Appendix - Proof of the Statement in Section 4.1

From the first assumption, we can say that, if the i-th node successes in transmitting, then $(i-1)$-th, $(i-2)$-th, ($i+1$)-th and $(i+2)$-th cannot.

Let us name the following events: (i) D_{n} be the event of delivering a packet in a chain of n links and (ii) S_{n}^{i} be the event of delivering at the i-th attempt.

Let us name $T_{i, n}$ as the probabilistic event of delivering a packet in a network of n links (i.e., $n+1$ nodes) after i retransmissions ${ }^{8}$.

For all n the probability of delivering after one attempt is the same as the probability of deliver a packet: $P\left(T_{1, n}\right)=$ $P\left(D_{n}\right)$. Conversely, probability $P\left(T_{2, n}\right)$ is equal to the probability of not delivering at the first $P\left(\neg S_{n}^{1}\right)$ and of delivering at the second attempt $P\left(S_{n}^{2}\right)$:

$$
\begin{equation*}
P\left(T_{2, n}\right)=P\left(S_{n}^{2} \cap \neg S_{n}^{1}\right)=P\left(S_{n}^{2}\right) \cdot P\left(\neg S_{n}^{1} \mid S_{n}^{2}\right) \tag{3}
\end{equation*}
$$

Since, for all i, events S_{n}^{i} are independent and $P\left(S_{n}^{i}\right)=$ $P\left(D_{n}\right)$, Equation 3 becomes:

$$
P\left(T_{2, n}\right)=P\left(S_{n}^{2}\right) \cdot P\left(\neg S_{n}^{1}\right)=P\left(D_{n}\right) \cdot\left(1-P\left(D_{n}\right)\right)
$$

In general, the probability of delivering a packet to the destination node after i retransmissions is:

$$
\begin{align*}
& P\left(T_{i, n}\right)=P\left(S_{n}^{i}\right) \cdot P\left(\neg S_{n}^{(i-1)}\right) \cdot \ldots \cdot P\left(\neg S_{n}^{1}\right)= \tag{4}\\
& \quad=P\left(D_{n}\right) \cdot\left(1-P\left(D_{n}\right)\right)^{i-1}
\end{align*}
$$

We can compute the average number of retransmissions, according to Equation 4 as follows:

$$
\begin{align*}
& T_{n}=\sum_{i=1}^{\infty} P\left(T_{i, n}\right)= \\
& \quad=\sum_{i=1}^{\infty} P\left(D_{n}\right) \cdot\left(1-P\left(D_{n}\right)\right)^{i-1}=\frac{1}{P\left(D_{n}\right)} \tag{5}
\end{align*}
$$

In a laboratory, all nodes are in the same radio range. Therefore, independently on the nodes number,

$$
\begin{equation*}
P\left(D_{n}^{l a b}\right)=1 / n \tag{6}
\end{equation*}
$$

On the field, we have to distinguish on the basis of the number of links. Up to 2 links (i.e., 3 nodes), all nodes interfere and, hence, just one node out of 2 or 3 can deliver a packet in a time slot. So, $P\left(D_{1}^{\text {field }}\right)=1$ and $P\left(D_{2}^{\text {field }}\right)=1 / 2$. For links $n=3,4,5$, two nodes success: $P\left(D_{n}^{\text {field }}\right)=2 / n$. For links $n=6,7,8$, there are 3 nodes delivering: $P\left(D_{n}^{\text {field }}\right)=3 / n$. Hence, in general we can
state:

$$
\begin{equation*}
P\left(D_{n}^{f i e l d}\right)=\frac{\left\lfloor\frac{n}{3}\right\rfloor+1}{n} \tag{7}
\end{equation*}
$$

By applying Equations 6 and 7 to Equation 5, we derive the number of retransmission needed for delivering a packet :

$$
\begin{align*}
& T^{f i e l d}(n)=\frac{n}{\left\lfloor\frac{n}{3}\right\rfloor+1} \tag{8}\\
& T^{l a b}(n)=n
\end{align*}
$$

[^0]Fixing the number of packets to be delivered, we can define a function f that expresses the throughput in function of the number of sent packets. If we have a chain of n links and we want to deliver a single packet from the first to the last node in the chain, then we have altogether to send the number n of links times the expected value for each $\operatorname{link} T_{n}$. Therefore:

$$
\begin{align*}
& Q_{l a b}(n)=f\left(T^{l a b}(n) \cdot n\right)=f\left(n^{2}\right) \\
& Q_{\text {field }}(n)=f\left(T^{f i e l d}(n) \cdot n\right)=f\left(\frac{n^{2}}{\left\lfloor\frac{n}{3}\right\rfloor+1}\right) \tag{9}
\end{align*}
$$

From our laboratory experiments described in Section 4.2, as well as from other theoretical results [9]), we can state $f\left(n^{2}\right)=\frac{\alpha}{n^{\beta}}$. By considering it and Equations 9, the following holds:
$\frac{Q_{l a b}(n)}{f\left(n^{2}\right)}=\frac{Q_{\text {field }}(n)}{f\left(\frac{n^{2}}{\left\lfloor\frac{n}{3}\right\rfloor+1}\right)} \Rightarrow Q_{\text {field }}(n)=Q_{l a b}(n) \cdot\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)^{\frac{\beta}{2}}$.

[^0]: ${ }^{8}$ Please note this is different with respect to S_{n}^{i}, since $T_{i, n}$ implies deliver did not success up to the $i-1$-th attempt

