
Global Predictive Monitoring of
Object-Centric Processes

Massimiliano de Leoni, Pietro Volpato

Department of Mathematics
University of Padua, Italy

deleoni@math.unipd.it,
pietro.volpato.2@studenti.unipd.it

Abstract. Object-centric processes follow a paradigm in which a single process
instance does not operate in isolation but interacts with other instances of the
same or different processes. Recently, these processes have become increasingly
popular in both academia and industry due to their relevance in various applica-
tion scenarios. Predictive process monitoring is naturally still relevant for object-
centric processes to predict the final outcome of individual process executions.
A substantial body of research work exists to tackle the predictive monitoring
task for object-centric processes. However, while object-centric processes already
consider the interactions among objects, there may still be interferences among
executions that are not explicitly represented through shared objects. Existing
techniques for predictive monitoring for object-centric processes only consider
the explicit object interactions, overlooking the hidden interferences. If these in-
terferences have a significant influence on predicted KPIs of interest, the predic-
tion accuracy is negatively impacted. This paper puts forward a technique that
performs global predictions of all ongoing process executions together. Experi-
ments on multiple processes show that indeed these global predictions are signif-
icantly more accurate, compared to the setting in which process executions are
predicted in isolation by only considering the explicit interactions.

Keywords: Object-centric Processes · Predictive Monitoring · Graph Neural Net-
works

1 Introduction

Predictive process monitoring aims to anticipate the future state of ongoing process ex-
ecutions, using historical event data [6]. This type of monitoring is aimed at forecasting
key aspects of a process, such as its completion time, the customer satisfaction, or the
likelihood of achieving a desired outcome (e.g., success or failure). The goal is to antic-
ipate issues of running process executions, and thus reason on corrective actions before
the consequences can no longer be mitigated.

Predictive process monitoring has traditionally assumed that executions follow a
sequence-like flow where each execution is associated with data objects that are not
shared among different executions [6]. In reality, the process executions are much

2 Massimiliano de Leoni, Pietro Volpato

more complex: activities can be related to multiple objects of different types simul-
taneously [7], which are shared among activities of different executions. These consid-
erations led to the introduction of the paradigm of object-centric processes. Predictive
process monitoring is naturally still relevant for object-centric processes. This broader
assumption implies that each activity execution can have multiple predecessors and suc-
cessors in different executions, breaking the assumption of a linear sequence of process
executions, as assumed in traditional predictive process monitoring.

The last couple of years have witnessed the introduction of several techniques to
address object-centric predictive process monitoring (cf. Section 2), where graph-like
flow process representations have replaced sequence-like flows. However, while predic-
tive monitoring for object-centric processes already considers the explicit interactions
between objects, there may be interference factors among process executions that are
not explicitly encoded through the object interactions, and thus are ignored when per-
forming predictions. Consider a global supply chain for electronics. Each shipment is a
process execution that involves multiple stages (order processing, warehousing, trans-
portation, and delivery). A shipment’s delivery time (prediction target) is not solely de-
termined by its individual route, and by the number of items and trucks, which can be
shared among process executions. It is also influenced by other factors, such as the rout-
ing of other shipments, sudden spikes in the number of shipments, multiple shipments
requiring the same specialized transport (e.g., refrigerated trucks). These factors can
cause bottlenecks and delays. Some of these factors may not be encoded through object
interactions; for instance, trucks might not be process’ objects, or shipments might not
be explicitly linked together. The existing body of research on predictive monitoring for
object-centric processes would ignore these interactions, thereby potentially negatively
affecting the quality of the predictions.

This work aims to provide a new structural framework for encoding process execu-
tions, where graphs of the ongoing process executions are merged into a single graph,
thus enabling predictors to be globally trained, namely training them all together to pre-
dict all KPI values in one shot. Our framework facilitates information flow within the
graph, enhancing the predictive performance of a unified representation compared to
treating process executions independently.

Our framework leverages on Graph Neural Networks to perform the predictions,
because process executions are naturally organized in form of graphs. A full-fledged
prototype has been developed in Python, and tested on multiple object-centric processes
and KPIs.1 The experimental results show that global predictive process monitoring for
object-centric processes leads to a higher prediction accuracy, when compared with
the state-of-the-art techniques, which ignore the hidden interferences among process
executions.

The remainder of the paper is organized as follows. First, we discuss related works
in Section 2, followed by the necessary preliminaries in Section 3. Section 4 formalizes
the problem of object-centric process prediction, while Section 5 introduces our theoret-
ical framework to address the prediction problem. Section 6 discusses the experimental
setup and the results of the assessment. Section 7 discusses the current limitations and

1 https://figshare.com/s/60b996e372eebe097517

https://figshare.com/s/60b996e372eebe097517

Global Predictive Monitoring of Object-Centric Processes 3

the consequent avenues for future work, while Section 8 concludes the paper, summa-
rizing and discussing the contributions.

2 Related Works

Research interest in Predictive Process Monitoring (PPM) within the object-centric
paradigm has grown significantly in recent years. Early approaches to solving the pre-
diction problem flattened the Object-Centric Event Log (OCEL) into a traditional for-
mat. This approach, despite being simple, results in a loss of structural information,
essential for preserving the object-centric nature of the process to analyze.

Both Galanti et al. [8] and Gherissi et al. [9] followed this idea, mitigating the effects
of flattening through feature enhancement. The added features relate to information
about the number of objects, their aggregated attributes and the percentage of objects
that have undergone a specific activity. Flattening is also associated with the problems
of deficiency, convergence and divergence, introduced in [1]. At the same time, other
works have proposed native object-centric approaches to overcome flattening issues,
exploiting the process’ intrinsic nature.

In [5], Adams et al. have proposed to move away from the traditional case notion,
introducing the concept of process execution to represent the event graphs of multiple
interdependent objects. In this way, the relationship between objects and the dependen-
cies between events is maintained. The authors also proposed a leading type extraction
method, to generate multiple sub-graphs from connected components, to better handle
complex and interconnected logs.

Building on this concept, Adams et al. proposed a graph-based encoding to retain
the structural information of the process [3,2]. Their findings demonstrated that a native
graph-based encoding outperforms a non-native tabular and sequential encoding. This
new structure avoids the need for flattening and better represents dependencies in the
process. The work in [4] showed how structural information alone, without the addition
of extra event features, can outperform the current flattened state of the art approaches.
Results were achieved using both GNN and graph embeddings.

All the approaches introduced so far either require flattening event logs or work
with homogeneous graphs, which require aggregating object features and a consequent
information loss. To address these limitations, Smit et al. [14] propose a heterogeneous
graph structure, i.e., graphs with multiple node and edge types, with each object in-
stance being represented by a unique node. This structure is much more representative
than the homogeneous one, thereby yielding improvement over the current state of the
art.

The works mentioned above and the rest of the state of the art on predictive mon-
itoring for object-centric processes only consider the modeled interaction among ob-
jects. Therefore, they ignore the hidden interferences that are not explicitly represented
through object interactions. In the remainder, we introduce our framework for global
predictive monitoring of object-centric processes that introduces a graph encoding that
integrates all concurrent process executions within a single structure. This encoding
works globally and enables performing the predictions of the process executions col-
lectively.

4 Massimiliano de Leoni, Pietro Volpato

Table 1. Object-centric Event Log with Associated Objects

ev_id Event Type Timestamp Order Item Package Product Customer Employee

ev_19 Place Order 2023-04-05 04:24:56 {o6} {e6}

ev_20 Confirm Order 2023-04-05 06:24:56 {o6} {i16, i17} {pr1, pr1} {c1} {e1}

ev_21 Confirm Order 2023-04-05 10:14:43 {o3} {i5, i6, i7} {pr2, pr3, pr4} {c2} {e1}

ev_22 Item Out Of Stock 2023-04-05 12:44:58 {i9} {pr8} {e2}

ev_23 Item Out Of Stock 2023-04-05 12:44:58 {i15} {pr8} {e3}

ev_24 Pick Item 2023-04-05 13:04:56 {i16} {pr1} {e2}

ev_25 Pick Item 2023-04-05 13:04:56 {i17} {pr1} {e2}

ev_26 Place Order 2023-04-05 13:05:45 {o7} {i18, i19, i20} {pr10, pr6, pr11} {c3}

ev_27 Payment Reminder 2023-04-05 15:31:38 {o1} {i1, i2, i3} {pr9, pr6, pr7}

ev_28 Pay Order 2023-04-05 17:13:35 {o2} {i4} {pr5}

ev_29 Create Package 2023-04-05 17:31:49 {i16, i17} {p1} {pr1, pr1} {e4}

ev_30 Send Package 2023-04-05 23:31:49 {p1} {e5}

ev_31 Package Delivery 2023-04-08 14:30:49 {p1} {e6}

Our framework does not require flattening, nor does it require an explicit feature
aggregation, preserving the inherent complexity of the object-centric process executions
to analyze. We achieve this through the use of a heterogeneous graph structure, better
suited for capturing inter-dependencies and relationships between different objects and
events in the process.

3 Preliminaries

This section introduces key concepts for manipulating object-centric event data, adapt-
ing the definitions from [5] to align with the OCEL 2.0 standard and our framework. We
also formalize the graph prediction problem, to fit heterogeneous graph neural networks
to our proposed framework.

The formalization of Object-centric Event Log (OCEL) requires the introduction
of the following universes: the universe of events is denoted by Uev, the universe of
activities (i.e. event types) is denoted by Uetype and the universe of timestamps by Utime.
Uobj is the universe of objects, with Uotype being the universe of object types. Events and
objects both have attributes having values, with the universe of attributes being Uattr

and the universe of attribute values being Uval. The universe of qualifiers describing
relationships among entities is defined as Uqual.

Definition 1 (Object-Centric Event Log). An Object-Centric Event Log 2.0 (OCEL)
is a tuple L = (E,O,EA,OA, evtype, time, objtype, eaval, oaval, πtrace, eatype,
oatype, E2O,O2O) where:

– E ⊆ Uev is the set of events.
– O ⊆ Uobj is the set of objects.
– EA ⊆ Uattr is the set of event attributes.
– OA ⊆ Uattr is the set of object attributes.
– evtype : E → Uetype assigns types to events.
– time : E → Utime assigns timestamps to events.
– objtype : O → Uotype assigns types to objects.

Global Predictive Monitoring of Object-Centric Processes 5

– eaval : (E × EA) ↛ Uval assigns values to event attributes (partial function).
– oaval : (O × OA × Utime) ↛ Uval assigns values to object attributes over time

(partial function).
– πtrace : O → E∗ maps each object to a time-ordered sequence of related events,

such that for every object o ∈ O, πtrace(o) = ⟨e1, . . . , en⟩ where ∀i ∈ {1, . . . , n−1}.
time(ei) ≤ time(ei+1) and ∀i ∈ {1, . . . , n},∃s ∈ Uqual : (ei, s, o) ∈ E2O

– eatype : EA → Uetype assigns types to event attributes.
– oatype : OA → Uotype assigns types to object attributes.
– E2O ⊆ E × Uqual ×O represents qualified event-to-object relations.
– O2O ⊆ O × Uqual ×O represents qualified object-to-object relations.

Example 1. Table 1 presents a visual representation of an object-centric event log that con-
forms to Definition 1. The set of events is given by E = {ev_19, ev_21, . . . , ev_31}, and the
set of objects by O = {o1, o2, . . . , o6, i16, . . . , e6}. As examples, the pairs (ev_20, o6) and
(ev_20, i16) belong to the event-to-object relation E2O, since ev_20 is associated with both
o6 and i16 (see the first event in Table 1). Additional examples include: objtype(o6) = Order,
πtrace(i16) = ⟨ev_20, ev_24, ev_29⟩, and time(ev_20) = 2023-04-05 06:24:56. Furthermore,
suppose that ev_20 assigns the value 2 to the event attribute n, i.e., eaval(ev_20, n) = 2. If
value two is used to update the attribute num_items of object o6 at the timestamp of ev_20, then
oaval(o6, num_items, 2023-04-05 06:24:56) = 2.
Note that the object-to-object relation O2O cannot be directly derived from Table 1. For instance,
the pair (o6, i16) is likely included in O2O because these objects co-occur in ev_20. However, in
general, O2O is not simply the set of object pairs that co-occur in events. Some object-to-object
relations may originate from domain-specific links that go beyond shared event participation.

Before defining process executions, we must establish how entities interact in an object-
centric process. By leveraging the relational tables in event logs, we can effectively
model the relationships among objects and their interactions with events.

Definition 2 (Event-Object Graph). Let L = (E,O,EA,OA, evtype, time, objtype,
eaval, oaval, πtrace, eatype, oatype, E2O,O2O) be an object-centric event log. The event-
object graph is an undirected graph OGL = (O∪E,COE) where the set of undirected
edges is defined as COE = {{x, y} | (x, y) ∈ E2O ∪O2O ∨ (y, x) ∈ E2O ∪O2O.

We denote the distance of two nodes n1, n2 within OGL with the function
dist : O ∪E ×O ∪E → N0, where, for each pairs o1, o2 of nodes, dist(o1, o2 = ∞ if
the nodes are not connected. To represent the complexity of the new event-object graph,
we need a structure that can handle different node and relationship types. This can be
achieved by using heterogeneous graphs.

In line with Adams et al. [5], we introduce the concept of viewpoint as a chosen
leading object type, which induces the executions of an object-centric process:2

Definition 3 (Process Executions). Let L = (E,O,EA,OA, evtype, time, objtype,
eaval, oaval, πtrace, eatype, oatype, E2O,O2O) be an event log, let OGL = (O ∪
E,COE) be its event-object graph, let V ∈ Uotype be a viewpoint. For each object
o ∈ O of objtype(o) = V , a process execution for o is an undirected graph (N,A)

2 Given two sequences σ, σ′, σ′ ⊆ σ indicates that σ′ is a sub-sequence of σ, with possibly
being σ = σ′.

6 Massimiliano de Leoni, Pietro Volpato

o6i16

p1 i17

ev_19: Place Order

ev_20: Confirm Order

ev_24:Pick Item ev_25: Pick Item

ev_29: Create Package

ev_30: Send Package

ev_31: Package Delivery

Legend

Object

Event

Event-to-Event

Event-to-Object

Object-to-Object

Fig. 1. Example of a process execution extracted from the object-centric event log in Table 1 for
order o6. Objects for products, customers and employees are not shown to ensure readability.

where N = O′ ∪ E′ where O′ is the set of objects assigned to o and E′ is the set of
events related to objects in O′:

– O′ = {o′′ ∈ O | objtype(o′′) ̸= V ∧ ∀o′ ∈ O. objtype(o′) = V ⇒ dist(o′, o′′) ≥
dist(o, o′′)}

– E′ = {e ∈ E | ∀o′ ∈ O. objtype(o′) = V ⇒ dist(e, o′) ≥ dist(e, o)}.

Arcs are thus as follows: A = {{e,⊤, e′} | ∃o ∈ O′.⟨e, e′⟩ ⊆ πtrace(o)} ∪{{a, s, b} ∈
COE | a ∈ N, b ∈ N}.

Note that the definition above introduces a fictitious ⊤ to qualify the arcs between
events, assuming ⊤ ∈ Uqual without losing generality. Figure 1 illustrates a process
execution, where an order contains two items assigned to the same package. The legend
distinguishes three types of relationships among entities: two directly derived from the
event log and one generated in the preliminaries.

The use of a heterogeneous structure to represent process executions eliminates
the need for feature aggregation. Each object and event within an execution can be
directly associated with a unique node, preserving its individual characteristics. In con-
trast, previous homogeneous approaches where nodes represented only events, required
condensing information about interacting objects into the event representation. This not
only introduced an additional preprocessing step, but also led to a less meaningful rep-
resentation of the process to analyze.

Global Predictive Monitoring of Object-Centric Processes 7

4 Object-centric Process Prediction

This section formalizes the problem and reviews state-of-the-art techniques. First, we
define how key performance indicators (KPIs) are computed (cf. Definition 4), and for-
malize the object-prediction problem (see Section 4.1). Finally, Section 4.2 formalizes
how the object-centric prediction problem is currently tackled by the literature.

Definition 4 (KPI). Let P be a set of process executions. A KPI is a function K :
P ×Utime → Rn that, given any process execution p ∈ P , returns a vector K(p, t) of
the KPI values at time t.

One advantage of using a heterogeneous structure to represent process executions is the
presence of multiple node types. In our framework, each node type is associated with
an object type, so in the same process execution, we have distinct entities that describe
different objects. By applying the K function iteratively to the same process execution,
we can obtain different metrics related to different object types.

4.1 Formalization of the Problem

The concept of process execution introduced so far considers the latter to be completed.
This is essential for computing the KPI of reference but presents a limitation at inference
time. Our goal is to predict KPIs even when the process execution is at an intermediate
state, allowing for real-time monitoring and early decision-making.

A formal definition of the object-centric process prediction problem requires the
introduction of the concept of a prefix of a process execution:

Definition 5 (Prefix of a Process Execution). Let L = (E,O,EA,OA,
evtype, time, objtype, eaval, oaval, πtrace, eatype, oatype, E2O,O2O) be an event log.
Let P be the universe of potential process executions from L. The function Prefix :
P × Utime → P returns the snapshot of process executions: given a timestamp t and
a process execution p ∈ P , Prefix(p, t) returns the snapshot of p at time t. Formally,
given a process execution p = (N,A), Prefix(p, t) = (N ′, A′) where N ′ = E′ ∪ O′

with:

– E′ = {e ∈ E ∩N | time(e) ≤ t}
– O′ = {o ∈ O ∩N | ∃e ∈ πtrace(o).time(e) ≤ t}.
– A′ = {(a, s, b) ∈ A | a ∈ N ′, b ∈ N ′}

The definition of prefix allows us, given a timestamp, to include in it only objects and
events that have already taken place, excluding future behaviors. Note that a prefix p
of a process execution p is still a process execution, which is a subgraph of p, at any
time. With this concept at hand, we can formalize the problem of object-centric process
prediction as follows:

Definition 6 (Object-centric Process Prediction). Let P be a complete process exe-
cution, and let P ′ be its prefix observed at time t, i.e., P ′ = Prefix(P, t). The goal
of Object-centric Process Prediction is to compute K(P ′, t) where the computation of
K(P ′, t) may depend on the full execution P beyond t. Therefore, computing K(P ′, t)
requires estimating the key elements of the structure of P .

8 Massimiliano de Leoni, Pietro Volpato

The following are examples of sensible KPIs related for the object-centric event log in
Table 1:
Example 2. Let us again consider the object type Order as viewpoint. Let p2 and p6 be the
process execution related to orders o2 and o6 in Table 1. Suppose that the execution is still at
time t = 2024 − 04 − 01 12 : 00 : 00 when only prefixes p′2 = Prefix(p2, t) and p′6 =
Prefix(p6, t). The following are computation examples of three potential KPIs computed on p′2
or p′6:

Time until an order is paid. For order o2, Korder(p
′
2, t) = (2023-04-05 17:13:35) − t =

[364415] seconds. Note that (2023-04-05 17:13:35) is when the order o2 is paid, which
only happens later than t.

Time until items are packaged. The process execution p6 related to o6 contains an event for
Create Package at time 2023-04-05 17:31:49 for two items i16 and i17 (event ev_29 in
Table 1). Therefore, the time until these items are packaged is (2023-04-05 17:31:49)− t =
3655509 seconds. Therefore, Kpackaged(p

′
6, t) = [365509, 365509]. The vector contains

two elements because a package is created for the two items i16 and i17, and the values are
the same because packaged together.

Average Number of item per package. Following the reasoning of the KPI, Kitem(p′6, t) =
[2]. Note that the computation of Kitem(p′, t) is again based on the complete process exe-
cution p, which is unknown at time t because only prefix p′ has been observed at time t.

4.2 Training of a Graph-based Object-Centric Process Predictor

This section discusses object-centric process prediction techniques from the literature
that preserve the graph structure of process executions, rather than applying event-log
flattening. These approaches, previously introduced in Section 2, maintain the native
object-centric representation by modeling process executions as graphs. Such tech-
niques typically employ graph-based predictive models, such as graph neural networks,
which are designed to directly operate on graph-structured data, such as object-centric
process executions.

Formally, let G denote the universe of valid input graphs. A graph-based predictor
defines a function F : G → Rn that maps an input graph g ∈ G to a vector of predicted
values corresponding to n response variables. The model is trained on a multiset of
labeled examples drawn from G× Rn, commonly referred to as the learning set in the
literature.

In the context of object-centric process prediction, given a KPI K : P × Utime →
Rn, for each process execution p and relevant time t, a learning sample
(Prefix(p, t),K(Prefix(p, t), t) is built. At training time, it is possible to compute
K(Prefix(p, t), t), since the full evolution of Prefix(p, t) within the training dataset is
known, including how it leads to the complete process execution p. .

Definition 7 (Learning set). Let L = (E,O,EA,OA, evtype, time, objtype, eaval,
oaval, πtrace, eatype, oatype, E2O,O2O) be an event log. Let P be the universe of po-
tential executions for the process to which L refers. Let Plearning =
{(N1, A1), . . . , (Nm, Am)} ⊂ P be the process executions in L. Let K:
P × Utime → Rn be a KPI function of interest. Let T =

⋃m
i=1

⋃
e∈(Ni∩E) time(e)

Global Predictive Monitoring of Object-Centric Processes 9

be the set of the relevant timestamps for Plearning. The learning set is built as follows:⋃
p∈Plearning

⋃
t∈T

(
Prefix(p, t),K(Prefix(p, t), t)

)
Example 3. To illustrate, consider two orders o1 and o2, each comprising a single item i1
and i2, respectively. Both items are shipped in the same package p1. When item i1 is ready for
shipment, the subgraph po1 remains unchanged, with the subgraph related to po2 evolving until
i2 is ready to be shipped. At that point, both subgraphs will grow until the package is shipped
and orders can be considered fulfilled.

5 Framework

The execution of a process instance in the processes under consideration is strongly
influenced by other concurrently running cases. Treating each execution in isolation
would negatively impact the performance of predictive models, since we would be
omitting critical contextual information. This limitation can be addressed by using a
structure that inherently captures these dependencies, such as a graph representation
that encodes all the concurrently running executions.

5.1 Global Training in Predictive Monitoring

In our technique, every active process execution is merged into a single heterogeneous
graph, which is used as a training instance for graph-based predictors. This ensures that
the hidden interferences among process executions are considered when the predictor is
trained. This approach mirrors real-world scenarios, where at inference time a company
may have n active executions, and wants to compute metrics on the their most updated
representation. When the training instances are merged, the response variables, namely
the KPIs, are also merged:3

Definition 8 (Merged Learning Set). Let L = (E,O,EA,OA, evtype, time, objtype,
eaval, oaval, πtrace, eatype, oatype, E2O,O2O) be an event log. Let P be the universe
of potential executions for the process to which L refers. Let
Plearning = {(N1, A1), . . . , (Nm, Am)} ⊂ P be the process executions in L. Let K :
P × Utime → Rn be a KPI function of interest. Let T =

⋃m
i=1

⋃
e∈(Ni∩E) time(e) be

the set of the relevant timestamps for Plearning. The training set is built as follows:⋃
t∈T

(⋃
p∈Plearning

Prefix(p, t),
⊕

p∈Plearning

K(Prefix(p, t), t)
)

5.2 Feature Encoding

When used as input for a GNN, a process execution p must be transformed into a suit-
able format. A distinct node type is created for each object type in p, and one additional
node type is used to represent event nodes. The information is encoded as follows:

3 Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be any two vectors. Their concatenation is
denoted by x⊕ y = (x1, . . . , xn, y1, . . . , ym).

10 Massimiliano de Leoni, Pietro Volpato

Table 2. Characteristics of object-centric processes used in our experiments.

Process Events Activities Object
Instances

Object
Types Viewpoint Correlation Factor Avg Size of

Process Executions
Order
Management

20909 11 10917 6 Order No. active orders 50

Logistics 121839 14 47543 7 Customer Order No. active containers 121
IoT 9967 14 3956 5 Pickup Plan No. active trucks 74

– Event nodes: Events are treated as categorical variables, where the set of event
types is used as domain. Each event node is represented using a one-hot encoding
of its respective event type.

– Object nodes: Object nodes only contain the raw features present in the event log,
without further preprocessing. Categorical attributes in the event log are encoded
using one-hot encoding.

Edges do not carry attributes; instead, they are represented using a binary indicator
denoting the existence of a connection between two nodes.

To standardize the response variables (i.e., the KPIs), we used z-score normaliza-
tion, also known as standardization, is a data preprocessing technique that transforms
data to have a mean of 0 and a standard deviation of 1 [10]. This is achieved by sub-
tracting the mean of the feature from each data point and then dividing by the standard
deviation of the response variable of the training set. Z-normalization facilitates faster
convergence in gradient descent-based algorithms, such as those used in training Graph
Neural Networks, helps in outlier detection, and mitigates the influence of features with
large numerical ranges [10].

6 Experiments

This section discusses the experimental setup and results. In detail, Section 6.1 intro-
duces the processes, OCELs and KPIs used in the experiments, while Section 6.2 reports
on the implemented GNN architecture and its respective hyperparameters. Section 6.3
reports on the evaluation methodology, where Section 6.4 reports and discusses the re-
sults. Finally, Section 6.5 discusses the asymptotic time complexity.

6.1 Processes, Event Logs and KPIs used in the Experiments

The datasets used in this work are three synthetic processes that are publicly available.
The first is related to the process for the management of customer orders within a com-
pany, covering the steps from administration to shipping [11]. The second focuses on
the logistics process behind a company selling goods overseas, from order registration
to container management and shipping [11]. The third is related to a cargo pickup pro-
cess where the moving goods are monitored via embedded IoT technologies [16]. The
salient characteristics of the object-centric processes and logs are provided in the first
four columns of Table 2, namely the number of events, activities, and object instances
and types.

Global Predictive Monitoring of Object-Centric Processes 11

Table 3. The KPIs used in the experiment for each process, alongside the object type referring to
the KPI of interest.

Process KPI to predict Object Type

Order Management
Time until Order is fulfilled Order

Time until the Item is delivered Item
Time until the Package is delivered Package

Logistics
Time until the second to last event in the process execution Order

Time until the TD is fulfilled Transport Document
Time until Container is ready to depart Container

IoT Time until the Pickup Plan is fulfilled Pickup Plan

The choice fell on these three case studies because they are the only publicly avail-
able case studies that are provided with a simulation model, which enables generating
new OCELs. These models can be inspected and downloaded from the respective ref-
erences, and are designed in CPN Tools.4 As a matter of fact, none of the publicly
available OCELs exhibits interactions with and interferences among the process exe-
cutions. Of course, this does not imply that process executions cannot interfere with
each other: given that every available OCEL is synthetically generated, the authors of
the simulation models have likely not introduced these interferences because it was not
their interest. Therefore, having a simulation model of object-centric processes is cru-
cial in our experimental setting. It allows us to introduce interferences and assess their
impact. Consequently, this enables us to evaluate whether our framework improves the
accuracy of object-centric process predictions across scenarios with different levels of
interference.

Specifically, for each process p and p’s activity a, we started by considering the
average m of the duration of a as defined in the CPN-Tools model from the literature.
Then, the duration of activity a was sampled according to a discrete distribution with
extremes θ · (1−α) ·m and θ · (1+α) ·m where α and θ are the noise and correlation
factors, respectively. Specifically, we tested α = [0, 0.1, 0.2] and the correlation factor
was dependent on the specific process being tested. The dedicated column in Table 2
details which correlation factor was chosen for each process. For instance, the duration
of each activity of the process Order Management was given a correlation factor θ equal
to the number of orders that were active at the moment when the activity was performed.

For order management and logistics processes, we defined and tested three KPIs.
In contrast, only a single KPI was used for the cargo process with IoT devices (see
Table 3). This distinction was necessary due to the nature of the dataset, where other
objects, such as trucks or silos, were more peripheral and not meaningful for predicting
the specific KPI.

For each object-centric process and event log, we used the same viewpoint, which
is indicated in column Viewpoint in Table 2. Each viewpoint induces a set of process
executions, and its average size is also provided in Table 2 (see last column). The size of
a process execution is here measured as the sum of the number of nodes of the respective
graph.

4 CPN-Tools Web site – https://cpntools.org/

https://cpntools.org/

12 Massimiliano de Leoni, Pietro Volpato

Table 4. Hyperparameter settings

Hyperparameter Value(s)
Number of epochs 50

Patience 5
Number of message-passing layers {2, 3, 4, 5}

Activation function ReLU
Number of heads {1, 3}

Optimizer Adam
Number of hidden dimensions {4, 6, 8, 10, 12}

6.2 The GNN Architecture and Hyperparameters

Our implementation builds on Graph Attention Layers [15]. The key innovation of
Graph Attention Layers is the incorporation of an attention mechanism that assigns
different weights to different neighbors of a node. These weights, learned dynamically
from the data, enable the model to focus on the most relevant neighboring nodes.

The architecture also includes a pre-message-passing layer and a post-message-
passing layer. The first layer processes the features before message passing, projecting
them into a common embedding space. The final layer transforms the node embeddings,
obtained after message passing, into the predicted KPI values.

A decreasing learning rate strategy was employed to train our models, with the val-
ues in the set {0.01, 0.0075, 0.005, 0.0025, 0.001, 0.0005}. This schedule allows for a
higher learning rate in the initial epochs to accelerate convergence, followed by gradual
reductions to refine the model’s performance and stabilize training. An early stopping
mechanism with a patience of 5 was employed to avoid overfitting. For the last process,
we employed an exponential moving average of the validation loss, with an α value that
started from 0.9 and was then decreased by 0.1 at each epoch.

6.3 Evaluation Methodology

To compare the performance difference between the two structures proposed in our
framework, we followed the procedure outlined below. For each process, we used the
viewpoint in Table 2, which defined the set of all process executions, as described in
Definition 3. These process executions were then split into a training, a validation and a
test process-execution set, with a proportion of 70%, 10% and 20%, respectively. Split
was based on timestamps so that the process executions in the test process-execution
set were temporally after those in the validation set, which in turn were after those in
the training set. We included in the test sets only those process executions that started
after the completion of the last process execution in the training and validation set. For
each process execution in the training, validation and test process-execution sets, we
generated the learning set and the merged learning set for training, validation and test.
Learning sets were used to train and test the state-of-the-art techniques, whereas merged
learning sets were employed to train and test our framework for global predictive mon-
itoring of object-centric processes.

Global Predictive Monitoring of Object-Centric Processes 13

Every KPI used in the evaluation represents the remaining time until a specific con-
dition c becomes true in a process execution (e.g., the occurrence of a particular activ-
ity). These conditions have never been met at the start of any process execution. For
each process execution in the training, validation and test set, only the prefixes in which
the condition c had not yet been satisfied were considered. The response variables (i.e.,
the KPIs) in all training, validation and test sets were standardized as discussed in Sec-
tion 5.2, using the means and standard deviations of the values from the training sets to
preserve the integrity of the standardization process.

For each KPI and process, we independently optimized the hyperparameters related
to the number of message-passing layers, heads, and hidden dimensions (cf. Table 4). To
ensure a robust evaluation and mitigate the effects of random initialization, five different
models were trained for each process and KPI.

The performance evaluation was based on the mean absolute error (MAE) between
the standardized predictions output by the GNN-based models and the corresponding
standardized ground-truth values from the test set. This standardized MAE is beneficial
to compare performance across different datasets, and also to account for the variability
of the distributions of the response variables. Note that the MAE obtained from stan-
dardized data can be converted into the original time scale by multiplying it by the
standard deviation of the training set. Since the multiplication factor is constant for a
given training set, the improvement percentages are independent of being computed on
standardized or on non-standardized MAE.

6.4 Evaluation Results

This section discusses our experimental results, which are summarized in Table 5. Re-
call that the reported metrics represent the mean performance across five trained mod-
els, as mentioned in Section 6.3: this ensures a more robust and generalizable estimate.
The performance of our proposed framework, referred to as Global in the table, was
compared against the state-of-the-art approach based on Learning Sets, referred to as
Local, and also against a single baseline in which the prediction is equal to the response-
variable mean value from the training set. Recall that every KPI value is standardized
(cf. Section 5.2).

The Order Management process exhibits linearity in the first two proposed KPIs.
Both the Order and Item display a clear linear pattern, where the improvement in loss
using the merged learning set directly correlates with the noise level. In contrast, the
Package KPI shows the least correlation. This irregularity is expected, as package-
related activities in the CPN model do not incorporate the θ factor.

The Logistics process exhibits a more consistent behavior across the three different
KPIs. When the noise level α is equal to 0, the MAE improvement is significantly
lower compared to when α = 0.1 and α = 0.2. Additionally, for this process, the
results using Merged Learning Sets show a greater improvement with respect to the
Learning Sets and tp the baseline. This can be attributed to the higher complexity of the
event log, where on average a larger number of objects and events participate in process
executions, as summarized in Table 2. As a result, the object-centric graph structure
proves to be more effective compared to a simpler event log.

14 Massimiliano de Leoni, Pietro Volpato

Table 5. Performance results are reported for various KPIs, noise levels, and the baseline across
the three processes. Values represent the Mean Absolute Error (MAE) of the standardized KPI
values. Terms Global and Local refer to models trained on the Merged Learning Sets and on the
individual Learning Sets, respectively. The Improvement column shows the MAE improvement
achieved by the global approach wrt. the local, while Std. Dev. shows the standard deviation of the
respective KPI values in the training set, measured in hours, which was used for standardization.

Process KPI Noise
Factor α

Global Local Improvement Baseline Std. Dev.

ORDER
MANAGEMENT

Time Until
Order is fulfilled

0 0.8518 0.8698 2.08% 0.9024 273
0.1 0.9906 1.0185 2.74% 1.0395 294
0.2 0.9048 0.9435 4.11% 0.9736 264

Time until
the Item

is delivered

0 0.9606 1.0468 8.24% 1.1926 265
0.1 1.2140 1.3266 8.49% 1.4413 291
0.2 0.9581 1.2035 20.40% 1.2144 255

Time until
the Package
is delivered

0 0.8798 0.8649 -1.73% 0.8927 77
0.1 0.6698 0.6523 -2.68% 0.7180 73
0.2 0.6381 0.6409 0.44% 0.6942 77

LOGISTICS

Time until
the second to last
event in the p.e.

0 0.7128 0.7536 5.41% 0.8111 143.51
0.1 0.6820 0.7798 12.55% 0.8491 140.98
0.2 0.6827 0.7819 12.68% 0.8331 143.81

Time until
the TD is fulfilled

0 0.4739 0.6603 28.22% 0.8087 0.00019
0.1 0.3054 0.6646 54.05% 0.8330 0.65
0.2 0.2865 0.6881 58.36% 0.8379 1.31

Time until
Container is ready

to depart

0 0.5533 0.7556 26.78% 0.8200 182.38
0.1 0.3872 0.7400 47.68% 0.8348 179.96
0.2 0.3820 0.7692 50.35% 0.8378 180.83

IoT
Time until

the Pickup Plan
is fulfilled

0 0.5777 0.6089 5.13% 0.7206 60
0.1 0.6163 0.6623 6.95% 0.7264 67
0.2 0.8008 0.8397 4.64% 0.9147 77

The IoT process instead shows an average level of improvement of approximately
4-6%, which is uncorrelated with the noise factor. This is likely related to the nature of
the process. However, when comparing the best-performing models for both Learning
Sets and Merged Learning Sets, we observe that the trend correlating improvement with
noise remains consistent. The improvements recorded are 4.30%, 4.48% and 7.19% for
noise factors of 0, 0.1 and 0.2, respectively.

To summarize, we observed that our framework based on merged learning sets per-
formed better than techniques that are based on non-merged learning sets. In contexts
where there is a correlation between parallel process executions, our proposed solu-
tion consistently outperforms the traditional approaches in which the learning sets are
not merged. The results in Table 5 point out that the accuracy improvement of our
framework based on merged learning set is progressively larger as the amount of noise
increases. Sometimes, the MAE improvement can be up to and even more than 50%,
which notably occurs when process executions are larger in size and chacterized by a
higher noise factor. Consider, for example, two KPIs of the logistics datasets with noise

Global Predictive Monitoring of Object-Centric Processes 15

factor α equal to 0.1 and 0.2: the average size of the process executions is twice or even
more than the size of the other two processes (cf. Table 2).

In conclusion, this makes our proposed solution more robust to real-world scenar-
ios, where global correlations may exist but are not explicit, and where latent factors,
mimicked by noise, can hinder performance if not appropriately handled.

6.5 Time-Complexity Analysis

Graph Attention Networks use attention mechanisms, where a weight is associated with
each pair of neighboring nodes [15]. Therefore, the time complexity to train on a graph
(N,A) is O(|N |2) in the worst-case scenario (i.e., a fully-connected graph). In reality,
nodes have a limited number of neighbors: the complexity is thus O(|N | · d) where
d is the average degree of the graph’s nodes. The complexity scales linearly with the
number M of graphs, leading to a total time complexity of O(M · |N | · d).

Let us consider the specific setting of predictive monitoring of object-centric pro-
cesses. Given a process execution p and a timestamp t, let us denote the number of nodes
of a prefix Prefix(p, t) with M(p, t). Let us indicate the average size of the graph re-
lated to a prefix of a process execution with P = avgt∈T avgp∈Plearning

M(p, t).
Definition 7 describes the size and number of graphs for the non-merged learn-

ing sets: the number of graphs is M = |T | · |Plearning| with a certain average size P .
Therefore, for the set of non-merged learning sets, the time complexity is
O(|T | · |Plearning| · P · dn) for some average degree dn.

Definition 8 illustrates the size and number of graphs for the merged learning sets
(namely the global-prediction setting): the number of graphs is M = |T | while the
average size is |Plearning| · P in the worst-case scenario because the merged graph
contains |Plearning| sub-graphs, each with an average of P nodes. Therefore, for the
merged learning sets, the time complexity is O(|T | · |Plearning| · P · dg) for some
average node degree dg .

Furthermore, dg ≃ dn because, for each graph of the merged learning sets, the
sub-graphs tend to form disconnected components or, at most, share a couple of nodes,
which does not significantly alter the average degree. It follows that the asymptotic time
complexity of training on learning sets coincides with the case of training on merged
learning sets. In fact, the practical experiments confirm that the difference in training
time is negligible in the two settings.

7 Discussion of Potential Limitations and Future Work

This section discusses potential limitations and consequent avenues for future work.
Our framework operationalization is based on Graph Neural Networks where categori-
cal features (e.g., the activity names) have been represented via one-hot encoding. Al-
though one-hot encoded vectors are mostly zeros and, thus, can be efficiently stored and
processed using sparse matrix representations, this encoding might potentially not scale
when there are very large numbers of values of categorical features (e.g., hundreds of
distinct activities and objects).

16 Massimiliano de Leoni, Pietro Volpato

Although this issue did not arise in our experiments, we intend to explore the use
of more compact embeddings, such as those proposed by Rama-Maneiro et al. [12], to
evaluate potential improvements in scalability and accuracy. However, Rama-Maneiro
et al. [12] leverage a numerical scale to produce compact embeddings, which - if not
carefully managed - may introduce an implicit ordering that can cause miscalculations
of the attention coefficients of our GATs. On the contrary, a one-hot encoding would
inherently prevent the risk because no ordering is imposed.

Our embedding based on one-hot encoding does not support categories in the test
set that were not observed at training time. This might be a potential limitation when
predictive monitoring is used in production, if the process undergoes a concept drift.
We plan to investigate proposals on how one-hot encoding can be adjusted to tackle this
problem, such as proposed by Roider et al. [13].

The evaluation has only focused on time-related KPIs and performed on synthetic
object-centric event logs. However, the underlying theoretical framework is general and
can support other KPI categories, which we plan to explore in future work. We also aim
to extend the evaluation to real-world object-centric event data, although real data does
not allow for verifying the presence of interdependencies and assessing their impact on
prediction accuracy.

8 Conclusion

Predictive process monitoring aims to forecast the future state of ongoing process exe-
cutions using historical event data. Traditionally, it has been applied under the assump-
tion that process executions follow a sequential flow, where each execution is indepen-
dent and associated with non-shared data objects. However, real-world processes are
often more complex, involving multiple objects of different types that interact across
different executions. This has led to the introduction of object-centric process monitor-
ing, which acknowledges these interdependencies and provides a more accurate repre-
sentation of process behavior.

In response to this paradigm shift, recent research has introduced techniques that
replace sequence-based models with graph-based representations to capture the rela-
tionships between objects. However, existing object-centric predictive process monitor-
ing approaches still overlook certain global influences that are not explicitly modeled
through object interactions. For example, in a supply chain scenario, factors like bottle-
necks, shared transportation resources, or fluctuating shipment volumes impact process
outcomes but may not be captured through object interaction. This limitation can lead
to less accurate predictions, as important external dependencies remain unaccounted
for.

To address these challenges, this work proposes a new structural framework that
merges multiple process execution graphs into a single global representation. By lever-
aging Graph Neural Networks, the framework enables a unified approach to predictive
modeling. Experimental results demonstrate that these global prediction models en-
hance predictive accuracy, compared to state-of-the-art techniques that do not account
for the hidden interferences among process executions, which are not explicitly repre-
sented via object interactions.

Global Predictive Monitoring of Object-Centric Processes 17

Acknowledgement. Authors would like to thank Dr. Alessandro Padella, postdoctoral
researcher at University of Padua, for his valuable feedback on the assessment results.

References

1. Aalst, W.M.P.: Object-Centric Process Mining: Dealing with Divergence and Convergence
in Event Data, LNCS, vol. 11724, pp. 3–25. Springer (2019)

2. Adams, J.N., Drescher, H., Swoboda, A., Günnemann, N., Park, G., van der Aalst, W.: Im-
proving predictive process monitoring using object-centric process mining. In: ECIS 2024
Proceedings. No. 7 (2024)

3. Adams, J.N., Park, G., Levich, S., Schuster, D., van der Aalst, W.M.P.: A framework for
extracting and encoding features from object-centric event data. In: Service-Oriented Com-
puting. pp. 36–53. Springer Nature Switzerland (2022)

4. Adams, J.N., Park, G., van der Aalst, W.M.: Preserving complex object-centric graph struc-
tures to improve machine learning tasks in process mining. Engineering Applications of
Artificial Intelligence 125, 106764 (2023)

5. Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.: Defining cases
and variants for object-centric event data. In: 2022 4th International Conference on Process
Mining (ICPM). pp. 128–135 (2022)

6. Di Francescomarino, C., Ghidini, C.: Predictive Process Monitoring, pp. 320–346. Springer
International Publishing (2022)

7. Fahland, D.: Process Mining over Multiple Behavioral Dimensions with Event Knowledge
Graphs, pp. 274–319. Springer International Publishing (2022)

8. Galanti, R., de Leoni, M., Navarin, N., Marazzi, A.: Object-centric process predictive ana-
lytics. Expert Systems with Applications 213, 119173 (2023)

9. Gherissi, W., El Haddad, J., Grigori, D.: Object-centric predictive process monitoring. In:
Service-Oriented Computing – ICSOC 2022 Workshops. Springer (2023)

10. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York, NY (2013)
11. Object-Centric Event Log Standard: Ocel: Object-centric event log standard. https://

www.ocel-standard.org (2024)
12. Rama-Maneiro, E., Vidal, J.C., Lama, M., Monteagudo-Lago, P.: Exploiting recurrent graph

neural networks for suffix prediction in predictive monitoring. Computing 106, 3085–3111
(2024). https://doi.org/10.1007/s00607-024-01315-9

13. Roider, J., Wang, W., Zanca, D., Matzner, M., Eskofier, B.M.: Predictions in predictive pro-
cess monitoring with previously unseen categorical values. In: Process Mining Workshops
(ICPM 2024), Lecture Notes in Business Information Processing, vol. 533, pp. 227–239.
Springer (2025). https://doi.org/10.1007/978-3-031-82225-4_17

14. Smit, T.K., Reijers, H.A., Lu, X.: Hoeg: A new approach for object-centric predictive process
monitoring. In: Advanced Information Systems Engineering. Springer (2024)

15. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention
networks. In: International Conference on Learning Representations (2018)

16. Wei, J., Ouyang, C., Ma, W., Jiang, D., Xia, J., ter Hofstede, A., Wang, Y., Huang, L.: From
Conventional to IoT-Enhanced: Simulated Object-Centric Event Logs for Real-Life Logis-
tics Processes. In: Proceedings of the Best Dissertation Award, Doctoral Consortium, and
Demonstration and Resources Forum at BPM 2024, pp. 106–110 (2024)

https://www.ocel-standard.org
https://www.ocel-standard.org
https://doi.org/10.1007/s00607-024-01315-9
https://doi.org/10.1007/s00607-024-01315-9
https://doi.org/10.1007/978-3-031-82225-4_17
https://doi.org/10.1007/978-3-031-82225-4_17

	Global Predictive Monitoring of Object-Centric Processes

