
Event-Log Abstraction using Batch Session Identification and
Clustering

Massimiliano de Leoni

Department of Mathematics - University of Padua

Padua, Italy

deleoni@math.unipd.it

Safa Dündar

Micro Focus

Utrecht, The Netherlands

safa.dundar@microfocus.com

ABSTRACT
Process-Mining techniques aim to use event data about past ex-

ecutions to gain insight into how processes are executed. While

these techniques are proven to be very valuable, they are less suc-

cessful to reach their goal if the process is flexible and, hence, it

exhibits an extremely large number of variants. Furthermore, infor-

mation systems can record events at very low level, which do not

match the high-level concepts known at business level. Without ab-

stracting sequences of events to high-level concepts, the results of

applying process mining (to, e.g., discover a model) easily become

very complex and difficult to interpret, which ultimately means

that they are of little use. A large body of research exists on event

abstraction but typically a large amount of domain knowledge is

required, which is often not readily available. Other abstraction

techniques are unsupervised, which ultimately return less accurate

results and/or rely on stronger assumptions. This paper puts for-

ward a technique that requires limited domain knowledge that can

be easily provided. Traces are divided in batch sessions, and each

session is abstracted as one single high-level activity execution.

The abstraction is based on a combination of automatic clustering

and visualization methods. The technique was assessed on two

case studies about processes characterized by high variability. The

results clearly illustrate the benefits of the abstraction to convey

accurate knowledge to stakeholders.

KEYWORDS
Process Discovery, Event Log Abstraction, Clustering, Flexible Pro-

cesses, Visual Analytics

ACM Reference Format:
Massimiliano de Leoni and Safa Dündar. 2020. Event-Log Abstraction us-

ing Batch Session Identification and Clustering. In The 35th ACM/SIGAPP
Symposium on Applied Computing (SAC ’20), March 30-April 3, 2020, Brno,
Czech Republic. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3341105.3373861

1 INTRODUCTION
Nowadays, large, complex organizations leverage on well-defined

processes to try to carry on their business more effectively and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00

https://doi.org/10.1145/3341105.3373861

efficiently than their competitors. In a highly competitive world,

organizations aim to continuously improve their business perfor-

mance, which ultimately boils down to improving their process.

The first step towards improvement is to understand how pro-

cesses are actually being executed. The understanding of the actual

process enactment is the goal of Process Mining [16]. This research

field focuses on providing insights by reasoning on the actual pro-

cess executions, which are recorded in so-called event logs [16].

Event logs group process events in traces, each of which contains

the events related to a specific process-instance execution. An event

refers to the execution of an activity (e.g., Apply for a loan) for a spe-
cific process instance (e.g. customer Mr. Bean) at a specific moment

in time (e.g. on January, 1st, 2018 at 3.30pm).

While process mining has proven to be effective in a wide range

of application fields, it has shown its limitation when the process

intrinsically allows for a high degree of flexibility [16], or infor-

mation systems record executions into logs where events are at a

lower-level granularity than the concepts that are relevant from

a business viewpoint. Both of the problems lead to an “ocean” of

observed process behavior. This means that, e.g., if one tries to

discover a process model, one obtains a model that is very complex

and/or low-level, thus being difficult to interpret.

Figure 1 shows an example of a model that was discovered from

an event log that records huge behavioral variabilities. The model

was obtained through the new Heuristic Miner [10] and refers

to the page-visit behaviour of the www.werk.nl web site (see also
Section 3.1). Similar models would be discovered using other miners.

Models such as that in Figure 1 are extremely difficult to inter-

pret. They certainly contrast the initial purpose of process mining:

conveying interpretable insights and knowledge to process stake-

holders and owners.

Similarly to existing related work (see Section 4), here we ad-
vocate the need of abstracting low-level events to high-level events.
However, differently from existing related work, we do not want to

rely on the provision of an extensive amount of domain knowledge

as many existing approaches require: this can be hard in several

domains. On the other hand, we want to avoid completely unsu-

pervised approaches, which naturally show lower accuracy and/or

rely on strong assumptions. Here and in the remainder of the paper,
the abstraction of low-level events to high-level events is meant to
indicate that the events referring to low-level activities are replaced
by other events for high-level activities.

To balance accuracy and practical feasibility, we aim at a tech-

nique that requires process analysts to only feed in knowledge that

is limited in quantity and easy to provide. In a nutshell, the idea is

that events of the same trace can be clustered into batch sessions

(hereafter shorted as sessions) such that the time distance between

https://doi.org/10.1145/3341105.3373861
https://doi.org/10.1145/3341105.3373861
https://doi.org/10.1145/3341105.3373861

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic M. de Leoni and S. Dündar

Figure 1: The model for the very flexible process of the users’ interactions with the www.werk.nl. The presence of an ocean
of diverse behavior generates a model useless to gain insights

Figure 2: The steps of the abstraction technique based on batch sessions. The technique clusters the sessions with low-level
activities {a1, . . . ,ai }, namely the activities associated to the low-level events, into a number of clusters, here {C1,C2,C3}.

the last event of a session and the first event of the subsequent

session is larger than a user-defined threshold. Each trace is seen

as a sequence of sessions of events. These sessions are encoded

into data points to be clustered; this way, each session is assigned

to one cluster. The abstract event log is created such that the en-

tire session is replaced by two high-level events associated with

a high-level activity of the same name as the cluster to which the

session belongs. The two events per session indicate the start and

completion of the session. So, high-level events needs to be named:

The centroids of the clusters provide meaningful information for a

process stakeholder to identify the activity name of the high-level

event that corresponds to each cluster. To support stakeholder in

this identification, visualization techniques are foreseen, based on

heat maps. However, the latter is optional: e.g., without domain

knowledge, each cluster may be named as the concatenation of

the names of the low-level activities that clearly stand out in the

cluster.

The benefits and feasibility of the proposed technique were as-

sessed on two real-life case studies. The first refers to the www.

werk.nl web site. Results show that overcomplex, low-level process

models can be converted into high-level counterparts that are accu-

rate according to the process-mining metrics, and that are simply

enough to be able to convey information that has business value.

The paper reports on a second case study about the management

of building-permit requests, which confirms the findings.

The problem raises when events are too-low-level, which is also

relatively common in, e.g., health care, customer-journey analy-

sis, home automation, and IoT systems. The event-log abstraction

technique is beneficial in these and other domains. In general, one

can apply the proposed technique to any domain in which events

happen in batches/sessions.

Section 2 introduces the abstraction technique, while Section 3

reports on the evaluation on the two cases. Section 4 compares with

www.werk.nl
www.werk.nl
www.werk.nl

Event-Log Abstraction using Batch Session Identification and Clustering SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

the related work while Section 5 concludes the paper, delineating

the avenues of future work.

2 SESSION-BASED EVENT-LOG
ABSTRACTION TECHNIQUE

This section introduces our technique to abstract low-level events.

The starting point is an event log, which consists of a set of traces,

where each trace σ is a sequence of events: σ = ⟨e1, . . . , en⟩. Each
trace groups all the events that refer to executions of activities

within the same instance of process (the same user, customer, pa-

tients, etc.). Each event ei carries information. For the scope of

this paper, any ei is at least associated with the activity λA(ei) to
which the event refers, and the timestamp λT (ei) when the event

occurred.

Our technique consists of four main steps (see Figure 2). All

the traces of the event log are split into sessions; each session

of a log trace is a the smallest sub-sequences of the trace such

that, for each session, the difference between the timestamp of the

last event of the session and that of the first event of the session

that follows is larger than a user-defined threshold. Sessions are

then extracted and decontextualized from the traces to which they

belong. As second step, the sessions are converted into vectors

that abstract the behavior observed in the sessions. These vectors

are clustered, and hence sessions are also clustered. The third step

focuses on visualizing the centroids of the clusters on a heatmap,

thus providing information about the most predominant activities

for low-level events. This information is used by process analysts to

assign activity names to high-level events. The fourth step creates

the abstract event log: each session is replaced by two events (e.g.

Cst
1

andCco
1

in figure) of the same name as that given to the cluster

to which the session belongs. The two events refer to the starting

and the completion of the session and, respectively, take on the

timestamps of the first and the last event of the session.

2.1 Creation of Sessions
The first step of the technique is to identify the sessions. We in-

troduce a session threshold ∆, a time range. For each trace σ =
⟨e1, . . . , en⟩ in an event log, we iterate over its events and create

a sequence of sessions s○∆(σ) = ⟨s1, . . . , sm⟩. We create a session

sk = ⟨ei , . . . , ej ⟩, subsequence of σ , if (1) the timestamp’s differ-

ence between ei and ei−1 and ej and ej+1 is larger than or equal

to ∆ and (2) the timestamp’s difference between two consecutive

events in ⟨ei , . . . , ej ⟩ is smaller than ∆. Also, the concatenation of

the events in the sessions of s○∆(σ)must result in σ . The following
example clarifies:

Example 2.1. Consider a trace σ = ⟨a1,b3, c4,a10,d13⟩. The letter
indicates the activity name associated with the event, and the sub-

script is the timestamp of the event’s occurrence (e.g. d occurred

at time 13). Assume that the time interval ∆ = 5. One can eas-

ily see that the time difference between the second occurrence

of a and the first of e is greater than the given time interval ∆
(λT (a10) − λT (c4) = 6 > ∆ = 5), thus resulting in two sessions:

s○∆(σ) = ⟨s1, s2⟩ where s1 = ⟨a1,b3, c4⟩ and s2 = ⟨a10,d13⟩. Note
that their concatenation results in σ .

2.2 Clustering of Sessions
Once the sessions are identified and created, they can be clustered.

To this aim, we leverage on off-the-shelf clustering techniques,

which require sessions to be encoded as vectors to be subsequently

clustered. Several encodings are naturally possible. In the remain-

der, we introduce two of them, which are of general applicability,

available in our implementation, and are used in the case studies

reported in this paper (cf. Section 3). Both encodings generate vec-

tors with one dimension for each activity associated with low-level

events. In the remainder, the set of activities for low-level events in

the log is denoted as {x1, . . . , xn }, namely, for each i ∈ [1,n] there
exists an event e in some log trace, s.t. λA(e) = xi .

Frequency-based encoding. Each session s = ⟨e1, . . . , em⟩ is en-
coded a vector (vx1 , . . . ,vxn) where dimension vxk is the number

of events for activity xk in s: vxk = |e ∈ s : λA(ei) = xk |. For in-
stance, sessions s1 and s2 of Example 2.1 are encoded as quadruples

where the value for the first to the fourth dimension is the number

of occurrences of respectively a,b, c,d : namely, the encoding of

s1 and s2 is (1, 1, 1, 0) and (1, 0, 0, 1), respectively. This encoding is
useful when one wants to cluster on the basis of the frequency of

occurrence of activities in sessions. Consider, for instance, an online

retail shop where each log trace contains one event for each item of

product that is added to the basket. Each web-site visit corresponds

to a session. The frequency-based encoding makes a vector out of

each session with as many dimensions as the products that can

be potentially added to a basket: the value of a certain dimension

coincides with the quantity bought of the product associated with

that dimension.

Duration-based encoding. Each session s = ⟨e1, . . . , em⟩ is en-
coded a vector (vx1 , . . . ,vxn) where the value of dimension vxk is

the average duration of instances of activity xk in the session s (a
zero value is given if xk does not occur in s). An accurate measure-

ment of the duration of one instance i of an activity xk requires the

respective session s to include two events e ′, e ′′ ∈ s for the start
and completion of i . This way, the duration of i is λT (e

′′) − λT (e
′).

Typical process-mining literature assumes that e ′ and e ′′ can be

reliable related to some instance of xk , but it does not assume that

one can relate to the same instance. Moreover, often only one event

is recorded for each instance of any xk , i.e. either the start or the
completion of the instance. If the event log do not record both

start and completion or one cannot reliably associate them to the

same instance, the duration of an activity instance can only be

estimated as follows. Given a session s = ⟨e1, . . . , em⟩, the duration
of the instance associated with any ei , with 0 < i < m, is equal to

λT (ei+1) − λT (ei), i.e. the timestamp difference of the event that

follows ei and that of ei . For the last event em , we do not have a

following event: the duration is assumed to be the average of those

instances when it was possible to estimate . To further clarify, let

us again consider session s1 of Example 2.1. We can estimated that

the duration of activity a is 2, because a occurred at time 1 and b
at time 3. Similarly, b lasted 1 time unit because b was at time 3

and the subsequent event, for c , was at time 4; in the example, the

duration of c cannot be estimated because it is the last of the session.

In that case, it is assumed to have a duration equal to the average

duration of c in all those cases in which the estimated duration was

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic M. de Leoni and S. Dündar

(a)

Cluster Name
0 Visit page mijn_cv

1 Visit page wijzigin_doorgeven

2 Visit page vacatures_zoeken

3 Visit page vacatures_bij_mijn_cv

4 Visit page werkmap

5 Visit page mijn_werkmap

6 Visit mijn_documenten

7 Visit page vacatures

8 Visit page taken+home

9 Visit page mijn_tips

(b)

Figure 3: An example of heat map of the cluster centroids
(part a) and of names that can be given to the clusters (part
b)

possible to be computed, namely when c was not the last event

of the session. If we only have the events for the completion of

activities, a similar estimation can be made.

Space limitations prevent us to discuss the case when we only

have the event’s timestamp when activity concludes; however, the

estimation is calculated similarly to the situation discussed above

when the timestamp is known when activity instances were started.

2.3 Visualization of Heat Maps and Creation of
Abstract Event Logs

The results of the second step in Section 2.2 produces a set of clusters

M = {M1, . . . ,Mm } of sessions. In a nutshell, given a trace σ with

a session’s sequence ⟨s1, . . . , sn⟩, σ is abstracted as a sequence of

high-level events ⟨Cst
1
,Cco

1
, . . . ,Cstn ,C

co
n with the activity name of

any high-level eventCsti andCcoi equal to the name assigned to the

clusterMj to which si belongs.
Therefore, each cluster Mj ∈ M needs to be given a name

Name(Mj). Process-owner knowledge can be put forward to assign

meaningful names. Here, we advocate the use of visual-analytics

technique. In particular, we propose the use of heatmaps to visualize

the cluster centroids that provide information on how activities for

low-level events in sessions are clustered together. An example is in

Figure 3(a), which refers to the application to the werk.nl web-site.

Each row and column respectively refer to a different activity of

Algorithm 1: Creation of an Abstract Event Log

Input: Event Log L ∈ E∗ , a setM = {M1, . . . ,Mn } of clusters with names

Name(M1), . . . , Name(Mn)
Result: Abstract Event Log

1 L′ ← ∅

2 foreach σ ∈ L do
3 σ ′ ← ⟨⟩
4 foreach session s = ⟨e1, . . . , em ⟩ ∈ s○(σ) do
5 c ← Encode(⟨e1, . . . , em ⟩)
6 PickMi ∈ M s.t. c ∈ Mi
7 Create EventsCst andCco s.t.
8 λA(Cst) = λA(Cco) = Name(Mi)

9 λT (Cst) = λT (e1)
10 λT (Cco) = λT (em)
11 σ ′ ← σ ′ ⊕ ⟨Cst ,Cco ⟩
12 end
13 L′ ← L′ ∪ {σ ′ }
14 end
15 return (L′)

different low-level events (i.e. dimension of the clustering space)

and to a different cluster.

In particular, the centroid of each cluster is normalized between

0 and 1 and discussed below. Centroids are shown on the heat maps

through different red-color intensities, with 0 being white and 1

being the most intense red (or darker color if printed black-on-

white). The color for a column X and row Y is proportional to the

value of the dimension for low-level activity Y, i.e. Y is the activity

associated with the low-level event, in the centroid of cluster X.

The normalization of a given centroid (c1, . . . , cn) is achieved by

dividing by the sum of the centroid’s values: (
c1

sum , . . . ,
cn
sum)where

sum = c1 + . . . + cn . The following example well explains:

Example 2.2. Let us assume the following centroids: (1, 0, 1, 1, 0, 1),

(40, 0, 2, 0, 0, 0), (0, 0, 0, 10, 0, 1), (1, 2, 0, 0, 0, 0), (0, 0, 2, 2, 2, 1). The

normalization produces (1
4
, 0, 1

4
, 1
4
, 0, 1

4
), (40

42
, 0, 2

42
, 0, 0, 0),

(0, 0, 0, 10
11
, 0, 1

11
), (1

3
, 2
3
, 0, 0, 0, 0), (0, 0, 2

7
, 2
7
, 2
7
, 1
7
).

Note that we do not normalize by simply dividing by the largest

value, such as 42 in Example 2.2. If we did so in Example 2.2, the

first, fourth and fifth centroids would be normalized to a vector

with almost zero values for all dimensions.

If one obtains such a heatmap as that in Figure 3(a), the stake-

holder is largely facilitated to assign names to clusters because

almost each cluster is characterized by a centroid with predomi-

nant values for one or two dimensions, each associated to a different

low-level activity. Algorithm 1 concretely illustrates the procedure.

For each trace σ of the log, we firstly create an empty trace σ ′,
which will be eventually added to the abstract event log (line 13).

Then, each session of s○(σ) is encoded again as a vector c (line 4)
to determine the cluster Mi to which c and, thus, s belongs (line
5). We create two events Cst and Cco , which respectively abstract

the start and the end of session s . These two events refer to the

high-level activity Name(Mi) (i.e., the activity namew to assign to

the high-level events): λA(C
st) = λA(C

co) = Name(Mi) (line 8),

with the timestamp ofCst andCco being respectively equal to that

of first and last event of session s (lines 9 and 10). These two events
Cst and Cco are then added to σ ′ (line 11).

werk.nl

Event-Log Abstraction using Batch Session Identification and Clustering SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

3 EVALUATION
The abstraction technique introduced in this paper has been imple-

mented as a Java plug-in named Session-based Log Abstraction in

the TimeBasedAbstraction package of the nightly-build version of

ProM.
1
The implementation features the DBSCAN and K-Means

for clustering, and leverages on the ELKI library for DBSCAN [13]

and the Weka library for K-Means [20].
2

The remainder of this section illustrates the application to two

case studies: the werk.nl website (Section 3.1), and a building-permit

request process (Section 3.2). The two case studies illustrate that it

is applicable to more “traditional” process domains (the latter) as

well as to processes that drive the interaction between humans and

user interfaces of, e.g., web sites.

3.1 Analysis of the werk.nl website
The werk.nl web site is run by UWV, which is the social security

institute that implements employee insurances and provide labour

market services to residents in the Netherlands. Specifically, the

web site supports unemployed Netherlands’ residents in the pro-

cess of job reintegration. Once logged in the web site, people can

upload their own CVs, search for suitable jobs and, more in general,

interact with UWV via messages, and also they can ask questions,

file complaints, etc. The www.werk.nl web site is structured into

sections of pages and logged-in users can arbitrary switch from

any page to anyone else.

The analysis of the web site is motivated by the fact that there is

interest to introduce some supporting wizards to improve the cus-

tomer interaction experience. The starting pointing for designing

such wizards is to gain insights into the typical behavior in which

the web site is actually used, so that this typical behavior can be

converted into a series of wizards.

The analysis was based on an event log composed by 335655

events, divided in 2624 traces: it records the behavior of the logged-

in visitors in the period from July, 2015 to February, 2016.
3

Figure 1 has shown that the model constructed without abstrac-

tion is overly complex and, thus, is not helpful in constructing

those wizards. This justifies the relevance of applying the event-log

abstraction technique discussed in Section 2. For this case, we used

the duration-based encoding (cf. Section 2.2) to cluster the web-site

interaction sessions. In this case, the duration-based encoding gives

higher importance to web pages where visitors remain longer. Con-

versely, a frequency-based encoding would have given, e.g., higher

weights to three web-page visits of one minute each instead of one

30-minute-long visit: the one-minute-long visit could be linked, e.g.,

to visitors that mistakenly click on web link and visit the target

page. The session threshold ∆ was set to 15 minutes, because it

coincides with the timeout of www.werk.nl.

Once the sessions are encoded, we clustered the encoded vec-

tors, using DBSCAN algorithm. The generation of the clusters via

DBSCAN took nearly 2 hours on a low-profile laptop with 8 Gb of

RAM. The clusters’ centroids were visualized through the heatmap

1
ProM Web-site: http://www.promtools.org

2
The choice for the ELKI library for DBSCAN was motivated on the fact that the ELKI

library showed to perform much faster than Weka.

3
The dataset is available at https://doi.org/10.4121/uuid:

01345ac4-7d1d-426e-92b8-24933a079412.

Figure 4: Process model produced by the Heuristic
Miner [10] on 70% of the abstract event log of the werk.nl
dataset, clustering via DBSCAN.

in Figure 3(a). To help stakeholders, the plug-in removes the rows re-

ferring to low-level activities that, when normalized, are associated

with nearly-zero values of all dimensions.

Figure 3(a) shows very interesting clustering results: With the

exception of cluster 8, the centroids illustrate that the clusters are

characterized 1-3 pages that are visited for long periods. In fact, five

out of 10 clusters (50%) refer to web-site sessions that are centered

around one page, only. Without additional domain knowledge, each

cluster could only be named after the web-page name, activity of

the corresponding low-level event, associated with the most intense

color in the heat map, namely the dimension with the largest value

for the centroid of the cluster. The clusters are hence given names

as in Table 3(b).

Once names are assigned to clusters, we generated an abstract

event log, according to our technique. The quality of the abstract

event log to generate an accurate model was assessed by randomly

splitting the log into a 70% part, used for model discovery, and a

30%, for testing. The DBScan algorithm naturally computes outliers,

namely points that are not assigned to any cluster. Results show

that, if those outliers are simply filtered out, the quality of the

discovered model is significantly dropped (see discussion below,

summarized in Table 1). Therefore, we performed a post-processing

step: each session assigned to no cluster is manually inserted into

the closest cluster. For each session s encoded as a vector v , the
closest cluster is that associated with the centroid c at the minimum

distance from v , considered among all the centroids of the clusters.

The abstract event log with the manual assignment of outliers

was used as input for the newHeuristic Miner [10], thus discovering

the model in Figure 4, using the Causal-Net notation [16].

The same procedurewas employed to discover a high-level model

with K-Means, using the same 70% of the traces for discovery, and

the same temporal threshold and encoding as for DBSCAN. Space

werk.nl
www.werk.nl
www.werk.nl
http://www.promtools.org
https://doi.org/10.4121/uuid:01345ac4-7d1d-426e-92b8-24933a079412
https://doi.org/10.4121/uuid:01345ac4-7d1d-426e-92b8-24933a079412
werk.nl

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic M. de Leoni and S. Dündar

K-Means DBSCAN Post-Processing DBSCAN No Post-Processing
Fitness 0.6637 0.6270 0.2785

Precision 0.33192 0.74779 0.68247

Generalization 0.99962 0.99996 0.99998

Simplicity 81 91 79

Table 1: Measures of the quality of themodels discovered on
the log abstracted through K-Means and DBSCAN. For the
DBSCAN, we report on the values when the postprocessing
to manually insert outlier was and was not performed.

limitations prevent us from showing the model discovered via K-

Means, which is however available in the technical report that

extends this submission [2]. Note that, compared with DBSCAN,

K-Means requires one to explicitly set the number of clusters to

create. We feature the Elbow Method to determine a good number of

clusters to create [7]. This good number should balance the number

of clusters versus the error within the clusters, where the error

is defined as the average distances of the points of a cluster from

the respective centroid. After employing the Elbow Method in our

setting, we opted to create ten clusters.

The quality of these models was assessed through the classical

process-mining metrics of fitness, precision, generalization and

simplicity [16]. Fitness was computed on the 30% of abstract log

that was not used for discovery. This is accordant with typical

machine-learning methods of verifying “recall” on a set of instances

that were not used for learning the model. In our setting, this set

of instances corresponds to the set of traces, i.e. a sub log, that

was not used for discovering the model. Conversely, precision and

generalization were computed on the entire abstract log. Finally,

simplicity was measured as the sum of activities, arcs and bindings

of the causal nets. Since fitness, precision and generalization are

traditionally defined on Petri nets [16], causal nets were converted

to Petri nets using the implementation in [10]. The resulting Petri

nets were manually adjusted to ensure soundness while not adding

extra behavior. Of course, to keep the comparison fair, all models were
discovered by the Heuristic Miner [10], using the same configuration
of parameters, which was also the configuration used to discovered

the model in Figure 1, i.e. without abstracting the event log.

Table 1 illustrates the results of the comparison of the models dis-

covered through the abstract event logs obtained via K-Means and

DBSCAN. All models nearly generalize equally well. The abstract

model when applying DBSCAN without post processing shows

very poor fitness, which is conversely satisfactory when applying

K-Means or DBSCAN with post processing. Focusing on precision,

the model of DBSCAN with post-processing is characterized by

a precision that is 2.25 times than the precision of the K-Means

model. The model obtained via DBSCAN with post processing is

just slightly more complex than the others, ca. 15%. As a conclu-

sion, DBScan with post-processing has produced a better model, in

terms of mediating fitness, simplicity, precision and generalization.

Intuitively, this is not surprising: DBScan is based on maximizing

the cluster density, maximizing the similarity of sessions within

the same cluster.

In conclusion, the model in Figure 4 is the most preferable

and unarguably more understandable, if compared with the non-

abstract model in Figure 1. From a business viewpoint, it illustrates

that typical users navigate the werk.nl web site as follows. During

the first session, users visit the home page and, also, page taken
(Dutch for tasks), where they can see the tasks assigned by UWV

(e.g. to upload certain documents). If no tasks are assigned to do

via the web site, the interaction with the web site completes. If any

tasks are, users look for jobs to apply for (page vacatures_zoeken)
and/or amend the information that they previously provided (page

wijziging_doorgeven). If information is amended, usually an up-

dated curriculum is uploaded (cf. the branch of the model starting

with page mijn_cv) and/or the visitor looks and possibly applies

for jobs (cf. the branches of the model starting with pages vacature
and vacature_bij_mijn_cv, which are either both executed or both

skipped). Looking at statistics, the mean and median duration of

the web-site interaction (i.e. the log traces) is around 20 weeks

(more than 4 months) and, hence, the visiting sessions are certainly

temporarily spread. One can also observe that every session type is

usually repeated multiple times, and this is likely due to the fact that

the corresponding tasks are carried on through similar sessions in

consecutive days. It is, however, remarkable that the model does not

contain larger loops involving different session types. This means

that the web site is visited in conceptual sections: when users start

access pages of a given section, the pages of previous sections will

no longer be visited. Note that the web site does not define sections,

nor does it restrict the order with which pages can be visited. In fact,

this testifies the benefits of introducing wizards. We acknowledge

that information is lost in the abstraction. However, this loss is

justified by gaining comprehensible business knowledge. As a mat-

ter of fact, this model was shown to one UWV’s stakeholder, who

clearly indicated that the results show the most understandable

analysis of the web-site behavior that I have seen, certainly beyond

the results seen in previous analyses, including those of the 2016

BPI challenge.
4

3.2 Evaluation on a Building-Permit Process
This second case study refers to the execution of process to manage

building-permit applications in a Dutch municipality.
5
There are

304 different activities denoted by their respective English name

as recorded in attribute taskNameEN. The event log spans over a
period of approximately four years and consists of 44354 events

divided in 832 cases. Figure 5 shows the model discovered with

the Inductive Miner - Infrequent Behavior [9], using the default

configuration.
6
The model exactly shows the same problems as that

in Figure 1: The large variability has made the miner discover an

overly complex model. See, e.g., the large OR split around the area

highlighted by a circle in the picture. We applied the abstraction

technique to the event log, using the frequency-based encoding

(cf. Section 2.2) and the DB-SCAN clustering algorithm with post

processing, which proved to perform better for the first case study

reported in Section 3.1. A session threshold of 8 hours was employed

so that the events of the same day were put in the same (work)

session.

4
BPI challenge 2016 - https://www.win.tue.nl/bpi/doku.php?id=2016:challenge

5
The event log is available at http://dx.doi.org/10.4121/uuid:63a8435a-077d-4ece-97cd-

2c76d394d99c

6
We acknowledge that the model in Figure 5 is not readable. However, the purpose is

not to read the model’s details, but to gain an impressions of its lack of a structure

that can convey information

werk.nl
https://www.win.tue.nl/bpi/doku.php?id=2016:challenge

Event-Log Abstraction using Batch Session Identification and Clustering SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Figure 5: Building-permit processmodel produced by the InductiveMinerwithout abstraction: overly complex to be insightful.

The heatmap is shown in Figure 6(a), which is structurally similar

to Figure 3(a) where each cluster centroid has significantly non-zero

values for the dimensions referring to one or two low-level activities.

Similarly to the first case study, clusters were given the same name

as the low-level activity with a significantly intense colour in the

heat map. If more than one low-level activity is associated with

an intense colour in the map, we concatenated the names of these

activities. The names assigned to clusters are shown in Figure 6(b).

The abstract event log was then generated and used as input

for the Inductive Miner - Infrequent with default parameter values,

namely the same as for the not-abstracted model in Figure 5. This

yielded the model in Figure 7, which is unarguably simplified, em-

phasising the most salient behavioral aspects. This model is a good

representation of the actual behavior: its fitness is 0.79. Unfortu-

nately, it was not possible to compute precision and generalization

because the reference ProM implementation [16] never terminated

the computation.

3.3 Final Remarks
We employed different process-discovery algorithms for the two

case studies, namely ILP Miner, Heuristic Miner, Inductive Miner,

and Alpha+ Miner [16]. For the sake of space, we only report on the

results for the discovery algorithm that worked better in each case

study. In fact, different algorithms rely on different assumptions,

and hence the quality of the results depend on the nature of the

specific process being analyzed.

For each case study, the paper only reports models that were

mined using the same discovery algorithm, thus keeping the com-

parison fair. Very importantly, it never happened that, without

abstracting the event log, one discovery algorithm was able to mine

a process model that was simple and conveying information. There-

fore, the hypothesis remains valid that event-log abstraction is

necessary in certain domains to mine process models that provide

useful, actionable insights.

(a)

Cluster Name
0 enter date publication decision environmental permit

1 completed subcases content

2 register submission date request

3 enter senddate procedure confirmation

4 enter senddate decision environmental permit

5 set phase: phase permitting irrevocable & register deadline

6 enter senddate acknowledgement

7 record date of decision environmental permit

8

forward to the compotent authority & send confirmation receipt

& regular procedure without MER & phase application received

9 register deadline

(b)

Figure 6: The heat map of the cluster centroids for the
building-permit process (part a) and the names given to the
clusters (part b)

4 RELATEDWORK
A large body of research has been conducted on log abstraction. It

can be grouped in two categories: supervised and unsupervised ab-

straction. The difference is that supervised abstraction techniques

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic M. de Leoni and S. Dündar

Figure 7: Building-permit process model produced by the Inductive Miner with abstraction, clustering via DBSCAN.

require process analysts to provide domain knowledge, while unsu-

pervised does not rely on additional information. Below, we illus-

trates how, on the one hand, supervised methods often require vast

domain knowledge (e.g. through process models, Markov chains or

mapping ontologies), which is not always possible to provide. On

the other hand, unsupervised methods show limitations, related to

the absence of any external knowledge.

Supervised Abstraction Methods. Baier et al. provide a number

of approaches that, based on some process documentation, map

events to higher-level activities [1], using log-replay techniques

and solving constraint-satisfaction problems. The idea of replaying

logs onto partial models is also in [11]: the input is a set of models

of the life cycles of the high-level events, where each life-cycle step

is manually mapped to low-level events. Ferreira et al. [5] rely on

the provision of one Markov model, where each Markov-model

transition is a different high-level activity. In turn, each transition

is broken down into a new Markov model where low-level events

are modelled. Fazzinga et al. [4] assume process analysts to provide

a probabilistic process model with the high-level events, along with

a probabilistic mapping between low-level events and high-level

events. It returns an enumeration of all potential interpretations

of each log traces in terms of high-level events, ranked by the

respective likelihood. Montani et al. [12] propose an abstraction

technique that requires one to provide a complex ontology based

on a hierarchy of concepts. In [15], authors propose a supervised

abstraction technique that is applicable in those case in which

annotations with the high-level interpretations of the low-level

events are available for a subset of traces.

Unsupervised Abstraction Methods. Log abstraction is related

with episode mining and its application to Process Mining (a.k.a.

discovery of local process models) [8, 14]). In fact, Mannhardt and

Tax propose a method that combines local process model discovery

with the supervised abstraction technique in [11]. However, the

technique relies on the ability to discover a limited number of local

process models that are accurate and cover most of the low-level

event activities. Günther et al. cluster [6] events looking at their

correlation, which is based on the vicinity of occurrences of events

for the same low-level activity in the entire log . Clustering is also

the basic idea of [17] to cluster events through a fuzzy k-medoids

algorithm. Both [17] and [6] share the drawback that the time

aspects are not considered and, thus, they can cluster events that

are temporarily distant (e.g. web-site visits that are weeks far from

each other). Also, [17] only aims to discover a fuzzy high-level

model, instead of abstracting event logs to enable a broader process-

mining application, whereas [6] assumes a transitive nature of

the property of activity correlation, which does not always hold.

See Figure 3(a): cluster 3 shows a correlation between Visit page
werkmap and Visit page vacature_bij_mijn_CV and cluster 4 shows a

correlation between Visit page werkmap and Visit page taken, while
no correlation exists between Visit page vacature_bij_mijn_CV and

Visit page taken. Finally, van Eck et al. [18] illustrate a technique

to gather observations from sensor data, encode and cluster them

in a similar way as our approach does. However, they assume that

events (in fact, sensor observations) are generated at a constant

rate.

Note that the problem of tackled in this paper of abstracting

event logs is different from the problem of event-log trace clustering.

Event-Log Abstraction using Batch Session Identification and Clustering SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Event-log clustering aims to split the event log into sub logs that

show homogenous behavior, but the single traces are not altered

or abstracted [3]. The vast literature on event-log clustering only

shares one minor aspect with the technique reported in this paper:

the use of clustering techniques on events.

The topic of this paper is also linked to the field of research of

studying the logs of interaction of human with user interfaces (UIs)

of software, machines, or of the elements of IoT systems (see, e.g.,

the results of the LIVVIL workshop [19]). However, the study of

the logs of human-UI interaction is a field of research that only

targets one type of event logs. This allows for having techniques

with effective, precise results, however at the cost of being only

applicable in that context. Conversely, the technique reported in

this paper is of more general applicability, as illustrated in case

study with the building-permit process.

5 CONCLUSION
Abstracting and grouping low-level events to high-level events is a

problem that is receiving a lot of attention. Often, event logs are

not immediately ready to be used because they model concepts that

are not at the right business level and/or they exhibit a too broad

variety of behavior to be summarized into one sufficiently simple

model. We report on a technique where very limited domain knowl-

edge is necessary, trying to balance the limitations of unsupervised

techniques and the request of a vast knowledge of those supervised

(cf. Section 4).

The idea behind our technique is that a trace can be regarded as a

sequence of batch sessions, which are the shortest sequences of low-

level events such that the timestamp difference between the first

event of a session and the last of the previous is larger than a given

user-define threshold. Each session is replaced in the abstract event

log by two high-level events marking the start and completion of a

session. Sessions are clustered and are given names. The high-level

activity associated with each pair high-level events is given the

same name as that of the cluster to which the session belongs. Heat-

maps are used to help domain experts give meaningful high-level

names to clusters and, consequently, to sessions.

Section 3 reports on the successful evaluation of the proposed

technique on the werk.nl case study, discussing both a quantita-

tive and a qualitative analysis. Our technique allows generating

abstract event logs that are simple and insightful for process own-

ers, because they focus on concepts at a higher level of abstraction.

Quantitatively, when used for discovery, the generated event logs

enable mining models that can balance the typical process-mining

metrics: fitness, precision, generalization and simplicity [16]. A

second case study on building-permit application further assess the

benefits already observed after the analysis of the werk.nl web-site.

The technique does not depend on any clustering algorithm, and

this explains why concrete algorithms are only mentioned in Sec-

tion 3. While we acknowledge that a more thorough assessment is

necessary, Section 3 shows that the best performances are with DB-

Scan, which has the advantage of automatically computing the best

number of clusters. In sum, our technique requires the provision

of little knowledge: considering that the provision of the cluster

names is optional (cf. Section 2.3), our technique only requires the

session as mandatory input, if clustering is done via DBSCAN.

In the future, we aim to work towards a more accurate clustering,

considering the entire event payload, instead of just limiting to the

activity names. As an example, the application to the werk.nl case
study could benefit if one added clustering dimensions related to

the customer age, gender, geographic locations, etc., thus providing

extra information towards a more accurate clustering. Furthermore,

the number of low-level activities is generally large, creating sparse

clustering points that can compromise the quality:We aim to reduce

this number to consider before clustering.

REFERENCES
[1] Thomas Baier. 2015. Matching Events and Activities. PhD dissertation. University

of Potsdam.

[2] Massimiliano de Leoni and Safa Dündar. 2019. From Low-Level Events to Activi-

ties - A Session-Based Approach (Extended Version). arXiv.org abs/1903.03993

(2019). http://arxiv.org/abs/1903.03993

[3] Jochen De Weerdt. 2018. Trace Clustering. Springer International Publishing,
Cham. https://doi.org/10.1007/978-3-319-63962-8_91-1

[4] Bettina Fazzinga, Sergio Flesca, Filippo Furfaro, Elio Masciari, and Luigi Pon-

tieri. 2015. A probabilistic unified framework for event abstraction and process

detection from log data. In Proceedings of the 23th OTM Confederated Interna-
tional Conference on Cooperative Information Systems (LNCS), Vol. 9415. Springer,
320–328.

[5] Diogo R Ferreira, Fernando Szimanski, and Célia Ghedini Ralha. 2013. Mining

the low-level behaviour of agents in high-level business processes. International
Journal of Business Process Integration and Management 8 6, 2 (2013), 146–166.

[6] Christian W Günther, Anne Rozinat, and Wil M. P. van der Aalst. 2009. Activ-

ity mining by global trace segmentation. In Proceeding of the 7th International
Conference on Business Process Management. Springer, 128–139.

[7] D. J. Ketchen and C. L Shook. 1996. The application of cluster analysis in strategic

management research: An analysis and critique. Strategic Management Journal
17, 6 (1996), 441–458.

[8] Maikel Leemans and Wil M. P. van der Aalst. 2015. Discovery of Frequent

Episodes in Event Logs. In The 4th International Symposium on Data-Driven
Process Discovery and Analysis, (SIMPDA 2014) (LNBIP), Vol. 237. Springer, 1–31.

[9] Sander J. J. Leemans, Dirk Fahland, andWil M. P. van der Aalst. 2013. Discovering

Block-structured Process Models From Event Logs - A Constructive Approach.

In Proceedings of the 34th International Conference on Application and Theory of
Petri Nets and Concurrency (Petri Net 2013) (LNCS), Vol. 7927. Springer, 311–329.

[10] Felix Mannhardt, Massimiliano de Leoni, and Hajo A. Reijers. 2017. Heuristic

Mining Revamped: An Interactive Data-aware and Conformance-aware Miner.

In Proceedings of the BPM Demo Track and BPM Dissertation Award at 15th Inter-
national Conference on Business Process Management, Vol. 1920. CEUR-WS.org.

[11] Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, Wil M. P. van der

Aalst, and Pieter J. Toussaint. 2016. From Low-level Events to Activities - A

Pattern-based Approach. In Proceedings of the 14th International Conference on
Business Process Management (LNCS), Vol. 9850. Springer, 125–141.

[12] Stefania Montani, Giorgio Leonardi, Manuel Striani, Silvana Quaglini, and Anna

Cavallini. 2017. Multi-level abstraction for trace comparison and process discov-

ery. Expert Systems with Applications 81 (2017), 398 – 409.

[13] Erich Schubert and Arthur Zimek. 2019. ELKI: A large open-source library for

data analysis - ELKI Release 0.7.5 "Heidelberg". CoRR abs/1902.03616 (2019).

arXiv:1902.03616 http://arxiv.org/abs/1902.03616

[14] Niek Tax, Natalia Sidorova, Reinder Haakma, and Wil M.P. van der Aalst. 2016.

Mining Local Process Models. Journal of Innovation in Digital Ecosystems 3, 2
(2016), 183 – 196.

[15] Niek Tax, Natalia Sidorova, Reinder Haakma, and Wil M. P. van der Aalst. 2018.

Event Abstraction for Process Mining Using Supervised Learning Techniques.

In Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016. Springer,
251–269.

[16] Wil M. P. van der Aalst. 2016. Process Mining - Data Science in Action. Springer.
[17] Boudewijn F van Dongen and Arya Adriansyah. 2009. Process mining: fuzzy

clustering and performance visualization. In Proceedings of the 7th International
Conference on Business Process Management. Springer, 158–169.

[18] M. L. van Eck, N. Sidorova, and W. M. P. van der Aalst. 2016. Enabling process

mining on sensor data from smart products. In Proceedings of the Tenth IEEE
International Conference on Research Challenges in Information Science (RCIS).

[19] Romain Vuillemot, Jeremy Boy, Aurélien Tabard, Charles Perin, and Jean-Daniel

Fekete (Eds.). 2016. Proceedings of the workshop LIVVIL: Logging Interactive
Visualizations and Visualizing Interaction Logs. Baltimore, United States. https:

//hal.inria.fr/hal-01535913

[20] Ian H. Witten, Eibe Frank, and Mark A. Hall. 2011. Data Mining: Practical
Machine Learning Tools and Techniques (3 ed.). Morgan Kaufmann, Amsterdam.

http://www.sciencedirect.com/science/book/9780123748560

werk.nl
werk.nl
http://arxiv.org/abs/1903.03993
https://doi.org/10.1007/978-3-319-63962-8_91-1
http://arxiv.org/abs/1902.03616
http://arxiv.org/abs/1902.03616
https://hal.inria.fr/hal-01535913
https://hal.inria.fr/hal-01535913
http://www.sciencedirect.com/science/book/9780123748560

	Abstract
	1 Introduction
	2 Session-based Event-log Abstraction Technique
	2.1 Creation of Sessions
	2.2 Clustering of Sessions
	2.3 Visualization of Heat Maps and Creation of Abstract Event Logs

	3 Evaluation
	3.1 Analysis of the werk.nl website
	3.2 Evaluation on a Building-Permit Process
	3.3 Final Remarks

	4 Related Work
	5 Conclusion
	References

