniromal.it

Process Management Systems (PMSs) are currently more aredlused as a supporting tool for
cooperative processes in pervasive and highly dynamiatsitus, such as emergency situations, per-
vasive healthcare or domotics/home automation. But inuahssituations, designed processes can
be easily invalidated since the execution environment ni@ayge continuously due to frequent un-
foreseeable events. This paper aims at illustrating therétieal framework and the concrete imple-
mentation oSmartPM, a PMS that features a set of sound and complete technigaesdmatically
cope with unplanned exceptions. PMmartPM is based on a general framework which adopts the
Situation Calculus anbhdiGolog.

1 Introduction

Nowadays organisations are always trying to improve theopmaance of the processes they are part of.
It does not matter whether such organisations are dealitigohdssical static business domains, such as
loans, bank accounts or insurances, or with pervasive ajfdyhilynamic scenarios. The demands are
always the same: seeking more efficiency for their procetssesduce the time and the cost for their
execution.

According to the definition given by the Workflow Managemeoamiorﬂ, a workflow is “the com-
puterised facilitation of automation of a business prociesshole or part”. The Workflow Management
Coalition defines a Workflow Management System as “a systatncttmpletely defines, manages and
executes workflows through the execution of software whoderaf execution is driven by a computer
representation of the workflow logic”. Workflow Managemegs@ms (WfMSs) are also known as Pro-
cess Management Systems (PMSs), and we are going to use bmindnterchangeably throughout this
thesis. Accordingly, this thesis uses many times word “gsst is place of word “workflow”, although
the original acceptation of the former is not intrinsicalferring to its computerised automation.

In this paper we turn our attention to highly dynamic and psiwe scenarios. Pervasive scenarios
comprise, for instance, emergency management, healtlochoene automation (a.k.a. domaotics). All of
these scenarios are characterised as being very dynamiarbotent and subject to an higher frequency
of unexpected contingencies with respect to classicaleswen Therefore, PMSs for pervasive scenarios
should provide a higher degree of operational flexibilitdgjptability.

According to Andresen and Gronad [1] adaptability can be sesean ability to change something to
fit to occurring changes. Adaptability is to be understoorklas the ability of a PMS to adapt/modify
processes efficiently and fast to change circumstancetaian aims at reducing the gap of tietual
reality, the (idealized) model of reality that is used by the PMS {bdeate, from thghysical reality the
real world with the actual values of conditions and outcof@gsExogenous events may make deviate

1ht‘cp ://wimc.org

(© Massimiliano de Leoni
This work is licensed under the Creative Comnions
Attribution-Noncommercial-No Derivative Works License.

YR-SOC 2009
EPTCS Proceedings YR-SOC 2009, 2009, pp1-15.

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://wfmc.org

2 Adaptive PM in Highly Dynamic and Pervasive Scenarios

Product Manual | Pre-planned | Unplanned
YAWL
COSA
Tibco
WebSphere
SAP
OPERA
ADEPT2
ADOME
AgentWork

ENENENENENEN

SSENENENENENENEN

Table 1: Adaptability in the leading PMSs (as frdmli[11])

the virtual reality from the physical reality. The reductiof this gap requires sufficient knowledge of
both kinds of realities (virtual and physical). Such knadge, harvested by the services performing the
process tasks, would allow the PMS to sense deviations atheldovith their mitigation.

In pervasive settings, efficiency and effectiveness wheryicg on processes are a strong require-
ment. For instance, in emergency management saving mioatdd result in saving injured people,
preventing buildings from collapses, and so on. Or, pevealsealth-care processes can cause people’s
permanent diseases when not executed by given deadlinesrdeén to improve effectiveness of pro-
cess execution, adaptation ought to be as automatic afgoasd to require minimum manual human
intervention. Indeed, human intervention would causeydghlahich might not be acceptable.

In theory there are three possibilities to deal with deoradi

1. Ignoring deviations — this is, of course, not feasible @mgral, since the new situation might be
such that the PMS is no more able to carry out the procesqtesta

2. Anticipating all possible discrepancies — the idea istdude in the process schema the actions
to cope with each of such failures. This can be seen &syacatch approach, used in some
programming languages such as Java. The process is defified@genous actions cannot occur,
that is everything runs fine (thery block). Then, for each possible exogenous evenriatch
block is designed in which the method is given to handle thieesponding exogenous event. For
simple and mainly static processes, this is feasible andat; but, especially in mobile and
highly dynamic scenarios, it is quite impossible to take imtcount all exception cases.

3. Devising a general recovery method able to handle any édrekogenous events — considering
again the metaphor of try/catch, there exists just esech block, able to handle any exogenous
events, included the unexpected. Haech block activates the general recovery method to modify
the old proces® in a proces$’ so thatP’ can terminate in the new environment and its goals are
included in those oP. This approach relies on the execution monitor (i.e., thdul®intended for
execution monitoring) that detects discrepancies leattiagrocess instance not to be terminable.
When they are sensed, the control flow moves tacitsch block. An important challenge here is
to build the monitor which is able to identify which exogesaevents are relevant, i.e. that make
impossible process to terminate, as well agatwomaticallysynthesizeP’ during the execution
itself.

Table[d shows the adaptability features of the most valuabl&s according to the state-of-art anal-
ysis described in[11]. Columi anual refers to the possibility of a responsible person who mayual
changes the process schema to deal with exogenous evehtsnr(ere-planned concerns the feature

Massimiliano de Leoni 3

of defining policies to specify the adaptation behaviour tmage some exogenous events, whose pos-
sible occurrence is foreseeable a priori. The last columplanned refers to the third approach in the
classification above.

The third approach seems to be the most appropriate whemglegith scenarios wheré) the
frequency of unexpected exogenous events are relativghydnid(ii) there are several exogenous events
that cannot be foreseen before their actual occurrenceortunitely, as the table shows, the world
leading PMSs are unable to feature the third approach.

This paper describésmartPM, a PMS that features some sound and complete techniqueslgcro
to the third approach described above. Such techniques eaatrto improve the degree afitomatic
adaptation to react to very frequent changes in the exetatiwironment and fit processes accordingly.
The techniques proposed here are based on Situation Caldilband automatic planning, conceived
to coordinate robots and intelligent agents. The concrefgementation, namelymartPM, is based on
thelndiGolog interpreter developed at University of Toronto and RMIT \émsity, Melbourne.

In SmartPM, every entity performing task is generally named “servio&service may be a human
actor/process participant as well as an automatic serlieteeixecute a certain job (e.g., a SOAP-based
Web Service).

Let us consider a scenario for emergency management whacegses show typical a complexity
that is comparable to business settings. Therefore, thgeusaPMS is valuable to coordinate the ac-
tivities of emergency operators. In these scenarios, tparare typically equipped with low-profile
devices, such as PDAs, which several services are installedSuch services may range from usual
GUI-based applications to automatic ones. For instanoese @pplications can be installed to fill ques-
tionnaires or take pictures. In addition, PDAs can be predigith some automatic services that connect
to the Civil Protection headquarters to retrieve informatfor the assessment of the affected area and
possibly send back the data collected.

PDAs communicate with each other by Mobile Ad-hoc Netwomka NETS), which are Wi-Fi net-
works that do not rely on a fixed infrastructure, such as Az&snts. Devices can be the final recipients
of some packets sent by other devices as well as they can egdags and forward packets towards the
final destination.

In order to orchestrate the services installed on opera&wrces, such devices need to be continually
connected to the PMS through a loose connection: devicetharfMS can communicate if there exists
a path of nodes that connects them in the graph of the comationdinks.

In the virtual reality, devices are supposed to be contislyoconnected (i.e., a path always exists
between pairs of nodes). But in this physical reality camimns connections cannot be guaranteed: the
environment is highly dynamic and the movement of nodeg {shdevices and related operators) within
the affected area, while carrying out assigned tasks, aaseadisconnections and make deviate the two
reality. Disconnections results in the unavailability ofdes and, hence, the services provided. From the
collection of actual user requiremenis [6], it results tiyaical teams are formed by a few nodes (less
than 10 units), and therefore frequently a simple task rgasgnt is not feasible. Indeed, there may not
be two “similar” services available to perform a given taRleordering task executions would not solve
the problem, either. There is no guarantee that eventuadlyet services that provide unique capability
connect again to the PMS.

So, adaptaption is needed: adaptability might consistisidase to recover the disconnection of a
node X, and that can be achieved by assigning a task “Followo>@hother node Y in order to maintain
the connection. When the connection has been restoredrdbegs can progress again.

4 Adaptive PM in Highly Dynamic and Pervasive Scenarios
Construct M eaning Platform Statement
a A primitive action a
Q? Wait while theg condition is false ?(phi)
(&1;09) Sequence of two sub-programsandd, [deltal,delta2]
proc (V) o Invocation of a procedure passing a vectoof parame-| proc(P,delta)
ters
(¢;81)|(—¢; 3) | Exclusive choice betwee® andd, according to the con} ndet ([7 (phi) ;deltall,
dition ¢ [?(neg(phi)) ,delta2])
while ¢ do d Iterative invocation 0B while(phi,delta)
(%] %) Concurrent execution rrobin(deltal,delta2)
o Indeterministic iteration of program execution (The platstar (delta,n)
form statement limits the maximum iterations number to
n
)
>(9) Emulating off-line execution searchn(delta,n)
ma.o Indeterministic choice of argumeaftollowed by the ex-| pi(a,delta)
ecution ofd

Table 2:IndiGolog constructs

2 Prdiminaries

In this section we introduce the Situation Calculus, whiahwse to formaliz&martPM and its adap-
tation features. The Situation Calculisl[13] is a secont&ologic targeted specifically for representing
a dynamically changing domain of interest (the world). Albages in the world are obtained as result
of actions A possible history of the actions is represented sitaation which is a first-order term
denoting the current situation of the world. The constndenotes the initial situation. A special bi-
nary function symbotlo(a, s) denotes the next situation after performing the actian the situatiors.
Action may be parameterized.

Properties that hold in a situation are calfadents These are predicates taking a situation term as
their last argument. For instance, we could define the flie®(x, s) stating whether the objegtis free
in situations, meaning no object is located arnn situations.

Changes in fluents (resulting from executing actions) aeeifipd throughsuccessor state axioms
In particular for each fluerff we have a successor state axioms as follows:

F(X,do(a,s)) < ®:(X,do(a,s),s)

where®r (X,do(a,s),s) is a formula with free variablex’, a is an action, and is a situation.

In order to control the executions of actions we make use gif kével programs expressed lin
diGolog [14], which is equipped with primitives for expressing canency. Tabl&l2 summarizes the con-
structs oflndiGolog used in this work. Basically, these constructs allow to deéwery well-structured
process as defined ifl[7]. The last table column shows thesponding statement defined in tine
diGolog platform developed at University of Toronto and RMIT Unisity|

From the formal point of viewndiGolog programs are terms. The executionCaihGolog programs
is expressed throughteansition semantidased on single steps of execution. At each step a program
executes an action and evolves to a new program which repseadat remains to be executed of the
original program. Formally two predicates are introduaedgecify such a sematic:

2Downloadable ghttp: //www.cs.toronto.edu/cogrobo/main/systems/index. html

http://www.cs.toronto.edu/cogrobo/main/systems/index.html

Massimiliano de Leoni 5

Tasks assignment / 10 data exchange

They :
cause!

1

changes
toenv.!

1
Sensed | 1 Environment’s
data | : sensor
1

Figure 1: Execution Monitoring.

e Trangd',s,9”,s"), given a program®’ and a situatiors, returns(i) a new situatiors’ resulting
from executing a single step éf, and(ii) &” which is the remaining program to be executed.

e Final(d’,9) returns true when the progradi can be considered successfully completed in situa-
tions.

By usingTransandFinal we can define a predicalo(d’,s,s”) that represent successful complete
executions of a prograny’ in a situations, wheres” is the situation at the end of the executiondof
Formally:

Do(8',8,5") < 38" Trans (8,5, 8",5") AFinal(8",s")

whereTrans is the definition of the reflective and transitive closurdains

To cope with the impossibility of backtracking actions extecl in the real worldndiGolog incorpo-
rates a new programming construct, namelysbarch operatarLet d be anylndiGolog program, which
provides different alternative executable actions. Winenititerpreter encounters prograifd), before
choosing among alternative executable action® ahd possible picks of variable values, it performs
reasoning in order to decide for a step which still allowsrhet of & to terminate successfully. § is
the entire program under considerati@fd) emulates complete off-line execution.

3 General Framework

The general framework which we shall introduce in this papdrased on thexecution monitoring
scheme as described [d [2] for situation calculus agentsvé\will later describe in more details, when
usingIndiGolog for process management, we take tasks to be predefined seguEractions (see later)
and processes to thediGolog programs. After each action, the PMS may need to align tleeriat world
representation (i.e., the virtual reality) with the extdrane (i.e., the physical reality).

Before a process starts, PMS takes the initial context fitoeréal environment and builds the cor-
responding initial situatiors, by means of first-order logic formulas. It also builds thegyram &y
corresponding to the process to be carried on. Then, at eachtéon step, PMS, which has a complete
knowledge of the internal world (i.e., its virtual realif@ssigns a task to a service. The only “assignable”

6 Adaptive PM in Highly Dynamic and Pervasive Scenarios

tasks are those whose preconditions are fulfilled. A semégecollect data required needed to execute
the task assigned from PMS. When a service finishes exeautiagk, it alerts PMS of that.

The execution of the PMS can be interrupted byrti@nitor module when a misalignment between
the virtual and the physical realities is discovered. In tase, the monitaadaptsthe (current) program
to deal with such discrepancy.

In Figure[l, the overall framework is depicted. At each stbp, PMS advances the proce3sn
situations by executing an action, resulting then in a new situatiomith the proces®’ remaining to be
executed. Botlg andd’ are given as input to the monitor, which also collects daimfthe environment
throughsensorE If a discrepancy between the virtual reality as represebyegiand the physical reality
is sensed, then the monitor change® s’, by generating a sequence of actions that explains the eBang
perceived in the environment, thus re-aligning the virtaradl physical realities. Notice, however, that
the proces®’ mayfail to execute successfully (i.e., assign all tasks as reqguimgtle new (unexpected)
situations’. If so, the monitor adapts also the (current) process bypeihg suitable recovery changes
and generating then a new procéss At this point, the PMS is resumed and the execution consinue
with program-procesd” in situations”.

4 Process Formalisation in Situation Calculus

Next we detail the general framework proposed above by uSingation Calculus anthdiGolog. We
use some domain-independent predicates to denote theivaiigects of interest in the framework:

e servicéa): ais a service

taskx): xis a task

capability(b): bis a capability

providga,b): the service provides the capability

require(x, b): the taskx requires the capabilitip

In the light of these predicates, we have defined a shortaetféo to the capability of a certain serviae
to perform a list of tasks, a.k.a. worklist. Servigean execute a certain workligtrkList iif a provides
all capabilities required by all tasks in the worklist:

Capabléa, wrklist) < (Vb,t.t € wrkList A require(b,t) = providega, b))

Every task execution is the sequence of four PMS actiGhthe assignment of the task to a service,
resulting in the service being not free anymo(i; the notification to the service to start executing
the task. Then, the service carries out the tasks and, afteiving the service notification of the task
conclusion,(iii) the PMS acknowledges the successful task termination.|lfiifr) the PMS releases
the service, which becomes free again. We formalise theseaftiions as follows:

e Assigria, x): taskx is assigned to a serviee
e Start(a,x, p): serviceais allowed to start the execution of taskThe input provided i9.

e AckTaskCompletida,x): servicea concluded successfully the executingxof

SHere, we refer asensorsnot only proper sensors (e.g., the ones deployed in senswors), but also any software
or hardware component enabling to retrieve contextualkin&ion. For instance, it may range from GIS clients to djeci
hardware that makes available the communication distaiheeevice to its neighbord. TlL0]

Massimiliano de Leoni 7

e Releasén, x): the servicea is released with respect to task
In addition, services can execute two actions:
e readyToStarta, x): servicea declares to be ready to start performing task

e finishedTaska,x,q): services declares to have completed the execution okteetkirning output
g.

The termsp andg denote arbitrary sets of input/output, which depend on peeific task. Special
constant 0 denotes empty input or output.

The interleaving of actions performed by the PMS and sesviseas follows. After the assign-
ment of a certain task by Assigria,x), when the service is ready to start executing, it executes
actionreadyToStartTadla, x). At this stage, PMS executes acti@bart(a, x, p), after whicha starts
executing task. Whena completes task, it executes the actiofinishedTaska,x,q). Specifically,
we envision that actionginishedTask) are those in charge of changing properties of world as re-
sult of executing tasks. Whenis completed, PMS is allowed in any moment to execute seglignt
AckTaskCompletiga,x) andReleaséa, x). The program coding the process will the executed by only
one actor, specifically the PMS. Therefore, actioesdyToStartTagk) and finishedTask) are con-
sidered as external and, hence, not coded in the progralf itse

For each specific domain, we have several fluents repregeiitnproperties of situations. Some
of them are modelled independently of the domain whereasrgtthe majority, are defined according
to the domain. If they are independent of the domain, theybeaalways formulated as defined in this
chapter. Among the domain-independent ones, we have fluesfa, s), that denotes the fact that the
serviceais free, i.e., no task has been assigned to it, in the situatibhe corresponding successor state
axiom is as follows:

free(a,do(t,s)) <
(Vx.t # Assigria,x) A free(a,s)) v (1)
(—free(a,s) A 3xt = Releaséa,x))

This says that a servi@es considered free in the current situation if and onkywias free in the previous
situation and no tasks have been just assigned todtwas not free and it has been just released. There
exists also the domain-independent fluenabledx, a,s) which aims at representing whether service
has notified to be ready to execute a certain tasi as to enabled it. The corresponding successor-state
axiom:
enabledx,a,do(t,s)) <
(enabledx,a,s) AVa.t # finishedTaska,x,q)) v (2)
(—enabledx,a,s) At = readyToStartTagl, x))

This says thaenabledx,a,s) holds in the current situation if and only if it held in the pi@s one
and no actionfinishedTaska,x,q) has been performed or it was false in the previous situatieh a
readyToStartTagla, x) has been executed. This fluent aims at enforcing the comisttaat the PMS can
executeStart(a, x, p) only aftera performedbeguria, x) and it can execut&ckTaskCompletida, X, q)
only after finishedTaska,x,q). This can represented by two pre-conditions on actiStest(-) and
AckTaskCompletign):

Vp.PosgStart(a, x, p),s) < enabledx, a,s)

Vp.PosgAckTaskCompletidm,a),s) < —enabledx,a, s) ®)

provided thatAckTaskCompletidm,a) never comes beforgtart(x, a, p), s.

8 Adaptive PM in Highly Dynamic and Pervasive Scenarios

| Environment & | PMS architecture

Services

D 1 | Device
evice 1 By r Manager #1

Communication

IndiGolog Transition

System

Compute the

Manage the
icati evolution of

with Execute the

Device each Device loop high-level

Device 2 Manager #2 Manager programs
: }

| A T 1

.
»
Device
Device N
. | Manager #N

Process.pl
Domain Programs

Encode the IndiGolog
program representing
a businnes process

|

|

|

|

|

|

|

. N |
Domain Axioms |
|

|

|

|

|

|

|

|

|

Temporal
Projector

Handle the
current situation
and fluent
values

Encode the action
theory for the current
program

Figure 2: Architecture of the PMS.

Furthermore, we introduce a domain-independent fletrted x, a, p,s) that holds if and only if an
actionStart(a,x, p) has been executed but the ddakTaskCompletigw,a) has not yet:

starteda, x, p,do(t,s)) <
(starteda,x, p,s) At # Stoga,x)) v (4)
(PP .startedx,a, p',s) At = Start(a,x, p))

In addition, we make use, in every specific domain, of a pegdiavailablga,s) which denotes
whether a servica is available in situatiors for tasks assignment. Howeveyailable is domain-
dependent and, hence, requires to be defined specificalgvéoy domain. Knowing whether a service
is available is very important for the PMS when it has to penfassignments. Indeed, a tagk assigned
to the best servicawhich is available and provides every capability requirgc.bT he fact that a certain
servicea is free does not imply it can be assigned to tasks (e.g., irxaenple described above it has
to be free as well as it has to be indirectly connected to tloedioator). The definition o&vailable-)
must enforce the following condition:

Va savailablga,s) = free(a,s) (5)

We do not give explicitly pre-conditions to task. We assulaks can always be executed. We
assume that, given a task, if some conditions do not holdy the outcomes of that tasks are not as
expected (in other terms, it fails).

5 TheSmartPM System

This section aims at describing the internal structure oB8PMgurd® shows its conceptual architecture.
At the beginning, a responsible person designs an Activiagiam through SPIDE, Rrocess Designer
Graphical tool with whiclbmartPM is equipped. Later, Such a tool translates the Activity Paagin a
XML format file. Then, such a XML file is loaded into PMS. TH&L-to-/IndiGolog Parsercomponent
translates this specification irClomain ProgramtheIndiGolog program corresponding to the designed

Massimiliano de Leoni 9

process, and a set Bfomain Axiomswhich is the action theory that comprises the initial diag the
set of available actions with their pre- and post-condgion

When the program is translated in the Domain Program andmsi@ component hamé&tbmmu-
nication Manager(CM) starts up all ofdevice managerswvhich are basically some drivers for making
communicate PMS with the services and sensors installecaines. For each real world device PMS
holds a device manager. Each device manager is also intémdedtifying the associated device about
every action performed by tHemartPM engine as well as for notifying themartPM engine about the
actions executed by the services of the associated device.

After this initialization process, CM activates thefiGolog Engine which is in charge of executing
IndiGolog programs. Then, CM enters into a passive mode where it enlisg for messages arriving
from the devices through the device managers. In generatsaage can be a exogenous event harvested
by a certain sensor installed on a given device as well as aagesotifying the start or completion of a
certain task. When CM judges a message as significant, isfoisit tolndiGolog. For instance, relevant
messages may be signals of the task completion or the suddeailability of a given device.

In sum, CM is responsible of deciding which device shouldgrer certain actions, instructing the
appropriate device managers to communicate with the deeiogces and collecting the corresponding
sensing outcome. ThiadiGolog Engine is intended to executesanse-think-acinterleaved loop(]8].
The cycle repeats at all times the following three steps:

1. check for exogenous events that have occurred;
2. calculate the next program step; and
3. if the step involves an actioexecutehe action, instructing the Communication Manager.

ThelIndiGolog Engine relies on two further modules namidnsition SysterandTemporal Projec-
tor. The former is used to compute the evolutionlediGolog programs according to the statements’
semantic, whereas the latter is in charge of holding theeatirsituations throughout the execution as
well as letting evaluate the fluent values for taking thetrigrcision of the actions to perform.

The last module that is worth mentioning is tBgecution MonitofMON), which get notifications
of exogenous events from the Communication Manager. ltdéscivhether adaptation is needed and
adapts accordingly the process. Sediah 7.2 gives someamdidetails of the concrete implementation
of monitoring and adaptation.

6 A concrete example from Emergency Management

We turn to describe the approach by an example concerninggeney management in an area affected
by an earthquake. The emergency response process in guestigprises various activities that may
need to be adapted on-the-fly to react to unexpected exogawants that could arise during the op-
eration. FigurdI3 depicts an Activity Diagram of a processststing of two concurrent branches; the
final task issend dataand can only be executed after the branches have successiatipleted. The
left branch, abstracted out from the diagram, is built fr@wesal concurrent processes involving tasks
rescue evacuationand others. The right branch begins with the concurrentugiatof three sequences
of tasks:go, photg andsurvey When all survey tasks have been completed, the éaaluate pictures

is executed. Then, a condition is evaluated on the resutfiatg at a decision point (i.e., whether the
pictures taken are of sufficient quality). If the conditioolds, the right branch is considered finished,;
otherwise, the whole branch should be repeated.

10 Adaptive PM in Highly Dynamic and Pervasive Scenarios

®
>/

anossal 10} s83001 d

P e e

eval picturesw_

TW —goodPics

noPics <

send .dataj

€5

g

Figure 3: An activity diagram of a process concerning emergenanagement.

Figure[4 shows some parts of theliGolog program representing the process of the example. The
code proposes here has been slightly simplified and abestréat the sake of brevity. The main pro-
cedure, calledhain, involves three interrupts running at different priomstieThe first highest priority
interrupt fires when an exogenous event occurs (i.e., donditkogEvent Is true). In such a case, the
monitor procedure is executed, evaluating whether or not adaptetieequired (see Secti@n¥.2).

If no exogenous event has occurred, the second interrggfens and execution of the actual emer-
gency response process is attempted. Procedureess, also shown in the figure, encodes the Activity
Diagram of the example process. It relies, in turn, on prooedanageTasks (WrkLists), where
WrkLists is a sequence of elementsrkitem(T,I,D), each one representing a tagkwith identifier
I, and input dat®, which needs to be performed. This procedure is meant to geaiii@ execution of
all tasks in the worklist, and it assigns them all teirggleservice that provides every capability required.

Of course, to assign tasks to an servigmartPM needs to reason about the available ones, their
current state (e.g., their location), and their capabgitias not every service is capable of performing
any task. In fact, before assigning the first task in any tasgkprocedurenanageTasks (WrkLists)
executes gick operation is done to choose a Serviaerc that is involved in no task execution (i.e.,

Massimiliano de Leoni 11

proc(main,

prioritized_interrupts(
[interrupt (exogEvent, monitor),
interrupt(true, process),
interrupt(neg(finished), wait)]

.

proc(process, [rrobin(processRescue,
while (or (noPhotos<7,neg(goodPics)),
[rrobin(

[manageTasks (
[workitem((go,id19,1l0c(5,5)),
workitem((photo,id20,loc(5,5)),
workitem((survey,id21,loc(5,5))]),

manageTasks (
[workitem((go,id19,1loc(15,15)),
workitem((photo,id20,loc(15,15)),
workitem((survey,id21,loc(15,15))1),

manageTasks (
[workitem((go,id19,10c(50,50)),
workitem((photo,id20,1l0c(50,50)),
workitem((survey,id21,1l0c(50,50))1),

]

),
manageTasks ([workitem((evalPics,1d28,input)])
1) % end of while
), % end concurrent subprocesses
manageTasks ([workitem((sendData,id29,input)])
n.

proc (manageTasks (WrkList) ,
pi(srve,
[?(and(Available(srvc) ,Capable(srvc,WrkList))),
manageExecution(WrkList,srvc),
1
».
proc(manageExecution([],Srvc),[1).
proc (manageExecution([workitem(Task,Id,I)|TAIL],Srvc),
[assign(Task,Id,Srvc,I),
start(Task,Id,Srvc,I),
ackTaskCompletion(Task,Id,Srvc),
release(Task,Id,Srvc,I),
manageExecution(TAIL,Srvc)
]
)

Figure 4: An example of process management WwithGolog.

fluentFree (actr) holds) and able to execute the whole worklist.

Once a suitable service has been chosen, PMS assigns thef liasks to it by executing
assign(srvc,WrkList). In addition to inform the service about the task assignm&mth an action
turns fluentFree (actr) to false.

Then, PMS calls procedutanageExecution (WrkList), which handles the execution of each task

in the list. For each task T in the list (with identifigrand input dat®), the procedure invokes action
start(T,D,I,srvc) that provides the required information to the chosen semtwc. In this way, the

service is instructed to begin working on the task and ressdifie required input. When a service finishes

executing an assigned task, it al&$taartPM via actionfinishedTask (T, srvc); PMS acknowledges
by performingackTaskCompletion (T,D,actr). When the whole work-item list is execution, the
PMS releases the service by executing the aatidrease (T,D,actr), after which fluenFree (srvc)
is turned to true again.

12 Adaptive PM in Highly Dynamic and Pervasive Scenarios

It is worth mentioning that, if the process being carried carinot execute temporarily further, the
lowest priority interrupt fires. This interrupt makes PMSitwwar the conditions in which some tasks
can be executed. The fact that the process gets stuck doespipinecessarily the occurrence of some
relevant exogenous events. It could be also caused by thehi@icnext tasks can be only assigned
to services that are currently busy busy performing othgksta The latter situation does not prevent
processes from being completed successfully; indeed, sersfices will be eventually free to work on
those tasks.

7 Adaptation in SmartPM

7.1 Monitoring Formalisation

Next we formalize how the monitor works. Intuitively, the nitor takes the current progradi and
the current situatiors' from the PMS'’s virtual reality and, analyzing the physicahlity by sensors,
introduces fake actions in order to get a new situagbnvhich aligns the virtual reality of the PMS
with sensed information. Then, it analyzes whetblecan still be executed id’, and if not, it adapt®’

by generating a new correctly executable progiam Specifically, the monitor work can be abstractly
defined as follows (we do not model how the situatitiis generated from the sensed information):

Monitor(d’,s,s",3”) < (Relevantd’,s,s”) A Recoveryd’,s,s’,8")) v

(-Relevantd’,s,s") A" = &) ©)

where:(i) Relevantd’, s ,s") states whether the change from the situaidnto s’ is such tha®’ cannot
be correctly executed anymore; afiifiRecoveryd’,s,s’,d”) is intended to hold whenever the program
d’, to be originally executed in the situatish) is adapted t@” in order to be executed in the situation
g’

Formally Relevants defined as follows:

Relevantd’,s,s’) & —SameConfigy’,s,d’,s")

whereSameConfigy’,s,9”,") is true if executingd’ in s is “equivalent” to executing” in s’ (see
later for further details).

In this general framework we do not give a definition #mmeConfigy’,s,0”,s"). However we
consider any definition foBameConfigo be correct if it denotes a bisimulation[12]. Formallyr fo
everyd’,s,d”,s’ holds:

1. Final(d',s) < Final(d”,9)
2. Va8 .Trangd',¢,8',do(a,s)) =
36".Trang(d",s",8',do(a,s")) A SameConfigd’,do(a,s),8”,do(a,s"))
3. Va,d . Trangd",s",8',do(a,s")) =
36".Trang(d',s,&',do(a,s)) A SameConfigd”,do(a,s"),¥,do(a,s))
Intuitively, a predicateSameConfi’,s,d”,s") is said to be correct i’ and d” are terminable
either both or none of them. Furthermore, for each acdg@erformable byd’ in the situations’, &”

in the situations’ has to enable the performance of the same actions (and ksegveMoreover, the
resulting configurationgd’,do(a,s')) and(d”,do(a,s)) must still satisfyfSameConfig

Massimiliano de Leoni 13

The use of the bisimulation criteria to state when a predi€ameConfi--) is correct, derives
from the notion of equivalence introduced lif [5]. When conmaathe execution of two formally differ-
ent business processes, the internal states of the preaassebe ignored, because what really matters
is the process behavior that can be observed. This view tetiee way a PMS works: indeed what is
of interest is the set of tasks that the PMS offers to its envirent, in response to the inputs that the
environment provides.

Next we turn our attention to the procedure to adapt the sofmrmalized byRecoveryd, s, s, d').
Formally is defined as follows:

Recoveryd',s,s’,8") < 30a, &.0" = da; & A Deterministicda) A)
Do(d,,5",5) A SameConfigy’, s, &y, %)

Recoverydetermines a proces¥’ consisting of adeterministicd, (i.e., a program not using the
concurrency construct), and an arbitrary progrdyn The aim ofd, is to lead from the situatiog” in
which adaptation is needed to a new situagwhereSameConfip’,s, &,) is true.

The nice feature of RCOVERY is that it asks to search for a linear program that achievestain
formula, namelySameStat&',s’). That is we have reduced the synthesis of a recovery progrean t
classical Planning problem in All[4]. As a result we can adopiell-developed literature about planning
for our aim. In particular, if the services and input and otifparameters are finite, then the recovery can
be reduced teropositional planning, which is known to be decidable in general (for whiery well
performing software tools exists).

Notice that during the actual recovery phasewe disallow for concurrency because we need full
control on the execution of each service in order to get tacavered state. Then the actual recovered
programd, can again allow for concurrency.

In the previous sections we have provided a general desecriph how adaptation can be defined
and performed. Here we choose a specific technique thatuallcfeasible in practice. Our main step
is to adopt a specific definition f@ameConfighere denoted asa¥E CONFIG, namely:

SAMECONFIG(d',9,9",5") & SameStata,s’) A &' = & (8)

In other words, 8ME CONFIG states thad’, s andd”, s’ are the same configuration(ij all fluents
have the same truth values in battands’ (SameStafdeand(ii) d” is actuallyé’ﬂ In papers[[T1[19], we
have proved that the above-definedv& CONFIG is a correct bisimulation.

Using Equatiofl8 aSameCon figlefinition feasible in practice, relevancy results to be:

RELEVANT(J',5,5") & —-SameStats,s’) 9)

In the next section, we are going to show how the abstractplaspecification given here has been
concretely used insidémartPM. Specifically the current version &martPM uses the proportional
planner available in thindiGolog platform developed by University of Toronto and RMIT in Mellrne.

In order to adaptSmartPM is based on the concrete definitions of relevancy SacheCon figyiven by
EquationgP anfl8.

7.2 The execution monitoring and adaptation

4Observe thaBameStatean actually be defined as a first-order formula over the fiyastthe conjunction &f(s') < F(s”)
for each fluent.

14 Adaptive PM in Highly Dynamic and Pervasive Scenarios

proc(monitor, [ndet (
[?(neg(relevant))],
[?(relevant) ,recovery]

.
proc(recovery, searchn([searchProgram],10).

proc(searchProgram, [star(pi([Task,Id,Input,srvc],
[?(and(Available(srvc),
Capable(srvc, [workitem(Task,Id,Input)]))),
manageExecution([workitem(Task,Id,Input)],srvc)])),
7(SameState)]).

Figure 5: The procedure for managing automatic adaptatitimtive IndiGolog interpreter.

As already told, adaptation amounts to find a linear progiiaem (vithout concurrency) that is meant
to be “appended” before the currdntliGolog program remaining to be executed. Such a linear program
is meant to resolve the gap that was just sensed by restbengatues of affected fluents to those before
the occurrence of the deviation.

Figure[® shows how adaptability has been concretely imphéadein SmartPM. The execution of
the process being carried out BynartPM can be interrupted by theonitor procedure when a mis-
alignment between the virtual and the physical reality $&&dvered.

Themonitor procedure is the concrete coding of Equafibn 6 and reliesrocegurerelevant.
Procedurerelevant returns true if the exogenous event has created a gap betiwegrhysical and
virtual reality that is in accord with Equati@h 9. For thisgiSmartPM keeps a “copy” of the expected
value of each defined fluent so that when an exogenous actsmsed it can check whether the action
has altered the value of some fluent.

If the gap is relevant, procedutescovery is invoked. It amounts to find a linear program (i.e.,
without concurrency) to reduce the gap sensed as well ag;lifa program is found, to execute it. After
executing such a linear program, the program coded by mpiiicess (and its possible sub-routines)
can progress again. This behaviour is equivalent to thatesgpd formally in Equatiofl 7 where the
adapting linear program is “appended before” and, henaxwed before the remaining process.

Therecovery procedure looks for a sequence of actions that brings taatiit in which proce-
dureSameState returns true:Z((ma.a)*; SameStafg. ProcedureSameState tests whether executing
(mra.a)* really has really reduced the gap. The use ofltiiGolog’s lookahead operatd® guarantees
the action sequendgra.a)* is chosen so as to malkeameState true. In fact, we do not look for any
action sequencg@rra.a)” but we reduce the search space since we search for sequéimoescations of
proceduremanageExecution With appropriate parameters.

8 Conclusion

Most of existing PMSs are not completely appropriate foryvéynamic and pervasive scenarios. In-
deed, such scenarios are turbulent and subject to a higimreincy of unexpected contingencies with
respect to usual business settings that show a static atatioreseeable behaviour. This paper describes
SmartPM, an adaptive PMS that is able to adapt processes thus rewp@em exceptions. Adaptation
is synthesized automatically without relying either on itmervention of domain experts or on the ex-
istence of specific handlers planned in advance to cope wéhific exceptions. Space limitation has
prevented from including concrete examples of adaptatiterested readers can referfol[11].

Future works aim mostly at integratirffgnartPM with state-of-art planners. Indeed, current imple-

Massimiliano de Leoni 15

mentation relies on thindiGolog planner, which performs a blind search without using smaeeh-
niques recently proposed to reduce the search space by iregreopriori all the possibility surely taking
to no solution. The most challenging issue is to convert@cii heories andihdiGolog programs in a
way they can be given as input to planners (e.g., convertirXDL [3]).

Acknowledgement. The author wishes to thank to Giuseppe De Giacomo, AndreagiflgrMassimo
Mecella and Sebastian Sardina, who have contributed terdiit aspects of tHemartPM development.

References

[1] K. Andresen & N. Gronau (2005)An Approach to Increase Adaptability in ERP Systenms Managing
Modern Organizations with Information Technology: Pratiegs of the 2005 Information Resources Man-
agement Association International Conferendea Group Publishing, pp. 883—885.

[2] Giuseppe De Giacomo, Raymond Reiter & Mikhail Soutchka(k998): Execution Monitoring of High-Level
Robot Programsin: KR’98: Proceedings of the Sixth International Conferenaéadnciples of Knowledge
Representation and Reasonipg. 453-465.

[3] Maria Fox & Derek Long (2006)Modelling Mixed Discrete-Continuous Domains for Plannidigurnal of
Artificial Intelligence Research7, pp. 235-297.

[4] M. Ghallab, D. Nau & P. Traverso (2004)utomated Planning: Theory and PracticMorgan Kaufmann
Publishers.

[5] Jan Hidders, Marlon Dumas, Wil M. P. van der Aalst, ArttiirM. ter Hofstede & Jan Verelst (2008)Vhen
are two workflows the samd®d: CATS '05: Proceedings of the 2005 Australasian symposiumtaory of
computing Australian Computer Society, Inc., pp. 3—11.

[6] S. R. Humayoun, T. Catarci, M. de Leoni, A. Marrella, M. d#dla, M. Bortenschlager & R. Steinmann
(2009): The WORKPAD User Interface and Methodology: DevelopingrSamal Effective Mobile Applica-
tions for Emergency Operatarsn: HCI International 2009: Proceedings of 13th Internatidbahference
on Human-Computer Interactio8pringer. To appear.

[7] Bartek Kiepuszewski, Arthur H. M. ter Hofstede & ChriptoBussler (2000)0On Structured Workflow Mod-
elling. In: CAISE '00: Proceedings of the 12th International Confesemie Advanced Information Systems
EngineeringSpringer-Verlag, London, UK, pp. 431-445.

[8] Robert A. Kowalski (1995):Using meta-logic to reconcile reactive with rational agenMeta-logics and
logic programming pp. 227-242.

[9] Massimiliano de Leoni, Massimo Mecella & Giuseppe Deddiao (2007)Highly Dynamic Adaptation in
Process Management Systems Through Execution Monitdnn@PM’07: Proceedings of the 5th Interna-
tion Conference on Business Process Managerhenture Notes in Computer Sciené@14. Springer, pp.
182-197.

[10] Massimiliano de Leoni, Massimo Mecella & Ruggero Ru&a07): A Bayesian Approach for Disconnection
Management in Mobile Ad Hoc Networkén: WETICE '07: Proceedings of the 16th IEEE International
Workshops on Enabling Technologies: Infrastructure follaborative Enterprise$EEE Computer Society,
Washington, DC, USA, pp. 62—67.

[11] Massimiliano de Leoni (2009): Adaptive Process Management in Highly Dynamic and Pereasiv
Scenarios Computer engineering, SAPIENZA - Universita di Roma. fDr®ownloadable at
http://www.dis.uniromal.it/ deleoni/documents/PhD.pdf.

[12] R. Milner (1980):A Calculus of Communicating Systerhscture Notes in Computer Scien@2. Springer.

[13] R. Reiter (2001)Knowledge in Action: Logical Foundations for Specifyingldmplementing Dynamical
SystemsMIT Press.

[14] Sebastian Sardina, Giuseppe De Giacomo, Yves Lespé& Hector J. Levesque (2004pn the Seman-

tics of Deliberation in Indigolog—from Theory to Implematitn. Annals of Mathematics and Artificial
Intelligenced1(2-4), pp. 259-299.

http://www.dis.uniroma1.it/~deleoni/documents/PhD.pdf

	Introduction
	Preliminaries
	General Framework
	Process Formalisation in Situation Calculus
	The SmartPM System
	A concrete example from Emergency Management
	Adaptation in SmartPM
	Monitoring Formalisation
	The execution monitoring and adaptation

	Conclusion

