
Repair of Unsound Data-Aware Process Models

Matteo Zavatteri, Davide Bresolin, and Massimiliano de Leoni

Department of Mathematics, University of Padova, Padova, Italy
{matteo.zavatteri, davide.bresolin, massimiliano.deleoni}@unipd.it

Abstract. Process-aware Information Systems support the enactment
of business processes, and rely on a model that prescribes which exe-
cutions are allowed. As a result, the model needs to be sound for the
process to be carried out. Traditionally, soundness has been defined and
studied by only focusing on the control-flow. Some works proposed tech-
niques to repair the process model to ensure soundness, ignoring data
and decision perspectives. This paper puts forward a technique to re-
pair the data perspective of process models, keeping intact the control
flow structure. Processes are modeled by acyclic Data Petri Nets. Our
approach repairs the Constraint Graph, a finite symbolic abstraction of
the infinite state-space of the underlying Data Petri Net. The changes in
the Constraint Graph are then projected back onto the Data Petri Net.

Keywords: Data Petri Net · soundness · business process · model repair

1 Introduction

Process-aware Information Systems (PAISs) are instances of a type of system
that supports the execution of processes within an organization. The main ad-
vance of PAISs is that they guarantee the compliance of process executions with
respect to a process model that is provided as input.

PAISs can only function properly if the input process model is sound. Other-
wise, some process executions carried on through a PAIS might remain blocked
in a deadlock, or might never be completed. Consider, e.g., a financial institute
that grants loans to customers: if the PAIS is configured via an unsound model,
some loan applications might remain within the organization without ever being
accepted or rejected. This is clearly not desired, because it affects the customer
satisfaction and/or hampers the reputation of the organization.

Checking soundness of process models has attracted a lot of attention in the
past [1–6]. Recently, Felli et al. [7] studied verification of soundness of DPNs
with guards that include comparison of variables, and introduced the constraint
graph, on which we also rely for model repair, but did not consider the re-
pair of unsound models. Later on, the framework was extended to support full
arithmetic constraints [8], at the price of loosing decidability of the soundness
verification problem, as the underlying constraint graph is not guaranteed to be
finite anymore.

Conversely, few research works have focused on automatically repairing pro-
cess models to ensure soundness, and they do not consider the data perspective,

2 M. Zavatteri et al.

namely process variables and the related guards [9, 10]. Indeed, processes ma-
nipulate data when being executed, and this data restricts the behavior that the
process allows. Repairing the process model while ignoring data may cause the
model to remain unsound, as activities and data are intertwined.

This work is the first attempt to repair the data perspective of data-aware
process models, keeping intact the control flow structure. Process models are
here represented in the form of Data Petri Nets (DPNs). A general algorithm is
proposed that can repair acyclic DPNs and that keeps intact the place/transition
structure of the network, and that tries to minimize the number of guards that
ought to be changed. The underlying assumption is that unsoundness is caused
by the data perspective: if the unsoudness were due to the control-flow (i.e. the
structure of the Petri-net underneath), this should be fixed beforehand, using
techniques such as those described in [11]. We support guards in form of dif-
ference constraints, namely x − y ▷◁ k where x and y are real variables, k is a
constant, and ▷◁ can be either < or ≤. Unary guards, e.g. x < k, can also be
supported. We prove that the algorithm always terminates, returning a sound
DPN.

Organization. Section 2 introduces the notions of (i) systems of differ-
ence constraints and their consistency (i.e., satisfiability), and (ii) DPNs and
soundness. Section 3 reports on our algorithm for repairing DPNs and proves
termination, while Section 4 draws conclusions and discusses future work.

2 Data Petri Nets: Syntax, Semantics and Verification

This section summarizes the main concepts and formalization of the syntax and
semantics of Data Petri nets, which are adapted from Felli et al. [7] to support
difference constraints.

Data Petri nets are Petri Nets that are complemented by a set V of variables,
whose values are updated through the transition firings. Guards are also associ-
ated to transitions, and provide further constraints to have transitions enabled.

Given a variable v ∈ V we write vr or vw to denote that the variable v is,
respectively, read or written by an activity in the process, hence we consider
two sets V r and V w defined as V r := {vr | v ∈ V } and V w := {vw | v ∈ V }.
Intuitively, since an activity of the process may require to read and/or update
the value of variables, we use vr and vw to respectively denote the variable v
before and after the transition is executed. For this reason, we also refer to them
as read and written variables, respectively. We omit the superscripts r and w to
refer to a variable that can be either read or written.

A difference constraint over two real variables x, y has the form y − x ▷◁ k,
where ▷◁ is a comparison operator that can be either < or ≤ and k ∈ R∪{+∞}.
Unary constraints of the form x ▷◁ k can be encoded into difference constraints
x − Z ▷◁ k where Z is a fresh real variable intended to be always set to zero.
An equality constraint y− x = k can be encoded into two difference constraints
y−x ≤ k and x−y ≤ −k. This also holds for constraints x = k (once rewritten as
x−Z = k). A system of difference constraints is a set of difference constraints. A

Repair of Unsound Data-Aware Process Models 3

system of difference constraint is consistent if there exists an assignment of real
values to the variables that satisfies all constraints. A consistent system of differ-
ence constraints admits a unique canonical representation that can be computed
via a generalization of Floyd-Warshall algorithm using difference-bound matri-
ces to represent the canonical form [12], with time and space complexity Θ(n3)
where n is the number of variables. We can now formalize DPNs as follows.

Definition 1 (Data Petri Nets). Let V be a set of variables. Let CV be the
universe of difference constraints over V r ∪V w ∪{Z}. A Data Petri Net (DPN)
N = (P, T, F, V, αI , guard) is a Petri net (P, T, F) with additional components
describing the additional perspectives of the process model:

– V is a finite set of real process variables
– αI : V ∪{Z} 7→ R is a function defining the initial assignment with αI(Z) = 0
– guard : T → CV is a function returning the guard of a transition.

Conjunctions and disjunctions are not allowed in the guard for simplicity. How-
ever, disjunctive guards can be mimicked by having multiple transitions from
and to the same places, whereas read-only conjunctive guards can be modeled
as “non-interruptible” sequences, as discussed in [7].

Given t ∈ T , as a shorthand we write read(t) := {v ∈ V | v ∈ read(guard(t))},
and analogously write(t). Moreover, we assume that a DPN is always associated
with an arbitrary initial marking MI and an arbitrary final marking MF . When
MF is reached the execution of the process instance ends.

Consider the DPN in Figure 1a. From the initial marking MI = {p1}, tran-
sition t1 updates the value of a to a value greater than 5. Then, t2 or t3 may
be executable depending on the current value of a being greater or smaller than
10. Similarly, t4 can be executed only if the initial value of b is smaller than
the current value of a. The only possible sequence of transitions that reaches
the final marking is t1, t2, t4, as αI(b) = 10. A simplistic analysis that disre-
gards the possible assignments of variables at each step, and thus only considers
the control-flow of the net, would instead erroneously conclude that there are
no dead transitions and that it is always possible to reach the final marking
avoiding deadlocks, i.e., that N is classically sound [13].
Execution Semantics. By considering the usual semantics for the underlying
Petri net together with the guards associated to each of its transitions, we de-
fine the resulting execution semantics for DPNs in terms of possible states and
possible evolutions from a state to the next. Let N as above be a DPN. Then,
the possibly infinite set of states of N is formed by all pairs (M,α) where M
is the marking of the Petri net, that is, a multiset of places from P , and α is
an assignment of the variables in V . In any state, zero or more transitions of a
DPN may be able to fire. Firing a transition t updates the marking, reads the
variables specified in read(t) and selects a new value for those in write(t). A
DPN N evolves from state (M,α) to state (M ′, α′) through t if:

– t is enabled and the new marking is M ′ (denoted M [t⟩M ′) according to the
Petri net semantics;

4 M. Zavatteri et al.

– for each v ∈ V , if v ̸∈ write(t) then the value of v is unchanged: α′(v) = α(v);
– the guard is satisfied when we assign values to read variables according to α

and to written variables according to α′.

We denote a legal transition firing by writing (M,α) t−→ (M ′, α′). We also
extend this definition to sequences of legal transition firings (runs), and we
write (M,α) ∗−→ (M ′, α′) if there exists a sequence of legal transition firings
(M,α) t1−→ . . . tn−→ (M ′, α′). For instance, referring to the simple DPN N in Fig-
ure 1a, a possible legal transition firing from the initial state is ({p1}, {αI(a) =
0, αI(b) = 10)}) t1−→ ({p2}, {α(a) = 7, α(b) = 10)}).

Finally, recall that a Petri net (P, T, F) is unbounded when there exists a
place p ∈ P such that there exists no finite bound k ∈ N so that M(p) ≤ k
for all reachable markings M . The notion trivially extends to DPNs: a DPN is
unbounded when there exists a place p ∈ P so that there is no finite bound k
such that M(p) ≤ k for all reachable states (M,α).
Data-aware soundness. We recall here the lifting of the standard notion of
soundness [13] to the the data-aware setting of DPNs, as illustrated in [7]. The
resulting notion is data-aware, as it requires not only to quantify over the reach-
able markings of the net, but also on the SV assignments for the variables.

Given a DPN N , in what follows we write (M,α) ∗−→ (M ′, α′) to mean that
there exists a trace σ such that (M,α) σ−→ (M ′, α′) or that (M,α) = (M ′, α′).
Also, given two markings M ′ and M ′′ of a DPN N , we write M ′′ ≥ M ′ iff for
all p ∈ P of N we have M ′′(p) ≥ M ′(p), and we write M ′′ > M ′ iff M ′′ ≥ M ′

and there exists p ∈ P s.t. M ′′(p) > M ′(p).

Definition 2 (Data-aware soundness [7]). A DPN with initial marking MI

and final marking MF is data-aware sound iff all the following properties hold.

P1. For every reachable state (M,α), ∃αF . (M,α) ∗−→ (MF , αF)
P2. For every reachable state (M,α), M ≥ MF ⇒ (M = MF)
P3. For every transition t ∈ T , there exist two reachable states (M1, α1) and

(M2, α2) such that (M1, α1)
t−→ (M2, α2).

The first condition imposes that it is always possible to reach the final marking by
suitably choosing a continuation of the current run (i.e., legal transition firings).
The second condition captures that the final marking is always reached in a
“clean” way, i.e., without having tokens in the rest of the net. The third condition
verifies the absence of dead transitions, where a transition is considered dead if
there is no way to enable it through the execution of the process. For instance,
P1 is false for the DPN in Figure 1a: when transition t1 assigns a value not
greater than 10 to a there exists no run from there which marks MF .
DPN Soundness Verification via Constraint Graph. This paper bases
the soundness verification and the repair algorithm on the structure of the con-
straint graph, introduced by Felli et al. [7]. A constraint graph is a finite symbolic
abstraction of the (possibly infinite) traces of a DPN, that allows to verify sound-
ness of acyclic DPNs and to identify the changes needed to repair the DPN, if

Repair of Unsound Data-Aware Process Models 5

Algorithm 1: Procedure for computing C ⊕ c.
1 if c = yr − xr ▷◁ k then ▷ c is a read-only constraint
2 C′ := C ∪ {y − x ▷◁ k}
3 return CanonicalForm(C′)

4 else ▷ c writes some variable
5 if write(c) = {x} then
6 C′ := C′ ∪ {y − xw ▷◁ k}
7 else if write(c) = {y} then
8 C′ := C′ ∪ {yw − x ▷◁ k}
9 else ▷ write(c) = {x, y}

10 C′ := C′ ∪ {yw − xw ▷◁ k}

11 C′ := CanonicalForm(C′)

12 C′ := C′ \ {x′ − y′ ▷◁′ k′ | x′ ∈ write(c) or y′ ∈ write(c)}
13 Rename all occurrences of xw to x and all occurrences of yw to y in C′

14 return C′ ▷ C′ is already in canonical form

found unsound. A constraint graph is characterized by a state-transition struc-
ture where each node is associated with a marking and an abstraction of the
data, given as a canonical representation of a system of difference constraints.

Given a set of difference constraints C, and a constraint c, we now define the
procedure of computing the new constraint set C ′ resulting from the addition
of a constraint c to C so that C ′ is uniquely determined, denoted C ′ = C ⊕ c.
This is shown in Algorithm 1, where we maintain the same notation as before,
so that x, y, z can be either constants or read variables in V r. It requires a
CanonicalForm procedure that, given a set C ′ of difference constraints as input,
returns the minimal constraint network derived from C ′ using the generalized
Floyd-Warshall algorithm described above. When given an unsatisfiable con-
straint set, we assume CanonicalForm to return a null value, so that it can be
used also to signal inconsistency of a set of difference constraints.

Definition 3 (Constraint Graph of a DPN). Let N = (P, T, F, V, αI , guard)
be a DPN, M be the set of markings of N , and MI the initial marking.da The
constraint graph CGN of N is a tuple ⟨N,n0, A⟩ consisting of:

– N ⊆ M× C∗ is the set of nodes of the graph.
– n0 = (MI , C0) is the initial node where C0 is the canonical form of the

system of difference constraints
⋃

v∈V {v =αI(v)};
– A ⊂ N × (T ∪ τT)×N is the set of arcs such that:

• a transition ((M,C), t, (M ′, C ′)), where t ∈ T , is in A iff M [t⟩M ′ and
C ′ = C ⊕ guard(t) is consistent;

• a transition ((M,C), τt, (M,C ′′)), where τt ∈ τT , is in A iff write(t) = ∅,
∃M ′ s.t. M [t⟩M ′, and C ′′ = C ⊕ ¬guard(t) is consistent.

3 The Repair of Data Petri Nets

In this section we describe the repair algorithm. As stressed in the introduction,
we assume that the underlying Petri Net (i.e., without the data dimension) of

6 M. Zavatteri et al.

p1

t1

(aw > 5) p2

t2

(ar > 10) p3

t3

(ar < 10)

t4

(br < ar) p4

(a) Example of DPN N [7]. MI = {p1},
MF = {p4}, αI(a) = 0, αI(b) = 10.

(b) CGN showing unsoundness of N
(dead nodes).

p1

t1

(aw > 5) p2

t2

(ar > 10) p3

t3

(ar < 10)

t4

(br < ar + 5) p4

(c) Modification 1: N ′ is N with the
guard of t4 modified as br < ar + 5.

(d) CGN ′ showing unsoundness of N ′ (dead
nodes).

p1

t1

(aw > 5) p2

t2

(ar > 10) p3

t3

(ar ≤ 10)

t4

(br < ar + 5) p4

(e) Modification 2: N ′′ is N ′ with the
guard of t3 modified as ar ≤ 10.

(f) CGN ′′ showing soundness of N ′′.

Fig. 1: Repair algorithm using ForwardRepair only.

the DPN to repair is sound and acyclic, and we focus on the repair of the data
perspective only. Informally, given an acyclic DPN N , we want to build a sound
DPN N ′ by changing only the constants and comparison operators in the guards.
Moreover, we look for a repair that limits the number of changes.

Definition 4. Let N = (P, T, F, V, αI , guard). A repair of N is a DPN N ′ =
(P ′, T ′, F ′, V ′, α′

I , guard
′) meeting the following three conditions:

1. (P, T, F, V, αI) = (P ′, T ′, F ′, V ′, α′
I);

2. for each transition t ∈ T with guard(t) = y−x ▷◁ k, guard ′(t) = y−x ▷◁′ k′;
3. N ′ is data-aware sound.

The cost of the repair N ′ is the number of guards in N ′ that differ from N .

Repair of Unsound Data-Aware Process Models 7

Algorithm 2: An algorithm to repair a DPN.
1 DPNRepair (N) ▷ Assume that N has global visibility
2 Let Q be a empty priority queue. ▷ global variable
3 Push the input DPN N in Q with priority 0.
4 Let N ′ be an empty DPN. ▷ the one to return eventually
5 while true do
6 Extract from Q a DPN with minimum priority p and save it in N ′

7 Let CGN′ be the constraint graph of N ′

8 if CGN′ is data-aware sound then break ▷ we are done, exit the while loop
9 FixDead(N ′,CGN′)

10 FixMissing(N ′,CGN′)

11 return N ′ ▷ the repaired DPN (last extracted from Q)

12 UpdateQ (N ′) ▷ used in FixDead, FixMissing
13 if N ′ has not been visited yet then
14 Let p be the number of transitions of N ′ with a different guard in N .
15 Push N ′ in Q with priority p.

16 FixDead (N ′,CGN′)
17 foreach dead node (M,C) in CGN′ do
18 Let FW := {t ∈ T | M [t⟩M ′ for some marking M ′}.
19 foreach t ∈ FW do ForwardRepair(N ′, t, C)
20 Let BW be the set of non-silent transitions in all paths (M0, C0)⇝ (M,C).
21 foreach t ∈ BW do BackwardRepair(N ′, t, C)

22 ForwardRepair (N ′, t, C) ▷ “replace with the same constraint of C”
23 Let N ′′ := (P, T, F, V, αI , guard

′′) be a copy of N ′.
24 Let y − x ▷◁ k be the guard of t.
25 Let y − x ▷◁′ k′ be the corresponding constraint in C.
26 guard′′(t) := y − x ▷◁′ k′

27 UpdateQ(N ′′)

28 BackwardRepair (N ′, t, C) ▷ “replace with the opposite constraint of C”
29 Let N ′′ := (P, T, F, V, αI , guard

′) be a copy of N ′.
30 Let y − x ▷◁ k be the guard of t.
31 if x − y ▷◁′ k′ in C is such that k′ ̸= ∞ then
32 if ▷◁′ is ≤ then guard′′(t) := y − x < −k′

33 else guard′′(t) := y − x ≤ −k′

34 UpdateQ(N ′′)

35 FixMissing (N ′,CGN′)
36 Let Missing be the set of missing transitions in CGN′ .
37 foreach t ∈ Missing do
38 Let Nodes := {(M,C) | ∃M ′.M [t⟩M ′}
39 foreach (M,C) ∈ Nodes do
40 ForwardRepair(N ′, t, C)
41 Let BW be the set of non-silent transitions in all paths (M0, C0)⇝ (M,C).
42 foreach t ∈ BW do BackForwardRepair(N ′, t)

43 BackForwardRepair (N ′, t) ▷ “make the guard true”
44 Let N ′′ := (P, T, F, V, αI , guard

′) be a copy of N ′.
45 Let y − x ▷◁ k be the guard of t.
46 guard′′(t) := y − x ≤ ∞
47 UpdateQ(N ′′)

We show the repair algorithm for acyclic DPNs in Algorithm 2. The main
procedure is DPNRepair which implements a Breadth First Search in a Dijkstra
fashion to explore the space of possible Data Petri Nets. The function uses a
priority queue to store the partial solutions that are being explored. At each

8 M. Zavatteri et al.

iteration the algorithm extracts a DPN with minimum priority, builds the corre-
sponding constraint graph, and, if such a graph is unsound, it calls FixDead and
FixMissing. FixDead processes dead nodes, that is, nodes that violate condition
P1 of the definition of data-aware soundness (Definition 2). For each dead node,
it identifies a set of transitions to operate on. For each transition, it computes a
new guard from the systems of difference constraints belonging to the dead node.
After that, it pushes in the queue the resulting new DPN. FixMissing processes
transitions that do not appear in the constraint graph, namely those that violate
condition P3 of Definition 2. For each transition, it identifies the set of nodes
in the constraint graph from which the transition might fire, and another set
of transitions to operate on. For each transition in this set, it computes a new
guard and pushes the resulting DPN in the queue.

Dead nodes can be treated in two possible ways. Either we enable a transition
that is currently prevented to fire from that node, or we prevent the execution
to reach that node. The first case is managed by ForwardRepair, whereas the
second one by BackwardRepair. Consider Figure 1. The initial DPN (Figure 1a)
is data-aware unsound. Indeed, its constraint graph (Figure 1b) reveals the pres-
ence of two dead nodes (identified by a cross). Consider the rightmost dead node.
That node has marking M = {p3} and thus the only transition that might fire
from the node is t4. However, t4 is not enabled because the set of constraints
in the node augmented with the guard of t4 is inconsistent. The current guard
of t4 is br < ar, that in difference constraint form, regardless of read and write
operations, is b− a < 0. The same constraint in the set of constraints C of the
dead node is b−a < 5. This says that if the guard of t4 was br < ar +5, then t4
would be able to fire. Therefore, such constraint becomes the new guard of t4.
The resulting DPN N ′ (Figure 1d) is computed by ForwardRepair(N , t4, C) by
applying this modification and it is pushed in the queue with priority 1, since
the number of guards differing from the original DPN is currently one. The algo-
rithm proceeds with a breadth-first search by exploring the other modifications
given by the subsequent calls to ForwardRepair and BackwardRepair and push-
ing other candidate DPNs in the queue. When N ′ is extracted from the queue,
the algorithm builds its constraint graph (Figure 1d) discovering another dead
node. By proceeding similarly, we can push a new DPN N ′′ (Figure 1e) in the
queue, obtained by modifying the current guard of t3 which is ar < 10 (i.e.,
a − Z < 10) to ar ≤ 10 (i.e., a − Z ≤ 10). When N ′′ is extracted from the
queue the algorithm verifies that it is data-aware sound and returns N ′′ as the
repaired DPN. This example shows a possible path to a solution that uses only
ForwardRepair.

Yet, there are cases in which solutions with smaller costs can be found if
we also use BackwardRepair. For instance, consider N in Figure 2a. In the
constraint graph of N (Figure 2b) there is a dead node. Consider the application
of ForwardRepair(N , t2, C), where C is the set of difference constraints of the
dead node. The result is N ′, shown in Figure 2c, still contains a dead node.
One possible path to continue is to apply ForwardRepair to t3 and then to t4
(since changing t3 generates a dead node from which t4 cannot be executed) to

Repair of Unsound Data-Aware Process Models 9

p1

t1

(aw ≥ 0) p2

t2

(ar > 15) p3

t3

(ar ≥ 10) p4

t4

(ar ≥ 10)

t5

(ar < 5) p6

t6

(ar < 10) p7

t7

(ar < 10)

p5

(a) Example of DPN N . MI = {p1}, MF = {p5},
and αI(a) = 0.

(b) CGN showing unsoundness of
N (dead node).

p1

t1

(aw ≥ 0) p2

t2

(ar ≥ 5) p3

t3

(ar ≥ 10) p4

t4

(ar ≥ 10)

t5

(ar < 5) p6

t6

(ar < 10) p7

t7

(ar < 10)

p5

(c) Modification 1: N ′ is N with the guard of t2
modified as Z − a ≤ −5.

(d) CGN ′ showing unsoundness of
N ′ (dead nodes).

p1

t1

(aw ≥ 0) p2

t2

(ar ≥ 10) p3

t3

(ar ≥ 10) p4

t4

(ar ≥ 10)

t5

(ar < 5) p6

t6

(ar < 10) p7

t7

(ar < 10)

p5

(e) Modification 2: N ′′ is N ′ with the guard of t2
modified as Z − a ≤ −10.

(f) CGN ′′ showing unsoundness of
N ′′ (dead nodes).

p1

t1

(aw ≥ 0) p2

t2

(ar ≥ 10) p3

t3

(ar ≥ 10) p4

t4

(ar ≥ 10)

t5

(ar < 10) p6

t6

(ar < 10) p7

t7

(ar < 10)

p5

(g) Modification 3: N ′′′ is N ′′ with the guard of
t5 modified as a− Z < 10.

(h) CGN ′′′ showing soundness of
N ′′′.

Fig. 2: Repair algorithm using ForwardRepair and BackwardRepair only.

obtain a solution of cost 3. However, a solution with smaller cost can be found
by following a different path, that proceeds by applying BackwardRepair to t2,
since t2 is a transition belonging to a path that can reach the dead node from
the initial one. The current guard of t2 is ar ≥ 5 (i.e., Z − a ≤ −5). To prevent
the execution to reach the dead node we can restrict the guard of t2 so that the
constraint system of the dead node becomes inconsistent with this new guard.
To do so, we need to modify the guard of t2 to ar ≥ 10 (i.e., Z−a ≤ −10). This
modification generates a negative weight cycle (i.e., a certificate of inconsistency)

10 M. Zavatteri et al.

p1

t1

(aw ≥ 5) p2

t2

(ar < 5) p3

t3

(ar < 5)

t4

(ar ≥ 5) p4

(a) Example of DPN N . MI = {p1},
MF = {p3}, and αI(a) = 0.

(b) CGN showing unsoundness
of N (missing transitions).

p1

t1

(aw ≥ −∞) p2

t2

(ar < 5) p3

t3

(ar < 5)

t4

(ar ≥ 5) p4

(c) Modification 1: N ′ is N with the
guard of t1 modified as aw ≥ −∞.

(d) CGN ′ showing soundness of
N ′.

Fig. 3: One-shot repair using BackForwardRepair only.

with the constraint a−Z < 10 contained in the system of constraints of the dead
node. Hence, that node will no longer exist in the constraint graph. Figure 2e
shows the DPN N ′′ obtained by this last modification, whose constraint graph
(Figure 2f) still contains a dead node. If we apply ForwardRepair to t5 we obtain
the repaired DPN N ′′′ in Figure 2g with a total cost of 2. Thus, there are cases in
which, by operating several times on the same transition, we can obtain repairs
with smaller costs.

A constraint graph can also be unsound because of missing transitions. This
situation does not necessarily imply the existence of dead nodes and it is there-
fore handled by the function FixMissing. Missing transitions can be treated in
two possible ways. Either we enable the missing transitions to fire from the nodes
where the marking allows them but the data does not, or we remove constraints
by operating on transitions along the paths from the initial node to the node
under analysis. The former case is still handled by ForwardRepair, whereas the
latter is handled by BackForwardRepair that mixes ideas from ForwardRepair
and BackwardRepair. Once again, we proceed by discussing a concrete exam-
ple. Consider the DPN N in Figure 3a and its constraint graph in Figure 3b.
There are no dead nodes in the constraint graph. However, t2 (and thus t3 oc-
curring after t2) are missing in the constraint graph. A solution of cost 1 can
be found by applying BackForwardRepair to t1 since t1 is in the path that
goes from the initial node to a node with the marking M = {p2} from which
t2 can fire in the underlying “dataless” Petri Net. BackForwardRepair replaces
the guard of t1 with aw ≥ −∞ (i.e., Z − aw ≤ ∞) by obtaining the data-aware
sound N ′ (Figure 3c and Figure 3d). Despite BackForwardRepair basically sets
a guard to “true”, we recall that the same guard might be later be processed by
BackwardRepair in order to be restricted adequately.

Theorem 1. Let N be an acyclic DPN where the underlying dataless Petri net
is sound. Algorithm 2 terminates on N by returning a data-aware sound DPN.

Repair of Unsound Data-Aware Process Models 11

Proof. Let N be an acyclic DPN where the underlying Petri net is sound. First
of all, notice that, by neglecting self-loop silent transitions, the constraint graph
of an acyclic DPN is a DAG. Since the set of transitions T is finite and the
underlying DPN is bounded, the branching factor of each node in the constraint
graph is bounded by 2 · |T | (i.e., all transitions t plus the corresponding silent
transitions τt), and the longest path from the initial node to a final one cannot
exceed |T |. As a result, there are at most (2 · |T |)|T | nodes in the constraint
graph. Among the possible sequences of modifications that Algorithm 2 can
follow there always exists one that uses ForwardRepair only. Such a sequence
can always be explored since (i) all constraint graphs built along the way are
finite, (ii) the possible modifications applied to a constraint graph are finite,
and (iii) such modifications are explored following a BFS strategy. Consider
therefore the sequence that calls only ForwardRepair. Every time a new DPN
is generated the guard of a transition t is replaced with some constraint in
the constraint system of some node: either a dead node if ForwardRepair is
called inside FixDead, or a node from which a missing transition can be fired if
ForwardRepair is called inside FixMissing. In the former case (fixing a dead
node), some paths in the constraint graph starting from the initial node and
ending with the silent transition τt are removed. Also, such paths can never be
introduced again by subsequent modifications: if t is processed again, the current
guard y−x ▷◁ k is replaced by a weaker guard y−x ▷◁′ k′. In the latter case (fixing
a missing transition), some paths in the constraint graph are extended with the
transition t. By the same monotonicity argument on subsequent modifications
of t, such extended paths can never be removed in subsequent applications of
ForwardRepair. Since the number of paths in a constraint graph is finite, the
sequence of ForwardRepair reaches a sound DPN in a finite number of steps. □

4 Conclusions

This paper focuses on repairing data-aware process models to ensure soundness.
We use DPNs as modelling formalism, and employ difference constraints over real
variables as transition guards. We defined a general algorithm that can repair
acyclic DPNs, keeps intact the place/transition structure of the network, and
tries to minimize the number of guards that ought to be changed. The algorithm
exploits the full power of difference constraint to build a repaired network with
as few changes as possible. We rely on the canonical form of systems of difference
constraints to compute the modifications on the guards of transitions. We proved
that the algorithm terminates, returning a repaired DPN.

As future work, we plan to implement the algorithm and experimentally eval-
uate the efficiency with models of increasing complexity. We aim to investigate
the optimality of the algorithm, and to extend the algorithm to support repair
of cyclic DPNs. Finally, we are currently assuming that every guard change is
equivalent to repair the model: in reality, process modellers and analysts may
favor certain changes over others. This requires to define a cost framework where
certain guard changes come at lower costs, thus being preferable.

12 M. Zavatteri et al.

Acknowledgements

This work was supported by the Project funded under the National Recovery
and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.5 - Call
for tender No. 3277 of 30 dicembre 2021 of Italian Ministry of University and
Research funded by the European Union – NextGenerationEU; Project code:
ECS00000043, Concession Decree No. 1058 of June 23, 2016, CUP C43C22000340006,
Project title “iNEST: Interconnected Nord-Est Innovation Ecosystem”. This work
was also supported by INdAM, GNCS 2023, Project “Analisi simbolica e numer-
ica di sistemi ciberfisici”.

References

1. Morimoto, S.: A survey of formal verification for business process modeling. In:
ICCS 2008, Springer-Verlag (2008) 514–522

2. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach to
modeling and verification of business process collaborations. Science of Computer
Programming 166 (2018) 35 – 70

3. Sidorova, N., Stahl, C., Trčka, N.: Soundness verification for conceptual work-
flow nets with data: Early detection of errors with the most precision possible.
Information Systems 36(7) (2011) 1026–1043

4. Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.:
Semantics and analysis of DMN decision tables, Springer (2016) 217–233

5. Batoulis, K., Weske, M.: Soundness of decision-aware business processes. In: Proc.
of BPM Forum, Springer (2017) 106–124

6. Batoulis, K., Haarmann, S., Weske, M.: Various notions of soundness for decision-
aware business processes. In: Conceptual Modeling, Springer (2017) 403–418

7. Felli, P., de Leoni, M., Montali, M.: Soundness verification of data-aware process
models with variable-to-variable conditions. Fund. Inform. 182(1) (2021) 1–29

8. Felli, P., Montali, M., Winkler, S.: Soundness of data-aware processes with arith-
metic conditions. In Franch, X., Poels, G., Gailly, F., Snoeck, M., eds.: Advanced
Information Systems Engineering, Springer (2022) 389–406

9. Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error
correction of business process models. In: BPM 2011, Springer (2011) 148–165

10. Armas Cervantes, A., van Beest, N.R.T.P., La Rosa, M., Dumas, M., García-
Bañuelos, L.: Interactive and incremental business process model repair. In: On
the Move to Meaningful Internet Systems. OTM 2017, Springer (2017) 53–74

11. Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error
correction of business process models. In Rinderle-Ma, S., Toumani, F., Wolf, K.,
eds.: Business Process Management, Springer (2011) 148–165

12. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: CAV 1989. Volume 407 of LNCS., Springer (1989) 197–212

13. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1) (1998) 21–66

