A Holistic Approach for Soundness Verification of
Decision-Aware Process Models

Massimiliano de Leoni!, Paolo Felli2, and Marco Montali?

! Eindhoven University of Technology, the Netherlands
m.d.leoni@tue.nl
2 Free University of Bozen-Bolzano,
{pfelli,montali}@inf.unibz.it

Abstract. The last decade has witnessed an increasing transformation in the de-
sign, engineering, and mining of processes, moving from a pure control-flow per-
spective to more integrated models where also data and decisions are explicitly
considered. This calls for methods and techniques able to ascertain the correct-
ness of such integrated models. Differently from previous approaches, which
mainly focused on the local interplay between decisions and their correspond-
ing outgoing branches, we introduce a holistic approach to verify the end-to-end
soundness of a Petri net-based process model, enriched with case data and deci-
sions. In addition, we present an effective, implemented technique that verifies
soundness by translating the input net into a colored Petri net with bounded color
sets, on which standard state space analysis techniques are subsequently applied.
Experiments on real life illustrate the relevance and applicability in real settings.

1 Introduction

The fundamental problem of verifying the correctness of business process models
has been traditionally tackled by exclusively considering the control flow perspective,
namely by only considering the ordering relations among activities present in the model.
In this setting, one of the most investigated formal notions of correctness is that of
soundness, originally introduced by van der Aalst in the context of workflow nets (a
class of Petri nets that is suitable to capture the control flow of business processes) [2].
Intuitively, soundness guarantees the two good properties of “possibility of clean termi-
nation” and of “absence of deadlocks”. This ensures that a process instance () always
has the possibility of reaching its completion; (i4) when it does so, no running con-
current thread is still active; and (#4¢) all parts of the process can be executed, i.e., the
process does not contain dead activities that are impossible to enact in some scenario.
The control-flow perspective is certainly of high importance as it can be considered
the main process backbone; however, many other perspectives should also be taken into
account. In fact, the last decade has witnessed an increasing transformation in the de-
sign, engineering, and mining of processes, moving from a pure control-flow perspec-
tive to more integrated models where also data and decisions are explicitly considered.
This trend is also testified by the recent introduction and development of the Decision
Model and Notation (DMN), an OMG standard [1]. This calls for methods and tech-
niques able to ascertain the correctness of such integrated models, which is important
not only during the design phase of the business process lifecycle, but also when it
comes to decision and guard mining [13, 14], as well as compliance checking [12].

2 M. de Leoni, P. Felli, M. Montali

This work introduces a holistic, formal and operational approach to verify the end-
to-end soundness of Data Petri nets (DPNs) [13], which models the order with which
activities can occur (a.k.a. control flow) as well as the decision and the data of the pro-
cess. Their solid formal foundation allows DPNs to unambiguously extend soundness
to incorporate the decision perspective.

In the general case, verifying soundness of DPNs is undecidable due to the pres-
ence of case data and the possibility of manipulating them so as to reconstruct Turing-
powerful computational devices. This applies, in particular, when case data can be up-
dated using arithmetical operators. We isolate here a decidable class of DPNs that em-
ploys both non-numerical and numerical domains, and is expressive enough to capture
data-aware process models equipped with S-FEEL DMN decisions [1], such as those
recently proposed in [4,3]. Such DPNs cannot be directly analyzed algorithmically,
since they induce an infinite state space even when employing bounded workflow nets.
Hence, inspired to predicate abstraction [7], and in particular the approach of [12], we
present an effective (i.e., sound, complete) approach for verifying soundness by translat-
ing the input net into a colored Petri net (CPN) with bounded color domains, which can
then be analyzed with conventional state space exploration techniques. This has been
implemented as a plug-in for the well-established ProM process mining framework.

The paper is organized as follows. In Section 2 we discuss related work. In Section 3
we recall DPNs, define their execution semantics and soundness. Section 4 illustrates
our approach for translating a DPN into a corresponding CPN. Section 5 discusses the
ProM implementation and reports on experiments on real-life processes, either designed
by hand or obtained though manual-design and process discovery combined, showing
that the technique is applicable to real-life case studies. Section 6 concludes the paper.

For space reasons, full proofs and additional technical details of this work are given
in an extended technical report [8].

2 Related Work

Within the field of database theory, many approaches have been proposed to formal-
ize and verify very sophisticated variants of data-aware processes [5], also considering
data-aware extensions of soundness [15]. However, such works are mainly foundational,
and do not currently come with effective verification algorithms and implementations.
Within the field of business process management and information systems engineering,
a plethora of techniques and tools exists for verifying soundness of process models that
only capture the control-flow perspective, but not much research has been carried out to
incorporate the data and decision perspective in the analysis. Sidorova et al. proposed
a conceptual extension of workflow nets, equipped with an abstract, high-level data
model [18]. Here, activities read and write entire guards instead of reading and writ-
ing data variables that affect the satisfaction of guards. Although simple (reading and
writing guards is equivalent to reading and writing boolean values), this is not realistic:
as testified by modern process modeling notations such as BPMN and DMN, the data
perspective requires (at least) data variables and full-fledged guards and updates. [6] fo-
cuses on single DMN tables to verify whether they are correct or contain inconsistent,
missing or overlapping rules. This certainly fits in the context of data-aware soundness,
although the analysis is only conducted locally to decision points, and local forms of
analysis do not suffice to guarantee good behavioral properties of the entire process

Soundness Verification of Decision-Aware Process Models 3

[12]. A similar drawback is also present in [4], where decisions are considered either
individually or in relation to their immediate outgoing sequence flows. Further, as men-
tioned in the introduction, soundness verification plays a key role in decision and guard
mining [13, 14]. Here, an initial process model is discovered by first considering only
the control-flow perspective and then by enriching its decision points with decisions
and conditions which are again inferred from the event data in the log. However, this
“local enrichment” clearly cannot guarantee the soundness of the process, so soundness
verification techniques must be employed to discard incorrect results.

The two closest works to our contribution are [3, 12]. In [3], the authors consider the
interplay between BPMN and DMN, providing different notions of data-aware sound-
ness on top of such process models (once the BPMN component is encoded into a Petri
net, which can be seamlessly tackled by known techniques [9, 11]). Our representation
of processes is expressive enough to capture the soundness properties in [3], therefore
our verification technique based on an encoding into CPNs guarantees that the obtained
CPN is behaviorally equivalent to the input DPN and, in turn, that the notion of sound-
ness we introduce as well as all variants of soundness defined in [3] can be actually
verified using this approach. Additional details can be found in [8]. In [12], the authors
introduce an abstraction approach which shares the same spirit of our technique: it is
faithful (i.e., it preserves properties), and it is based on the idea of considering only
boundedly many representative values in place of the entire data domains. There are
however four fundamental differences. First, in [12] abstractions are used to shrink the
state space of the analysis, not to tame the infinity brought by the presence of data and
the possibility of updating them. Second, [12] defines abstract process graphs that do
not come with a formal execution semantics, hence not allowing to formally prove the
correctness of the abstraction. Since our approach is expressive enough to capture the
model of [12] (see [8]), our correctness result in Theorem 1 can be also lifted to [12].
Third, [12] focuses on compliance checking against LTL-based rules, which cannot
capture soundness (in particular, the “possibility of termination”, as this has an intrinsic
branching nature); on the other hand, our encoding produces a CPN that is behaviorally
equivalent to the original DPN, so it preserves all the runs and thus all LTL proper-
ties. Finally, while [12] translates the problem of compliance checking into a temporal
model checking problem, we resort to Petri net-based techniques.

3 Syntax and Semantics of DPNs

We provide the necessary background on the DPN model [13], then providing for the
first time a full account of their execution semantics, and lifting the standard notion of
soundness to their richer, data-aware setting. We first define the notion of domain for
case variables, assuming an infinite universe of possible values U.

Definition 1 (Domain). A domain is a couple D = (Ap, X'p) where Ap C U is a set
of possible values and Xp is the set of binary predicates defined on Ap.

Consider a set of domains D, and in particular the notable domains Dg = (R, {<, >
) 7&}>’ Dy = <Z7 {<a > =, 7&}>’ Dioor = <{True, False}» {:a 7&}>’ Ds = <Sa {:
}) for real numbers, integers, booleans, and strings (S denotes the set of all strings).

Given a set of variables V, for each v € V we write v" or v to denote that the
variable v is read or written, hence we consider two distinct sets V" = {v" | v € V}

4 M. de Leoni, P. Felli, M. Montali

and V¥ = {v™ | v € V'}. When we do not which to distinguish, we still use the symbol
v to denote any member of (V" U V). Moreover, in order to talk about their possible
values, we need to associate domains to variables. If a variable v is assigned a domain
D = (Ap, Xp), for brevity we denote by vp the corresponding typed variable, that is
a shorthand to specify that v can only assume values in Ap.

Definition 2 (Guards). Given a set of variables V with associated domains, the set of
possible guards ®(V) is the largest set containing the following:

- viffve (VTuvYy),

- vp @ Apiffve (VTUV¥)and ® € Xp;

— &1 A ¢ and 1 V ¢ iff ¢1 and ¢o are guards in (V).

Hence, a guard can be any conjunction or disjunction of atoms of the form variable-
operator-constant, whereas it is not possible to have guards of the form variable-
operator-variable, which is left as future work. A variable assignment is a function
B (VTUV"™) — U U{L} assigning a value to read and written variables, with the
restriction that S(v) is a possible value for v: if vp is the corresponding typed variable
then 5(v) € Ap. The symbol L is used to denote a null value, i.e., that the variable is
not set. Given a variable assignment 5 and a guard ¢, we say that ¢ is satisfied by the
variable assignment 3, written qﬁ[m = true, iff:

- if¢p =wvthen L # S(v);
if » = v ® k, then ©(x, k) for x = B(v);
if ¢ = @1 A @2 then ¢y = true and ¢y = true;
if ¢ = @1V ¢ then ¢y = true or pg5 = true.
In words, a guard is satisfied by evaluating it after assigning values to read and
written variables, as specified by 3. A state variable assignment, abbreviated hereafter
as SV assignment, is instead a function o : V' — U U { L} which assigns values to each
variable v € V, with the restriction that a(vp) € Ap. Note that this is different from
variable assignments, which are defined over (V" UV™). We can now define our DPNs.

Definition 3 (Data Petri Net). A DPNN = (P, T, A,V, dom, ay, read, write, guard)
is a Petri net (P, T, A) with places P, transitions T and arcs A, where:

— V is a finite set of process variables;

— dom is a function assigning a domain D to eachv € V;

— «y is the initial SV assignment;

- read : T — pwr(V') returns the set of variable read by a transition;

— write : T — pwr (V) returns the set of variable written by a transition;

- guard : T — &(V) associates each transition t with a guard, so that v" appears

in guard(t) only if v € read(t), and v* appears in guard(t) only if v € write(t).

3.1 Execution Semantics

By considering the usual semantics for the underlying Petri net together with the guards
associated to its transitions, we define the resulting data-aware execution semantics for
DPNss. The set of possible states of any such DPN is formed by all pairs (M, o) where:
- M € B(P)3, i.., is the marking of the Petri net (P, T, A), and
— ais a SV assignment, defined as in the previous section.

* B(X) indicates the set of all multisets of elements of X

Soundness Verification of Decision-Aware Process Models 5

[amount™ > 0] [0k™]
i P1 p2
credit .
. verify
request
amount” > 15000 ok" == false ok" == true A ok" ok" == true A ok"
Aok" == false A amount” < 5000 A amount” > 5000
skip simple
assessment assessment

ok" == true ok" == true ok" == false
A amount” < 10000 A amount” > 10000| | A amount” > 10000 [N == true]

ok
open
credit loan

inform acceptance
customer normal

inform acceptance
customer VIP

|nform rejection
customer VIP

AND j Jom

%

Fig. 1. Our working example of a DPN. Writing operations exist every time guards mention ok
or amount™. Terms ok™ in the guards of verify, simple assessment and advanced assess-
ment explicitly indicate that the variable is written and can take on either t rue or false.

In any state, zero or more transitions of a DPN may be able to fire. Firing a transition
updates the marking, reads the variables specified in read(t) and selects new values for
those in write(t). We model this through a variable assignment 3 which assigns a value
to all and only those variables that are read or written. A couple (¢, 3) is called transition
firing, said to be legal when consistent with the current state.

Definition 4 (Legal transition firing). A DPN N as above evolves from state (M, a)
to state (M', &) via the transition firing (t, B) with guard(t) = ¢ if and only if:
- B(") = a(v) ifv € read(t): B assigns values as o for read variables;
a(v) ifv & write(t),
B(v™) otherwise;
B is valid, namely ¢g) = t rue: the guard is satisfied under [3;
(M (p) > 0) for any p € P such that (p,t) € A: each input place of t has tokens;
the new marking is calculated as usual, namely M 1y M’

the new SV assignment is s.t. o/ (v) = {

We denote this by writing (M, o) %A, (M’ a'), and extend the notation to se-
quences o = ((t*, B1),..., (t*, B™)) of n legal transition firings, called traces, and de-
: 0 0y t.B" 1 1y 7,87 t",B" n o on
note the corresponding run by (M°,a”) 122 o (M*', o) 122, 00 22 (M™ o)
or equivalently by (M°,a®) 2, (M™, a™). By restricting to the initial marking M and
the initial variable assignment a7, we define the traces of A as the set of sequences o
as above, of any length, such that (M}, ay) 2y (M, &) for some M € B(P) and a.

Example 1. Figure 1 shows a DPN modelling a process for managing credit requests and corre-
sponding loans. There are two case variables, amount and ok, respectively representing the re-
quested amount and whether the credit request is accepted or not. The process starts by acquiring
the amount of the credit request (writing amount), which must be positive. Then a verification
step is performed, determining whether to accept or reject the request (writing ok). If rejected, a
new verification may be performed provided that amount exceeds 15000 euros. If accepted, de-
pending on the amount, a simple or advanced assessment is performed (updating ok). The second
phase of the process deals, concurrently, with the opening of a loan (for positive assessments) and
with a communication sent to the customer, which depends again on the case variables. [

6 M. de Leoni, P. Felli, M. Montali

3.2 Data-aware Soundness

We now lift the standard notion of soundness [2] to the case of DPNs. This notion re-
quires not only to quantify over the markings of the net, but also on the assignments
of its case variables, thus making soundness data-aware (we use ‘data-aware’ to distin-
guish our notion from the one of decision-aware soundness in the literature). In what
follows, we write (M,) 2%, (M’, o) to implicitly quantify existentially on traces o,
and denote by M the final marking of a DPN: it is the marking that, when reached,

indicates the conclusion of the execution of the process instance.

Definition 5 (Data-aware soundness). A DPN is data-aware sound iff:
Pl: V(M,a). (My,ar) 2 (M,a) = 3. (M, a) % (Mp,d))

P2: V(M,Oé) (M],Oq) Ju (M,Oé) AM > Mp = (M = Mp)

P3: Yt € T.3My, Mo, a1, as, B. (M, 1) % (M, 1) Y2y (Ma, ay)

The first condition checks the reachability of the output state, i.e., that it is always
possible to reach the final marking of A/ by suitably choosing a continuation of the
current run (i.e., legal transitions firings). The second condition captures that the output
state is always reached in a “clean” way, i.e., without having in addition other tokens in
the net. The third condition verifies the absence of dead transitions, where a transition
is considered dead if there is no way of assigning the case variables so as to enable it.

Example 2. The DPN in Figure 1 is unsound. Suppose that the verification and assessment
steps assign ok to false. Once the execution assigns a token to p3, and the following AND-split
transition is fired, two tokens are produced, in p4 and ps. Since the guard of open credit loan
is false, token ps cannot be consumed and it is not possible to properly complete the execution.
Also, if amount is less than 10000 an analogous situation occurs for the token in p4. [

4 Soundness Verification

In this section we propose an effective technique to check soundness of any DPN, by en-
coding it into a corresponding Colored Petri net (CPN) that enjoys two key properties:
it employs finite color domains that suitably abstract away the source of infinity coming
from the manipulation of data, but still preserves soundness, i.e., the original DPN is
data-aware sound if and only if its corresponding CPN satisfies a corresponding, effec-
tively checkable variant of soundness. This allows us to employ conventional Petri-net
state space analysis techniques to ascertain data-aware soundness of DPNs. Indeed, the
reachability graph may still be infinite, although the source of such infiniteness is han-
dled by native Petri nets state-space analysis (cf. coverability graph or analogous well
known techniques [2]). CPNs are an extension to DPNs that have a better support for
time and resource [10], and can also be simulated through CPN Tools [16], making it
possible to build on existing techniques to verify soundness. Differently from DPNs,
where variables are global, CPNs encode the data aspects in the tokens, attaching them
a data value: the color. Each place in a CPN can contain tokens of one type, called color
set of the place.

Definition 6 provides a simplified definition of a CPN, which is enough to cover
all the cases necessary in this paper. Note that tokens can also be associated with no
values: in this case we introduce the color set ¢ = {0}, so that places with color set
e can only contain tokens with value o, corresponding to black tokens in normal Petri
nets. Similarly, variable v, is a special variable that can only take on one value, i.e., o.

Soundness Verification of Decision-Aware Process Models 7

Definition 6 (CPN). A CPN is a tuple (P,T,A, X, V,C,N,E,G,I) where:

— (P, T, A) is a Petri net with places P, transitions T and direct arcs A;

— Y is a set of color sets defined within the CPN model and V' a set of variables;

- C: P — Y U{e} is a color function mapping each place to a color set in XU {e};

- N:A— (PxT)U(T x P) is a node function that maps each arc to either a
pair (p,t) indicating that the arc is between a place p € P and transitiont € T,
or (t,p) indicating that the arc connectst € T top € P;

- E: A— V U/{uv,e} is an arc expression function, assigning variables to arcs;

- G : T — &(V) is a guard function that maps each transition t € T to an expression
G(t) with the additional constraint that G(t) can only employ variables used to
annotate the arcs entering in t: G(t) € Uye 4. n(a)=(p.t) £(@);

- I: P — B(X U{e}) is an initialization function assigning color values fo places.
Forp € P, I(p) returns the token colors initially present in p, with I(p) € C(p).

In general, for any arc a € A, the expression F(a) can be more complex than just
being a single variable. However, this simplification covers all the expressions we con-
sider here. The concept of a marking M can be easily extended to CPNs as a function
M : P — B(X U {e}) such that M (p) is a multiset of elements, each of which is the
data (a.k.a. color in CPN) associated to a different token in p.

A CPN run is of the form M° £y At 2% "2 Afn where MO = T and
vtV — (X U {0}) is the so-called binding function, defined over the set of variables
of the arcs entering transition ¢*, for all 4 € [1,n]. When firing each transition ¢* from
marking M?, only legal bindings are possible. Binding ~ is legal for ¢’ in M if:*

1. The binding considers exactly those variables that annotate the input arcs of ¢':
dom(7") = Uaea pesti N(a)=(p.15) E(@)-

2. If the same variable v annotates multiple input arcs of ¢, then 7*(v) consistently
assigns v to a value that is carried by at least one token present in each of the source
places of such arcs, according to M*: for each v € dom(~*) and for each p € P
s.t. there exists a € A with N(a) = (p,t') and E(a) = v, we have v'(v) € M*(p).

3. The guard of ¢ is true when variables are substituted as per +*: Glyi) = true.
Firing ¢* with 4* in marking M°® leads to a marking M ‘*!, constructed as follows:’

_ M'(p) ifp & ("t Ut")
M (p) = ¢ M (p) \ [V (E(agpa))] ifp € *t!
M (p) W [y (E(agi p))] if p € t°

We denote this by writing M 7'y Mi+1, which is legal if 7 is a valid binding of
t*. As for DPN runs, a CPN run is legal if it is a sequence of legal firings.

4.1 Translating DPNs into Colored Petri Nets

We now illustrate how a DPN N = (P, T, A, V, dom, oy, read, write, guard) can be
converted into a CPN N¢ = (P¢,T¢ Ac 3¢ Ve C¢ N¢ E° G I°) that suitably

* In the remainder, given a transition t € T', we denote by *t = {p € P.3a € A.N(a) = (p,t)}
and t* = {p € P.3a € A.N(a) = (t,p)} the usual notions of preset and postset of .

3 Notation a(p,iy denotes the arc a € A s.t. N(a) = (p,t") and cannot be employed if such an
arc does not exist. The set-difference operator \ is overridden for multisets: given two multisets
A and B, for each element x € B with cardinality b, > 0 in B and cardinality a, > 0 in A,
the cardinality of in B \ A is max(0, b, — a,); moreover, if ¢ ¢ Bthenz ¢ B\ A.

8 M. de Leoni, P. Felli, M. Montali

Fig. 2. Conversion of a simple DPN to CPN (left to right). The green token represents a token with
value 0. Arcs without annotations are considered annotated by ve and places with no color are
associated with e. Double-headed arcs stand for two arcs with same inscription in both directions.

mimics its execution semantics. Intuitively, as exemplified in Figure 2, the transitions
and places of the DPN become transitions and places of the CPN. Each variable v of
the DPN becomes one variable place associated with the color set as the variable type
of v, e.g., place var_z in Figure 2 (right). These places always contain exactly one
token, holding the variable’s current value. Guards are as in the CPN, and if a transition
writes a variable v, the token in the variable place for v is consumed and a new token is
generated to model the update of v. For instance, the fact that transition A of the DPN
Figure 2 (left) writes a new value for variable z (denoted x*') is modelled in Figure 2
(right) through the two red arcs annotated with z_r and x_w, respectively entering and
exiting transition A. This allows the token holding the value of v to change value when
returned back to the place. A read operation is modelled as shown by the the blue arcs
in Figure 2 (right), which have the same annotation, so that the token from the variable
place is consumed and then put back with the same value. The initial marking of the
DPN is part of the initial marking of the CPN, and each variable places is initialized
with a token holding the initial value of the variable. In Figure 2 (right), the place var_x
contains a token with value 0, assuming o7 («) = 0. We now formalize this intuition.

Places. The places of the CPN consist of all places of the DPN, plus one dedicated
extra place £(v), hereafter called variable place, for each DPN variable v € V. Hence,
P¢ = PU,ev &(v), where each variable place £(v) always has one token, and precisely
the one holding the current value of variable v at each step of the simulation of the CPN.
Transitions. The transitions of the CPN and DPN are the same: 7° = T..
Arcs. Each arc in A is preserved, and for each transition ¢ € T and variable read
and/or written in ¢, we add two extra arcs: A° = AU {(¢,£(v)), (§(v),t) |t € T,v €
read(t) U write(t)}. The node function is defined as N°(a) = a for every a € A°.
Color sets. The CPN supports the same variable types as the DPN, and we consider the
color sets ¢ = {Z, R, bool, Strings, ¢} corresponding to the domains defined at the
beginning of Section 3 for integers, reals, booleans and strings, respectively (plus e).
Variables. For each variable v € V the CPN considers the variables v" and v, i.e.,
Ve ={v",v"”|v € V} U {ve}, where v, is the special variable defined earlier.
Color functions. Recalling the shorthand notation vp for typed variables in V, each
place p € Pc is associated with a color set: if p € P, i.e. it is also a place of the
DPN, then C¢(p) = e, otherwise the additional variable places are assigned the color
set corresponding to the domain D of v. That is, C°(p) = Z if there is vz € V so that
p = &(vz), and the same for booleans, reals and strings (i.e. bool, R, S, respectively).
Guards. Guards are not changed: G°(t) = guard(t) for each t € T°.
Arc expressions. The expression associated with any arc between a source node s €

Soundness Verification of Decision-Aware Process Models 9

(0K _r=true))

andalso (Amount_r<5000)))

Fig. 3. Translation of DPN in Figure 1. Double-headed arcs are a shortcut to indicate that there
are two arcs with the same inscription in either of directions.

P UTe and a target d € P° U T° with (s,d) € A°is as follows. If (s,d) € A then
E*(s,d) = v,, otherwise:

v" ifd € T and s = &(v);
E¢(s,d) =< v" if s € Tand d = £(v) and v & write(s);
v if s € T and d = £(v) and v € write(s);

The first case refers to arcs of the CPN that are also present in the original DPN (e.g.
belonging to the set A of arcs in DPN); the places involved in these arcs contain tokens
with no value associated, which we represent by o, and thus the arcs are annotated with
the v, variable. The remaining cases refer to arcs connecting the variable places for each
v € V to a transition ¢ € T°. If v is written by ¢ then the incoming arc ({(v),t) and
the outgoing arc (¢, £(v)) are annotated with v" and v*, respectively. This allows the
token holding the value of v to change value when returned back to £(v). If instead v is
not written by ¢ then both arcs are annotated with the same inscription v", guaranteeing
that the value of the token does not change.
Initialization. Let A/} be the initial marking of the DPN. Places that are also in the
DPN take on the same number of tokens as in the DPN, whereas each variable place
&(v) is initialized with a token holding the value specified by the initial SV assignment
of the DPN. Namely, I¢(p) = [oM1(®)]if p € P, i.e., p is a place in the original net;
otherwise I°(p) = [as(v)] when p = £(v).

This translation is correct (see Section 4.3): a DPN is sound if and only if its CPN
translation is sound. As already discussed, this in turn allows one to exploit standard
CPN analysis techniques [2] to ascertain the properties in Definition 5.

Example 3. Figure 3 shows how the working example is translated into a CPN. The red and the
green elements implement the reading and the updating of the variables ok and amount. O

10 M. de Leoni, P. Felli, M. Montali

4.2 Taming Infinity via Representatives

Although the translation is correct, it is easy to see that the reachability graph can have
infinitely many distinct states. The source of infiniteness is twofold: on the one hand,
the original DPN and, hence, the resulting CPN is unbounded, namely the number of
tokens in some places can grow indefinitely; on the other hand, the process variables
of the original DPN determine color sets in the CPN over infinite domains, in turn
requiring to consider potentially infinitely many different assignments for the tokens
in the variable places. Standard techniques can be employed to check whether a DPN
is unbounded and consequently unsound, as proven in [2]. If the DPN is bounded, the
reachability graph of the CPN resulting from the translation needs to be built, which is
however still infinite if the color sets of the CPN are defined over infinite domains. The
remainder illustrates that soundness checking is still possible, by replacing the infinite
domains of CPN color sets with a finite set of representative elements, chosen based on
the set of constants appearing in the guards.

Definition 7 (Constants of the process). The set of constants C,, C Ap related to a
typed variable vp € V of a DPN is defined as the set of all the values k such that either
" © korvY @ k appears in any guard of any t € T, with ® € Xp.

For each variable v, observing that the set C, is finite and ordered, we partition the uni-
verse U into |C, | + 1 intervals of values in which I/ can be partitioned w.r.t. v. For each
interval we elect a representative, which can be chosen arbitrarily among the values in
the interval. To correctly handle the case in which the domain Ap of a variable v has no
minimal or maximal elements, we define the set C;r as C,, with either or both of these
two elements added, when needed. Hence the set of representatives for v € V' is com-
puted as A, := {x € Ap | z € C, or z = pick(x1,z2) for consecutive z1, x5 € C;F}
where pick is a deterministic function returning a representative value in the speci-
fied interval, excluding the endpoints.® For a given value z in the original domain Ap,
we denote its representative as rep(z), namely rep(x) := x iff z € C,, otherwise
rep(x) = yimpliesbothy € (x1,22) andx € (x1,z2). For L, we define rep(.L) := L.

Let A := {A,,,...,A,,}. Given a SV assignment « on the original variable do-
mains, we define a SV assignment restricted to A as a function oz : V. — U, A,
computed as v 5 (v) := rep(a(v)), with the requirement that o 5 (v) € A, for any v.

By considering a finite number of representative values, we can verify the sound-
ness of a DPN by checking the soundness of the corresponding CPN if one restricts the
values which can be assigned to each v to the finite set A,, i.e., the set of representative
values for v. As we are going to show, this suitably eliminates the infiniteness originat-
ing from the process data, leaving the unboundedness of the underlying net as the sole
possible source of infiniteness in the reachability graph of the CPN. Such unbounded-
ness can be detected and handled through standard Petri net analysis techniques.

To this end, we need to augment further the CPN N¢, constructing a new CPN N b
which only makes use of representative values, as follows. For each variable v € V'
in the DPN, we add an additional place p(v) to the set places P of the CPN, which
is meant to represent the restricted set of possible values of v, namely A,. Therefore
p(v) is assigned the same colorset as that of the variable place £(v), and it holds one

% For dense domains such as real numbers such intervals are always nonempty, whereas for
non-dense domains they might be empty. In this case, we consider pick undefined.

Soundness Verification of Decision-Aware Process Models 11

({(Amount_r>15000})
andalso (OK_r=false)))
4599++ I
50004+ o~ Ppotential Values
ngé;" or Amount
e -
10001 ++ nT

15000++ T\
15001 Amount_w
____Amount_w o
./ | Amount_w DPNN ¢ > CPN NC

{
_— _false
Credit Request \7_ _7‘/ B B | I I
-— Amount ¢ & Vanaulel\moumj <Vaname0|<><— J
o — — - —
I —— BOOL

. DPN N CPN N5

Renegotiate Request
Amount_w

-
Amount_r

INT

(@) (b)

Fig.4. (a) A fragment of N'%, showing both additional places £(amount) and p(amount) for
case variable amount (see [8] for the complete figure). (b) An intuitive diagram of our approach.

token for each possible representative value in A,. This is achieved by extending the
initialization function of ¢, imposing I(p(v)) = Wyea, [z]. Then, for any transition
t € T° and for each variable v € write(t), the representative value held by one token
in p(v) is used to update the value of the token in the variable place £(v).

More formally, we add two arcs to A°: an arc (¢, p(v)) from ¢ to the newly-
introduced place p(v) and a second arc (p(v),t), and define the expression function
E* so that, for transition t € T and v € write(t), E¢((p(v),t)) = E°((p(v),t)) = v™.

Example 4. Consider, e.g., the transition credit request in the model in Figure 3. This transition
writes the integer variable amount. By inspecting all the guards, it is easy to see that the set of
constants related to amount is Camount = {5000, 10000, 15000}, from which we select the set
of representatives Agmoun: = {4999, 5000, 5001, 10000, 10001, 15000, 15001} by including
an arbitrary value for each interval (e.g., in this case, 5001 was arbitrarily chosen to represent
all the values in the interval (5000, 10000)). A token for each element of Agmount is created in
p(amount). As it can be seen in Figure 4 (a), which depicts a small fragment of the resulting
CPN N5, p(amount) is called Potential values for Amount and its tokens can be used as possible
values for the variable Amount_w, which in this figure stands for amount™. O]

4.3 Correctness of the Translation

We now discuss the correctness of the approach, summarized by Figure 4(b). We need
to show that the CPN N\ 5 built as defined in the previous section (i.e. obtained by trans-
lating the original DPN A/ first into a CPN A€ and thus into J\/’%) preserves soundness.
This is based on the fact that the set of all legal runs of A/ and the set of all legal runs of
N§ are in direct correspondence: for every run of A there exists a run of N'§ that tra-
verse the very same transitions and vice-versa. We call this property trace-equivalence.

Formally, we say that a DPN run 7 = (M, o) ﬂ) s BT (M™ ™) and

1 1 n n . .
aCPNrun7, = My, fe2y o L0 M I are trace-equivalent iff t* = ¢’ for each
i € [1,n], i.e. they have the same transitions (M, is the initial marking of the CPN).

Theorem 1. A DPN N and the CPN NZ— defined as in the previous section are trace-
equivalent. Moreover, the soundness properties in Definition 5 hold in N iff their trans-

lations hold in ./\/2, hence N is sound lﬁ‘./\/'g is sound.

The translation mentioned in the theorem is a simple rewriting of the properties in
Definition 5 in terms of states and runs of CPNs instead of those of DPNs. Proving the

12 M. de Leoni, P. Felli, M. Montali

cesines by g fluxicon

Example of Execution Leading to the Deadlock

nt-7500.0}

Fig. 5. Screenshot of the tool that implements the soundness-checking technique here described.

result requires articulated intermediate steps, as translating the original DPN N first
into CPN N and consequently into A/ %> as done in the previous section, implies not
only comparing a DPN with a CPN that is syntactically very different but also handling
infinite domains for variables. Due to lack of space, the proof is here omitted, but it is
available in full in [8]. We give here the intuition: as illustrated in Figure 4(a), we (%)
first define a DPN N 5 that employs only representative values in place of the possibly
infinite domain values of variables, and prove that such N, A 1s a correct abstraction
of N; then (i¢) show that for any run of A5 there exists a trace-equivalent run of
N 5 - Since the properties in which we are interested only rely on the existence of legal
traces, i.e. sequences of legal transition firings, and not on the values assigned to the
case variables, it follows that we can analyse N to assess the soundness of N.

Example 5. The CPN N§ obtained for Example 1 exhibits the same deadlocks of the original
net, and it is indeed unsound. While in A there are infinite number of values of amount for
which a deadlock is reached, all these are represented by a finite number of runs in N'%, one for
each combination of representative values for amount and ok. O

Note that, since our encoding produces a CPN J\/’g that is behaviorally equivalent
(i.e trace-equivalent) to the original DPN N, the result of the previous theorem goes
beyond soundness, and in particular to the different interesting properties discussed
in [3] for decision-aware processes. In fact, our data-aware soundness coincides with
the decision-aware soundness introduced in [3].

5 Implementation And Experiments

Our soundness-checking technique has been implemented as a Java plug-in for ProM,
an established open-source framework for implementing process mining algorithms
and tools (see http://www.promtools.org/). It supports both the PNML and the
BPMN file formats for process models, and implements numerous algorithms for dis-
covering process models that integrate the decision perspective (e.g. [13, 14]). Thanks
to this, we can employ our technique to validate the soundness of models where the
decision perspective is mined from event data and models can be expressed in the two
mentioned notations. In particular, the soundness-checking technique is available in the
ProM nightly build after ensuring that the ProM package DataPetriNets is installed. The

Soundness Verification of Decision-Aware Process Models 13

plug-in is named Compute Soundness of a Data Petri Net and takes a DPN as input. We
performed a number of experiments with data-aware models of real-life processes in the
literature. First, as shown in Figure 5, our implementation correctly classify the process
of Example 1 as unsound, showing a possible run that leads to a deadlock.

1. Road-traffic fines example. We used the model of the real-life process for the manage-
ment of road-traffic fines, which is illustrated in Figures 7 and 8 from [13]. By using our
plug-in, we generated an execution that leads to a deadlock (i.e. with a token in place
pl10), that is caused by the fact that transition Appeal to Judge can assign any value to
variable dismissal. This transition is followed by a XOR split where two alternatives are
possible, depending on the value of variable dismissal: NIL or #. However, the model
does not impede Appeal to Judge to assign other values, e.g. G, causing a deadlock.

2. Road-traffic fines with guard discovery. We used the same model as at point 1 but,
instead of keeping the pre-existing guards, we employed the guard discovery technique
discussed in [14], which clearly does not guarantee, in general, the properties of Defi-
nition 5. The resulting model, not shown here for lack of space (see [8]), is data-aware
sound. The analysis has not reported dead transitions nor deadlocks.

3. Hospital example. We checked the soundness of the data-aware models reported in
Figures 13.6 and 15.6 of the Ph.D. thesis by Mannhardt [13]. Both models refer to
processes that are executed within hospitals: the former is about curing patients with
sepsis and the latter manages the hospital billing to patients. These models were partly
hand designed and partly mined through process-discovery techniques and the analysis
shows that they are data-aware sound.

The models at points 1 and 3 were analysed for deadlocks and dead transitions
in a matter of seconds. The model at point 2 required 1.9 hours to produce the analysis
results. This difference is due to the fact that the model at point 2 is over-fitting for what
concerns the decisions. In fact, the decisions are modelled through complex guards with
several atoms; as a consequence, the search space to visit grows significantly.

6 Conclusions

In this paper we have introduced a holistic, formal and operational approach to verify
the end-to-end soundness of Data Petri nets. Thanks to the solid formal foundation of
DPNs, we defined a notion of soundness for these nets to incorporate the decision per-
spective, and developed an effective technique for assessing such property that can be
directly implemented on existing tools. Since our DPNs are expressive enough to cap-
ture known data-aware process such as those equipped with S-FEEL DMN decisions
(employing a translation similar to that in [6] — see [8] for details), this also allows
us to consider various notions of soundness from the literature and in particular those
in [3]. In future work, we plan to address more sophisticated guard languages, for in-
stance by allowing to compare variables through guards such as (v}’ > v5 A v}’ # v¥).
Note however that this goes beyond DMN S-FEEL and requires more sophisticated
encoding techniques, although we believe this to be a decidable setting. Further, we
aim at extending our results to other data domains. This is a quite delicate task, since
even minimal extensions may lead to undecidability. For instance, by enriching inte-
ger domains by a successor predicate, we immediately get an undecidability result for
soundness, even in the simple case of DPNs with two case variables. Finally, we plan to

14

M. de Leoni, P. Felli, M. Montali

optimize the technique presented in this paper. In its current form, nondeterminism is
managed eagerly, that is, by generated branches for possible values as soon as a variable
is written. It appears instead promising to manage nondeterminism lazily, i.e., by post-
poning such choice to the moment where the variable actually appears in a guard, hence
considering sets of possible representatives at the same time. This would not preserve
trace-equivalence, but could still preserve data-aware soundness.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Decision model and notation (DMN) v1.1 (2016), http://www.omg.org/spec/DMN/1.1/
. van der Aalst, W.M.P.: The application of petri nets to workflow management. Journal of

Circuits, Systems, and Computers 8(1), 21-66 (1998)

. Batoulis, K., Haarmann, S., Weske, M.: Various notions of soundness for decision-aware

business processes. In: Proc. of ER 2017. LNCS, vol. 10650, pp. 403-418. Springer (2017)

. Batoulis, K., Weske, M.: Soundness of decision-aware business processes. In: Proc. of BPM

Forum 2017. pp. 106-124. Springer (2017)

. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process analysis: A

database theory perspective. In: Proc. of PODS 2013. ACM (2013)

. Calvanese, D., Dumas, M., Laurson, U., Maggi, FEM., Montali, M., Teinemaa, I.: Semantics

and analysis of DMN decision tables. LNCS, vol. 9850, pp. 217-233. Springer (2016)

. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Pro-

gram. Lang. Syst. 16(5), 15121542 (1994)

. de Leoni, M., Felli, P., Montali, M.: A holistic approach for soundness verification of

decision-aware process models. CoRR Technical Report arXiv:1804.02316, arXiv.org e-
Print archive (2018), available at https://arxiv.org/abs/1804.02316

. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models

in BPMN. Information & Software Technology 50(12), 1281-1294 (2008)

Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent
Systems. Springer Publishing Company, Incorporated, 1st edn. (2009)

Kalenkova, A.A., van der Aalst, W.M.P., Lomazova, [.A., Rubin, V.A.: Process Mining Using
BPMN: Relating Event Logs and Process Models. Software & Systems Modeling 16(4),
1019-1048 (2017)

Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-aware
compliance checking of business process models. LNCS, vol. 6412, pp. 332-346. Springer
(2010)

Mannhardt, F.: Multi-perspective process mining. Ph.D. thesis, Department of Mathematics
and Computer Science (2 2018), https://pure.tue.nl/ws/portalfiles/portal/90463927
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining revisited
- discovering overlapping rules. In: CAiSE 2016. vol. 9694, pp. 377-392. Springer (2016)
Montali, M., Calvanese, D.: Soundness of data-aware, case-centric processes. Int. Journal on
Software Tools for Technology Transfer (2016)

Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S., West-
ergaard, M., Christensen, S., Jensen, K.: Cpn tools for editing, simulating, and analysing
coloured petri nets. In: Proc. of ICATPN. pp. 450—462. Springer (2003)

Sidorova, N., Stahl, C., Tr¢ka, N.: Soundness verification for conceptual workflow nets with
data: Early detection of errors with the most precision possible. Information Systems 36(7),
1026-1043 (2011)

