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Abstract—Process-aware Recommender systems (PAR sys-
tems) are information systems that aim to monitor process
executions, predict their outcome, and recommend effective
interventions to reduce the risk of failure. While a PAR system
is composed by monitoring, predictive analytics and prescriptive
analytics, the lion’s share of attention in the recent years has
been on the first two, overlooking the last. It seems that process
participants are tacitly assumed to take the ”right decision” for
the most appropriate corrective actions in case of failure’s risks.
Unfortunately, the assumption of selecting an effective corrective
action is not always met in reality. When selecting an intervention,
this is mainly based on human judgment, which naturally relies
on subjective process’ perceptions, instead of objective facts.
Experience has shown that, when a fact-based predictive analytics
is followed by subjective prescriptive analytics, the positive
effect of good predictions are nullified by inconclusive corrective
actions, yielding no final improvement. This paper discusses a
PAR system that features a data-driven prescriptive analytics
framework, which puts aside subjective options and focuses
on factual data. The effectiveness of the proposed solution is
assessed through the process of a reintegration company, showing
a potential increase of customers that find a new job.

Index Terms—Prescriptive Analytics, Recommender Systems,
Process Improvement, Machine Learning, Transition Systems

I. INTRODUCTION

Process-aware Recommender systems (hereafter shortened
as PAR systems) are a specific class of Information Systems
that aim to predict how the executions of process instances
are going to evolve in the future, to determine those that
have higher chances to not meet desired levels of performance
(e.g. costs, deadlines, customer satisfaction) and, consequently,
to provide recommendations on which contingency actions
should be enacted to try to recover the risky executions. PAR
systems are hence expert systems that run in background and
continuously monitor the executions, predicting their future
and, possibly, recommend intervention actions.

Conceptually, a PAR system is composed by three sub-
systems/blocks: (i) monitoring, which keeps tracks of running
process instances, (ii) a predictive-analytics block, which
forecasts the future outcome of running instances, and (iii)
a prescriptive-analytics system, which provides recommenda-
tions on the running instances that risk to conclude with a
poor outcome.

While a large body of research has been conducted on
monitoring and predictive analytics, little attention has been
paid on generating recommendations (cf. Section V). Process
participants are somehow implicitly assumed to take the “right
decision” for the most appropriate corrective actions for each
case. Unfortunately, the assumption of selecting an effective
corrective action is not always met in reality. When selecting
an intervention, this is mainly done based on human judgment,
which naturally relies on the subjective perception of the
process instead of being based on objective facts. In [1], the
authors developed a predictive-analytics module that built on
machine-learning techniques, and rely on historical data, and
discussed potential interventions with process stakeholders. A
subsequent field experiment, with real process instances and
a selected intervention, showed that, while process instances
were predicted rather well, the intervention did not have the
desired effect. No significant improvement of the average
outcome was observed, even when enacting the selected
intervention. The final lesson was that accurate predictions
are crucial, but their effect is nullified if it is not matched
by effective recommendations, and effective recommendations
must be based on objective evidence from historical process
data.

This paper reports on the design of a prescriptive-analytics
technique that recommends which actions/activities to perform
next to optimize a certain KPI (Key Performance Indicator) of
interest. The recommendations put aside the human subjectiv-
ity and rely on the process’ transactional data, recorded in
the so-called event logs. This way, the recommendations are
purely objective, and not biased.

In a nutshell, our prescriptive-analytics proposal relies on
a predictive-analytics module. For each running case with
predicted, poor KPI values, we first simulate any possible
continuation of the running case, i.e. we simulate the situation
in which each possible activity is performed as next. Then,
we predict the final KPI value for each continuation. Finally,
the system recommends the activity (activities) that is (are)
predicted to largely improve the KPI value. Of course, one
should only simulate those continuations (i.e. next activities)
that are meaningful from a domain viewpoint. If one had a



business process model, this would be easy. However, the
presence of a process model is a rather strong assumption.
Therefore, an event log of complete process instances is used
as input to build a transition system that abstracts the observed
behavior. Running cases are mapped onto states of this transi-
tion system: the meaningful next activities correspond to the
transitions enabled at those states.

The three modules (monitoring, predictive and prescriptive
analytics) have been implemented as a PAR system in Python.
The entire system was assessed on real-life process data of a
reintegration company, aiming to maximize the percentage of
customers finding a new job (the KPI). The assessment results
showed that the use of the PAR system would significantly
reduce the percentage of unsuccessful process instances. The
statistical significance of the results was also verified, thus
providing a sound, successful validation of the quality of our
prescriptive analytics.

Section II introduces the basic concept on which our pre-
scriptive analytics builds: event logs, KPIs, and predictive
analytics. Section III reports on the design of our framework
for prescriptive analytics, while Section IV discusses the
implementation and the experiments. Section V compares
our prescriptive analytics with the state of the art. Finally,
Section VI concludes this paper, summarizing the contribution,
the lessons learnt, and the future research directions.

II. PRELIMINARIES

Section II-A introduces the starting point of our process-
aware recommender system based on predictive and prescrip-
tive analytics: the event logs. Section II-B formalizes the
concept of KPI, while Section II-C introduces preliminary
concepts of predictive analytics.

A. Event Logs

The starting point for a prediction system is an event log.
An event log is a multiset of traces. Each trace describes the
life-cycle of a particular process instance (i.e., a case) in terms
of the activities executed and the process attributes that are
manipulated.

Definition 1 (Events): Let A be the set of process’ activities.
Let V be the set of process attributes. Let WV be a function
that assigns a domain WV(x) to each process attribute x ∈ V .
Let W = ∪x∈VWV(x). An event is a pair (a, v) ∈ A× (V 6→
W) where a is the event activity and v is a partial function
assigning values to process attributes, with v(x) ∈ WV(x).
A trace is a sequence of events. Note that the same event
can potentially occur in different traces, namely attributes are
given the same assignment in different traces. This means that
potentially the entire same trace can appear multiple times.
This motivates why an event log is to be defined as a multiset
of traces:1

Definition 2 (Traces & Event Logs): Let E ⊂ A×(V 6→ W)
be the universe of events. A trace σ is a sequence of events, i.e.
σ ∈ E∗. An event-log L is a multiset of traces, i.e. L ⊂ B(E∗).

1Given a set X , B(X) indicates the set of all multisets with the elements
in X .

Given an event e = (a, v), the remainder uses the following
shortcuts: activity(e) = a and variables(e) = v. Also, given
a trace σ = 〈e1, . . . , en〉, prefix(σ) denotes the set of all σ’s
prefixes: {〈〉, 〈e1〉, 〈e1, e2〉, . . . , 〈e1, . . . , en〉}.

B. Key Performance Indicators

A PAR system aims to optimize the Key Performance
Indicators (KPIs) of processes. KPIs can be of any nature:

Definition 3 (KPI Function): Let E∗ be the universe of
events defined over a set V of attributes. A KPI is a function
T : E∗ → R such that, given a complete trace σ ∈ E∗, T (σ)
returns the KPI value of σ.

Given a trace σ = 〈e1, . . . , en〉 that records a complete
process execution, the following are four potential KPI defi-
nitions:
• Duration. Tduration(σ) is equal to the difference between

the timestamp of en and that of e1.
• Activity Occurrence. It measures whether a certain

activity is observed in the trace, such as an activity Open
Loan in a loan-application process. The corresponding
KPI definition for the occurrence of an activity A is
Toccur A(σ), which is equal to the number of events in
σ that refers to A.

• Customer Satisfaction. This is typical KPI to analyze
for processes related to service provision. Let us assume,
without losing generality, to have a trace σ = 〈e1, . . . , en〉
where the satisfaction is known at the end, e.g. through a
questionnaire. Assuming the satisfaction level is recorded
with the last event - say en(sat) . Then, Tcust satisf (σ) =
variables(en)(sat).

C. Predictive Analytics

Predictive Analytics aims to forecast the execution and/or
the outcome of a running case. A large share of atten-
tion in Process Mining has been devoted to business pro-
cess predictions (cf. Section V). Within our recommender-
system framework for KPI optimization, the predictive an-
alytics block can be defined as follows, specializing the
definition by Senderovich et al. [2]. Given a running case
σrun = 〈e1, . . . , ek〉, which will eventually end with a
trace σ = 〈e1, . . . , ek, ek+1, . . . , en〉, predictive analytics can
be abstracted as learning a predictive-analytics oracle P(σrun)
that forecasts the KPI value T (σ). It follows that a perfect
prediction is such that P(σrun) = T (σT ).

Predictive-analytics oracles can be built in several ways,
and using several machine-learning approaches. It requires a
training event log LT . A typical predictive-analytics block of
a recommender system follows three phases as illustrated in
Fig. 1 (cf. [3], [4]):
• Extract Prefixes. We build the multiset of all prefixes,

which is associated with a corresponding KPI value:
]σ∈LT ]σ′∈prefix(σ) (σ′, T (σ)). 2

• Encode Prefixes for Training. The predictor is trained
on observation instances (d, i) where d is the vector that

2Symbol ] indicates the multiset union, namely duplicates are retained.



Fig. 1: The training of the predictive model.

encodes the independent variables and i is the dependent
variable. The pairs of prefixes and KPI values (σ′, κ)
need to be converted into an observation instance (d, i)
where i = κ and d is the encoding of σ′. This encoding
can be achieved using consolidated techniques [3], [4]. In
particular, Leontjeva et al. show that a frequency-vector
encoding is a good balance between abstraction richness
and complexity: there is one vector’s element per process’
activity a ∈ A, and there is one element per process’
attribute v ∈ V . The value of the element for activity a
is equal to number of occurrence of a in σ′; the value
for the element of variable v is equal to the value of the
latest variable assignment of v.

• Train a Predictor. The set of encoded prefixes (with
the associated KPI values) are the input to train the
predictor. A common case is to have prefixes with dozens
of different activities and variables, which are encoded
via vectors with many elements (see, e.g., the data set
reported in Section IV, and used for evaluation). This
poses risks of over-fitting due the problem of “curse of
dimensionality” [5]. It is thus crucial to perform a feature
selection to reduce the number of elements [5]. Note that
this also reduces the model complexity, and hence it can
be learnt and used faster.

III. A FRAMEWORK FOR PRESCRIPTIVE ANALYTICS

Our prescriptive-analytics framework is based on the avail-
ability of a model that was learnt using any of the predictive
analytics approaches available in literature (cf. Section V).
As indicated in Section II-C, we abstracted from the specific
model and approach, assuming that this is exposed as a
predictive-analytics function P(σ).

A. Transition System Abstractions of Event Logs

In a nutshell, given a running case, our framework considers
all potential ways to continue the case execution, and predicts
the risk. However, we do not assume here that process stake-
holders need to draw a process model that prescribes how
to continue the case executions. This might require a con-
siderable amount of work, and the resulting model might not
accurately represent the executions observed in the reality, thus
suggesting recommendations that are not valid from a business
viewpoint. Following the idea described by van der Aalst et al.
[6], [7], valid recommendations are obtained by representing

(a) Using a Sequence Abstraction

(b) Using a multiset abstraction

Fig. 2: Transition systems representing an event log
L = {〈a, b, c, d〉, 〈a, e, d〉, 〈a, c, b, d〉} [6]. Event’s attributes
are abstracted out for simplicity of explanation.

the past executions recorded in the event logs as a transition
system. This requires to provide a state-representation function
lstate : E∗ → R that, for each sequence of events σ, returns a
state lstate(σ) ∈ R that abstracts σ.

As an example, let us consider an event log L =
{〈a, b, c, d〉, 〈a, e, d〉, 〈a, c, b, d〉}. We are abstracting here out
the event’s attributes to keep the example simple. Fig. 2 illus-
trates two potential transition systems abstracting L: Fig. 2a
makes use of a state-representation function lstate(σ) = σ,
while Fig. 2b uses lstate(σ) as the multiset of every activity
that occurred in σ with the respective cardinality. A transition
system is defined as follows:3

Definition 4 (Transition-System Abstraction of a Log): Let
L be an event log defined over a set V of attributes, and a set
A of activities. Let lstate : E∗ → R be a state-representation
function. A transition system abstracting L is a pair TSL =
(S, T ) ⊆ R× (R× E ×R) where
• S = ∪σ∈L ∪σ′∈prefix(σ) l

state(σ′), and
• T = {(lstate(σ′), e, lstate(σ′ ⊕ 〈e〉)) s.t. ∃σ ∈ L

σ′ ⊕ 〈e〉 ∈ prefix(σ)}
It is known that transitions systems are generally not suitable
to represent business processes, because all possible activity’s
interleavings need to be explicitly represented, making the
transition systems very hard to read in the general case.
However, here a transition system is valid as a model, because
it is only used internally by the prescriptive-analytics module,
and never shown to users.

B. Generating Recommendations

The input of the process prescriptive-analytics system is
an event log L and a state representation function lstate (cf.

3Operator ⊕ indicates the concatenation of two sequences.



Def. 4). Log L is used to build a transition-system abstraction
TSL = (S, T ), based on lstate; L is also employed to build a
prediction oracle P : E∗ → R.

Let us consider a trace σ ∈ E∗, which may or may not be
part of L. As clarified later in this section, we need to find
the set minDist(TSL, σ) ⊆ S of states at minimum distance
from σ that can be computed as follows. We first compute
the minimum number Υ of changes that are necessary for
σ to obtain a trace σ s.t. lstate(σ) ∈ S. The allowed changes
are the primitive supported by the techniques for trace-to-trace
alignments [8], namely the insertion and the deletion of events.

Once the minimum number Υ of changes is found,
minDist(TSL, σ) is the set of states lstate(σ′) ∈ S s.t. σ′

that is obtained from changing Υ events of σ.
With these concepts at hand, the recommendation for a

running case identified by a partial trace σrun ∈ E∗ can be
built as follows:

1) Find the set O of transitions (i.e. events) possible by
TSL from the states in minDist(TSL, σrun). Namely,
O = {e ∈ T : ∃s ∈ minDist(TSL, σrun),
∃s′ ∈ S. (s, e, s′) ∈ T}.

2) Return every activity a ∈ A that maximizes or minimize
P , i.e. such that ∃e ∈ O. activity(e) = a, and either
P(σrun⊕〈e〉) = maxe′∈O P(σrun⊕〈e′〉) or P(σrun⊕
〈e〉) = mine′∈O P(σrun ⊕ 〈e′〉).4

Here, we assume that every trace in L denotes a legitimate
execution of the process, and that L is sufficiently large.
In this setting, all transitions enabled in each state of the
transition system represent all potential recommendations that
make sense from a business viewpoint. Therefore, the set O
of enabled transitions at the states lstate(σrun) are in fact
activities that may be potentially recommended. Among those
in O, some activities are predicted to optimize (i.e., maximize
or minimize depending on the KPI) the KPI values if they are
performed as the next activities. Those are the activities that
the system will recommend.

In practice, activities are typically performed by humans,
and their judgement is necessary to carry on process case
executions. As a consequence, it might be limiting to only
consider those activities that are predicted to optimize the KPI
of interest, which are likely one per running case. In fact,
our framework extends to the top n activities, namely the n
activities whose execution is predicted to lead to the highest
KPI values. Value n can be customized at run-time by users
(cf. Section IV). In fact, the leitmotif of our framework is that
the recommender system should allow process actors to make
informed decisions based on objective facts, but the ultimate
choices must remain on the process actors, with their personal
judgment.

IV. IMPLEMENTATION AND EVALUATION

The framework discussed in Section III has been imple-
mented in Python, and leverages on the machine-learning

4We aim to maximize if higher KPI values are better than lower; otherwise,
we aim to minimize.

functionalities of the scikit-learn package [5]. The code base
is available through GitHub [9].

The remainder of the section reports on the evaluation on a
real-life case study. Section IV-A introduces the case study
employed for our evaluation, while Section IV-B discusses
the construction of the predictive model (i.e. the predictive-
analytics oracle). Finally, Section IV-C discusses the setup of
the experiments to assess the main contribution of this paper:
the prescriptive-analytics technique. Finally, Section IV-D re-
ports on the results of the experiments.

A. The Evaluation Case Study

The evaluation of our approach is performed at a Dutch
reintegration company. The objective of the company is to help
people who have lost their job to find a new job. Customers
of the company are not always capable to find a new job
by themselves. Common reasons are their age in combination
with having been employed for a long time at the same
employer, having been ill, economic circumstances and a
mismatch between the type of work that is offered and ones
capabilities. The company offers several tools like guiding
hints, training, and workshops that can be deployed in an
online setting or face-to-face. The company can only provide
services to the customer for a limited time. The maximum
duration depends on the number of years of work experience of
the customer. The minimum number of months of entitlement
is 3 and the maximum is 38. A customer can spend less than
the maximum duration using the services, e.g., because the
customer finds a new job.

The company employs hundreds of professionals that sup-
port customers to find a new job. There is a high-level
prescriptive process model which prescribes two phases during
the customer process. In the first phase, which relates to the
first 6 months, a face-to-face contact is required. In the second
phase, after the first six months, specific services, taken from
the whole set of interventions, need to be offered to the
customer. While the interventions that are available are the
same throughout the company, it is up to the professional to
decide which intervention would benefit a customer the most
at each stage of the customer journey.

The initial impression of the company is that the order in
which the services are offered can influence the outcome,
e.g., having certain types of face-to-face meeting earlier or
later in the process might be more effective. Therefore, the
PAR system is expected to support the company’s employee
to choose the right interventions. The system harnesses the
knowledge of all professionals and supports every professional
in choosing the best next action for a customer.

The KPI that is used in the evaluation is: the customer found
a new job before reaching the maximum service duration.
The KPI is binary and has the value 1 when the customer
found a new job before reaching the maximum duration, and
0 otherwise.

The evaluation is based on an event log L consisting of
12296 complete traces with 62 trace attributes and 302 unique



activities.5 The attributes refer to properties of the customers
(e.g., age). The activities are the interventions by the company
employees to support the customer’s job seeking, as well as
the actions performed by the customers to actively look for
a job and to follow-up on the employee’s interventions. The
trace length is between 1 and 1161 events, with an average of
95 events. For the evaluation, L was divided in three parts:
• log LTraining with 6148 traces (50%) was used to train

the predictive-analytics oracle P;
• log LTesting with 3074 traces was used to evaluate

oracle P , and to simulate the running traces, for which
recommendations are created;

• log LSimilarity with 3074 traces was used to evaluate the
quality of the recommendations.

Under the assumption of no concept drifts, the division is done
in a complete random fashion.

B. Evaluation on Predictive Analytics

The predictive analytics module is implemented in accor-
dance with the framework discussed in Section II-C.

In order to build a predictive-analytics oracle P , we used
a two-phase approach to choose a suitable predictor model.
First, we evaluated three machine-learning techniques: Ran-
dom Forest, Support Vector Machine, and Decision Tree [10].
We selected the technique that scored the best. This technique
was used in the second phase, where the learning parameters
were tuned through hyper-parameter optimization.

In both phases, we followed the workflow discussed in
Section II-C to train the models. The models were evaluated
using two standard metrics: Accuracy, and AUC Score [10].
The AUC score is a valid metric here because the KPI values
are not uniformly distributed: most of the executions had good
KPI values, namely most of customers have eventually found
a job.

Note that the evaluation excluded such Deep-Learning tech-
niques as LSTM networks [11], because those models require
a significant training time, while the models that we have
employed could already score quite well (see below).

For the first phase, we employed 1000 traces of log
LTraining , which generated 7827 prefixes, which were sub-
sequently encoded. To reduce the number of data-set fea-
tures, we performed a feature selection, based on SelectKBest
method [10]. In this first, preliminary phase, Random Forest,
Support Vector Machine, and Decision Tree were trained using
the default parameters of the respective implementations in the
SciPy package for Python.

The results are shown in Table I: Random Forests and
Support Vector Machines worked better and equally well.
Given the significant difference in training time, we finally
opted for Random Forest.

During the second training phase, we employed all traces of
log LTraining , and we performed a model training with hyper-
parameter optimization, varying the number of decision trees

5For reasons of confidentiality, we are not allowed to share the event-log
dataset.

Classifier Accuracy AUC Training Time
Decision Tree (DT) 0.657 0.610 31 ms
Random Forest (RF) 0.731 0.792 107 ms

Support Vector Machine (SVC) 0.725 0.734 2580 ms

TABLE I: Metrics Score for the Models Trained by Three
Machine-Learning Predictors.

within the forest, and the number of features to consider when
split decision-tree nodes. The best model was obtained with
1000 decision trees, and four decision-tree nodes. To complete
the assessment, we used the second log LTesting to measure
AUC and accuracy. The best model scored quite well: AUC
and accuracy were 0.8145 and 0.8775, respectively.

C. Evaluation on Prescriptive Analytics: The Experiment
Setup

Here, the prescriptive-analytics module operationalizes the
technique discussed in Section III to provide recommenda-
tion. The technique builds on a predictive-analytics oracle
but remains independent from any specific machine-learning
technique employed.

The remainder of this section reports on the evaluation
conducted using the oracle that was constructed as illustrated
in Section IV-B.

In our experiments, we simulated running cases by consider-
ing the 3074 traces in LTesting. For each trace σ ∈ LTesting,
we uniformly extracted a random number k between 1 and
|σ| − 1, and we considered the prefix σrun, obtained consid-
ering the first k events of σ.

Denoted with A as the activities defined in the reintegration
process, the evaluation follows the steps below for each trace
σrun:

1) We generate one recommendation, namely an activity
aσrun ∈ A.

2) We compute the largest set of traces Lσrun =
{σ1, . . . , σm} ⊂ LSimilarity such that, for each σi, there
is a prefix of σi that is similar to σrun.

3) We compute the largest set of traces LGσrun =
{σG1 , . . . , σGm} ⊂ Lσrun such that, for each σGi , there is a
σPi ∈ prefix(σGi ) that is similar to σrun⊕〈(aσrun , ∅)〉,
namely when the recommendation aσrun was followed.6

This also defines the set LBσrun = Lσrun \ LGσrun of
traces similar to σrun when the recommendation was
not followed.

4) We compute the average KPI for the traces in LGσrun :
avgKPIRec(σrun) = avgσ∈LGσrunT (σ).

5) We compute the average KPI for the traces in LBσrun :
avgKPINoRec(σrun) = avgσ∈LBσrunT (σ).

Note that avgKPIRec(σrun) and avgKPINoRec(σrun) are
the average when the recommendation is and is not followed,
respectively. The average KPI value of the traces in LGσrun
and LBσrun aims to simulate the typical scenarios of similar
executions with and without recommendation. Clearly, the
definitive assessment would be to test the recommender system

6Symbol ∅ denotes the function with empty domain.



Fig. 3: Distribution of KPI values when recommendations
were not followed (Average 0.63). The y axis represents the
number of cases.

in a real production environment, but the company did not
allow this because of the potential consequences on their
business.

The above procedure requires one to find the similar traces
in LSimilarity to a given trace σrun. To achieve this, the
prefixes of each trace LSimilarity are divided in buckets.
A first bucket contains the prefixes with duration of up to
one month, where the duration is the difference between the
timestamp of the last event and that of the first event of
the prefix. A second bucket contains the prefix with duration
between one and two months, the third bucket between two
and three months, and so on. The prefixes of each bucket
are encoded as vectors, analogously to the procedure that was
used to learn the prediction oracle (cf. point “Encode Prefix
for Training” in Section II-C). Then, a set of clusters is created
for each bucket, using Agglomerative Hierarchical clustering
along with a principal component analysis to reduce the
number of elements of the vectors [10]. The Silhouette score
was used to ensure a good quality, while each cluster contained
at least 30 traces (ca. 1% of the traces in LSimilarity). The use
of hierarchical clustering has made it possible to set the 30-
trace constraint, which motivates the choice of the clustering
algorithm itself. Then, we determine the bucket b to which
σrun would belong. Finally we encode σrun as vector ν, which
ultimately is associated with the b’s cluster whose centroid is
closer to ν. This centroid contains the prefixes of the traces
that are similar to σrun.

It is worthwhile noting that the use of clustering is not part
of our prescriptive-analytics framework. It is only used in the
case study to determine the traces in a certain log that are
similar to a given one.

In sum, given the log LTesting = {σ1, . . . , σm}, we
simulated a log of running cases Lrun = {σ1

run, . . . , σ
m
run}.

where σirun contains the first k events, with k randomly chosen
between 1 and |σi|−1. Then, we compute avgKPIRec(σirun)
and avgKPINoRec(σirun), for all 1 ≤ i ≤ m.

Fig. 4: Distribution of KPI values when recommendations
were followed (Average 0.74). The y axis represents the
number of cases.

Traces Average
Followed

Average Not
Followed

∆

Improvement 1205 0.78 0.58 0.20
Worsening 137 0.56 0.64 -0.08

TABLE II: Number of process instances for which the recom-
mendations led to a statistically significant improvement or
worsening of KPI values.

Section IV-D reports on the results obtained through the
experimental setup discussed here.

D. Evaluation on Prescriptive Analytics: The Results

Fig. 3 shows the distribution of avgKPINoRec(σirun) for
all σirun ∈ Lrun. This corresponds to the distribution of KPI
values when recommendation is not followed. Recall that,
in our case study, a KPI with the value of 1 is the highest
value, while 0 is the lowest. Fig. 4 shows the distribution
of avgKPIRec(σirun) for all σirun ∈ Lrun, namely when
recommendations are followed. By comparing Fig. 3 and
Fig. 4, one can easily observe how the distribution is certainly
closer to 1, when recommendations are indeed followed. The
distribution’s average indeed increased from 0.63 to 0.74.

The analysis of the distribution of KPI values is certainly
valid to gain a general insight into the quality of recommen-
dation. However, this does not directly say how many traces
are observing a statistically significant improvement of KPI
values when recommendations are followed.

Recall that, for each running trace σirun, LGσirun and LBσirun
are the traces similar to σirun when the recommendation is or
is not followed, respectively. While Fig. 3 and Fig. 4 give a
qualitative indication of the presence of a KPI improvement
when recommendations are followed, a definitive confirmation
requires one to count the number of traces σirun for which the
average KPI value of traces in LGσirun is significantly higher or
lower than those in LBσirun , from a statistical perspective. For
each trace σirun, we conducted a Z Test to compare the average
KPI value of the traces in LGσirun with the average of the traces



in LBσirun
. The results are shown in Table II, and illustrates

that, when recommendations are followed, there is a significant
improvement of KPI values for 1205 out of 3074 traces (ca.
39%), while recommendations had a negative KPI impact on
137 traces (ca. 4%). Columns Average Followed and Average
Not Followed illustrate the KPI values when recommendations
were followed or not. For those recommendations with a
significant improvement, the improvement was ca. 0.2 when
the recommendations were followed. Conversely, for those
with a significant worsening of KPI values, the negative
effective was more limited: around 0.08. This ultimately means
that, when executions followed the recommendations, the KPI
value significantly increased for 39% of the executions, and the
recommendations were counter-productive for few executions,
just a limited 4%.

The cases with a significant KPI improvement received
recommendations at different moments in time, as shown in
Fig. 5. The x axis of the figure represents the time in months,
and the y axis indicates the amount of KPI improvement.
A point (x, y) of the graph indicates that the traces that
received recommendation after x months had an average KPI
improvement of y. The curve is obtained via interpolation of
discrete points. Fig. 5 highlights that almost every process
execution with a significant KPI improvement received a
recommendation not later than four months since the execution
started. Note that, if one considers every trace of the initial
event log of 12,296 traces (cf. Section IV-A), the average
case duration is around 12 months with standard deviation
of 10.66 months. The average process-instance duration is
hence significantly higher than the four months shown in
Fig. 5. This shows that recommendations are almost only
useful when followed at the beginning of the case. From
a business viewpoint, this means that, if a customer is at
high risk to not find a job, any supporting intervention (i.e.
recommendation) should be put in place as soon as possible
to have higher chance of success.

V. RELATED WORKS

The realm of Process Mining has proposed several research
works on Predictive Analytics [3], [12], [13]. Conversely,
“little attention has been given to providing recommendation”
and “there is still work to be done in this direction [i.e.
process-aware recommender systems]” [12].

In [14], Conforti et al. discusses a recommender system that
prioritizes the activities that are offered for executions, without
reasoning on additional activities that can be beneficial to put
risky process instances back into the right track. To avoid
violations of constraints, Maggi et al. [15] aim to provide per-
sonalized recommendations to process participants on which
activity to work on as next among those in queue for execution.
Rozinat et al. propose a framework based on simulation, but
they do not provide a concrete operationalization [16]. The
same lack of concrete operationalization is also observed in
a number of architectures for Process-aware Recommender
systems (a.k.a. Operational Support), such as that by Maggi
and Westergaard [17]: the infrastructure is only intended to

Fig. 5: The relation between the earliness of the recommenda-
tion and the amount of KPI improvement when it is followed.
The x and y axes respectively represent the time in months
when the recommendation was given and followed and the
amount of improvement.

allow researchers to build and deploy their own predictive-
and/or prescriptive-analytics algorithms.

Schonenberg et al. [18] and Schobel and Reichert [19] are
among the few approaches that propose concrete implementa-
tions of prescriptive-analytics modules for recommender sys-
tems. However, both approaches base their recommendation
on the KPI’s average in similar traces. These approaches are
certainly valuable when there are sufficiently many traces that
are largely the same. However, first, they only focus on the
activity information attached to the events, instead of the full
payload, as our approach does. Second, they cannot generalize
predictive patterns (e.g., on traces that are not very similar),
which conversely our framework based on machine-learning is
able to do. An empirical evidence of this is in [20]: this paper
illustrates that machine-learning techniques are able to provide
more accurate predictions (and hence recommendations) with
respect to just considering averages.

A very recent proposal of prescriptive analytics based on
machine learning is by Weinzierl et al. [21]. However, this
proposal is only able to recommend for reducing the remaining
time, while we aim at a generic, user-customizable KPI. The
prescriptive analytics proposed in this paper can be potentially
integrated with that by Teinemaa et al. [22], which helps
better prioritize the process cases that require attention, and
recommendations.

VI. CONCLUSIONS

Process-aware Recommender systems are a new breed of
Information Systems that aim to monitor process executions,
predict their final outcome and, when the latter is unsatisfac-
tory, suggests corrective actions, in the form of recommen-



dations about the activities to be executed next, to try to get
them back on track. While a large share of research has been
focused on monitoring and predicting, the aspects related to
recommending have been insufficiently considered. It seems
that process stakeholders have been assumed to be able to
recover from those executions on the basis of their subjective
judgment. A few experience reports illustrated that this is not
the case: recommendations need to be based on evidence from
historical data.

This paper puts forward a prescriptive-analytics framework
that relies on process event data. It relies on machine-learning
techniques to be able to (i) discover the execution patterns,
(ii) generalize them, and (iii) correlate them with KPI values.

By combining the prescriptive analytics with monitoring
and predictive analytics, we have been able to design a fully-
fledged Process-aware Recommender system.

The framework has been implemented in Python, and evalu-
ated with real-life event data from a Dutch reintegration com-
pany. The results illustrate that ca. 39% of the analyzed process
executions would have a statistically significant improvement
of the KPI values if the personalized recommendations were
followed. Recommendations showed to be counter-productive
for just 4% of the executions.

We acknowledge that the validity of the evaluation is
threatened by the fact that the conclusions have been drawn
on the basis of the comparison with similar traces. Conversely,
a definitive assessment would require to deploy the system in
a production environment, and use it to provide support to a
certain fraction of the running cases. At the same time, the rest
of the cases would continue as before, without the system. This
would allow us to compare the KPI values with and without
recommendation. Although the on-the-field experimentation
was the initial intention of this research work, it showed itself
to be a goal that is hard to achieve. Companies are extremely
reluctant to carry on this sort of experimentation, because
it can hamper their own business. This is also due to the
fact that the trust in the recommender system can only be
built if recommendations are coupled with human intelligible
explanations that motivate them [23].

The considerations above delineate some directions worth-
while exploring: on the one hand, we aim to test our recom-
mender system in a production environment; on the other hand,
we want to equip it with explanations of the recommendations.

Last but not least, our prescriptive analytics only focuses on
activities, event and trace attributes, and does not consider the
aspects related to the time between events, such as the process-
instance duration (time between the first and last activity), or
the time elapsed since the last performed activity. We plan to
incorporate these time-related aspects, which might additional
ingredients towards more accurate recommendations.
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