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Abstract. Predictive business process analytics has become important for or-
ganizations, offering real-time operational support for their processes. However,
these algorithms often perform unfair predictions because they are based on bi-
ased variables (e.g., gender or nationality), namely variables embodying discrim-
ination. This paper addresses the challenge of integrating a debiasing phase into
predictive business process analytics to ensure that predictions are not influenced
by biased variables. Our framework leverages on adversial debiasing is evaluated
on four use cases, showing a significant reduction in the contribution of biased
variables to the predicted value. The proposed technique is also compared with
the state of the art in fairness in process mining, illustrating that our framework
allows for a more enhanced level of fairness, while retaining a better prediction
quality.
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1 Introduction

Predictive process analytics aims to forecast the outcome of running process instances
to identify those requiring specific attention, such as instances risking delays, exces-
sive costs, or unsatisfactory outcomes. By predicting process behavior and outcomes,
predictive process analytics enables timely intervention and informed decision-making.

Predictive process analytics naturally needs to rely onto the characteristics of the
process being monitored, and performs predictions on their basis. Being that said, this
analytics become a problem when predictions are unfair because they are based on char-
acteristics that discriminate in a form that is unacceptable from a legal and/or ethical
point of view. For instance, in a loan-application process at a financial institute, one can-
not build on the applicant’s gender to predict the outcome, namely whether or not the
loan is granted. Pohl et al. indicate monitoring, detecting and rectifying biased patterns
to be the most significant challenge in Discrimination-Aware Process Mining [5].

Process characteristics are hereafter modelled as process variables. In accordance
with the literature terminology [7], we use the term protected variable to indicate the
variables on which prediction cannot be based. The choice of the set of variables to
protect depends on the specific process, and thus needs to be made by the process ana-
lysts/stakeholders. Note how simply removing the protected variables from the datasets
would not be effective, because the bias would be simply “hidden under the carpet”, as
it would be possibly just transferred to other variables that are strongly correlated.
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While several researchers acknowledge the importance of ensuring fairness in pro-
cess predictive analytics, very little research has been carried out on this topic (cf. dis-
cussion in Section 2 of the extended version in [2]). This paper proposes a framework
based on adversarial debiasing, which aims to mitigate bias related to protected vari-
ables within the predictive models. In a nutshell, the proposed framework is based on
the idea of training the model to predict the process’ outcome values, constraining accu-
rately predicting the protected variables and reducing bias in its learned representations.

Compared with the current literature in fairness for process’ predictive analytics,
adversial debiasing aims at more accurate predictions through prediction models that
also guarantee higher fairness. However, existing research on adversial debiasing has
not focused on process predictive analytics and, more generally, to time series, and
cannot be trivially applied in this setting (cf. Section 2 of [2]).

Experiments have been conducted on four use cases to forecast the process-instance
total time and whether or not certain activities are going to occur. Protected variables
accounted for resources, organization countries, gender, citizenship and spoken lan-
guages. The results show that our framework ensures fairness with respect to the cho-
sen protected variables, while the accuracy of the predictive models remains high, also
in comparison with the results for comparable research works in literature. Experimen-
tal results also highlight that the influence is also reduced for those process variables
that are strongly correlated with the protected variables, illustrating that removing the
protected variables would just transfer the unfairness to the correlated variables.

2 Preliminaries

The starting point for a prediction system is an event log. An event log is a multiset of
traces. Each trace describes the life-cycle of a particular process instance (i.e., a case),
which is composed by a sequence of events, each referring to the execution of a certain
activity by a resource at a given timestamps. Additional attributes can be associated to
events: the activity cost, outcome, relevant information, etc.

Predictions aims to forecast the outcome value of a running trace, hereafter mod-
elled as an outcome function I : £* — O, with O be the set of potential outcome
values. Outcome function K(o) returns the process-instance outcome observed after
observing the sequence o of its events. Predictive analytics aims to build a process pre-
diction oracle Uy : £* — O such that, given a running trace ¢’ eventually completing
in o, Y (¢’) is a good predictor of K(or).

The literature proposes several Machine- and Deep-Learning techniques, highlight-
ing LSTM’s quality (cf. Section 2 of [3]). We instead opted for fully connected neural
networks (FCNNs) [1], which are faster to train than LSTM networks but provide simi-
lar accuracy results (see our comparison reported in Section 5.5 of [2]). Also known as
Feed-Forward Neural Networks, FCNNSs are characterized by having every node in one
layer connected to every node in the next layer, meaning that every node in one layer
receives input from every node in the previous layer.

The training of FCNN models falls into the problem of supervised learning, which
aims to estimate a Machine-Learning (ML) function ¢ : X; x ... x X, — ) where Y
is the domain of variable to predict (a.k.a. dependent variable), and X; ... X, are the
domains of some independent variables V1, ..., V,,, respectively.
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To tackle the prediction problem for an outcome function, )Y = O. The values of
the independent variables are obtained from the event-log traces: each trace is encoded
into a vector element of X; X ... x X,,, through a trace-to-instance encoding function
pe € — X1 x...x X,. Note that the process prediction oracle is thus implemented
as Ui (o) = P(pc(o)). Section 2 of the extended version of this paper [2] provides
further details on how these functions are trained from event logs.

3 An Adversarial Debiasing Framework for Predictive Process
Analytics

The overall objective of this paper is to build a process prediction function ¥ whose
output values are not influenced by the chosen protected variables.

The determination of the protected variable depends on the specific use case under
consideration (e.g., the gender or nationality of a loan applicant). It is crucial to note
that certain variables may be designated as protected in one use case but not in another
(e.g., the variable “Gender” might be designated as a protected variable in the context
of a loan application process, but it may not hold the same status in the process of
hospital discharge). By carefully selecting the protected variables, we aim to ensure
that the predictions do not enforce a discrimination that is not ethically and/or morally
acceptable.

The framework is visually depicted in Figure 1 where the core component is the
prediction model that implements the oracle function Wy, capable to of forecasting the
outcome of a running trace. Leveraging on neural networks, Wi is obtained through
the composition of the trace-to-instance encoding function pr, and an ML function
d: X1 x...x X, — O, namely for any trace o, ¥c(0) = D(pr(c)). The most left
gray box in Figure 1 is the encoder pr,, which converts the trace into a vector. The sec-
ond gray box from left depicts the FCNN that implements @, along with the decoder
represented through the red dot.

Looking from the right in Figure 1, the first gray box depicts the adversarial FCNN,

which tackle the debiasing problem to ensure fairness. In particular, let V = {V;,...,V,}
C {Vi,...,Vi} be the set of the protected variables, which are defined over the do-
mains Z = Xy, ..., X,, respectively. Let N1, ..., N, are the domains of the output of

the ¢ nodes that constitute the last layer of the FCNN implementing . The adversarial
FCNN implements a function ¢z : Ny x N, — Z, which aims to predict the values of
the protected variables, using the output of the last layer as input.

In accordance with the literature on adversarial debiasing [7], if the neural network
that implements @ - in our case a FCNN - does not build the prediction on the pro-
tected variables, then the adversarial network that implements @ - in our case another
FCNN - is unable to predict the protected-variables values from the output of the net-
work implementing .

More formally, let § = @(Z) be the predicted value for the running trace o’ that has
been encoded & = py,(0’). Let o be the real completion of ¢’ (i.e. o’ is a prefix of o),
with the real outcome y = IC(0). Let 2 = ®z(i7) be the vector of the values predicted
for the protected variables, on the basis of the vector 72 of the output of the last layer
of the neural network that implements . The two neural networks are trained so as to
minimize the overall loss function: Ly (9,y, %, 2) = A(9,y) — A(Z, m7(Z)). Symbol
A indicates the normalized difference between two vectors (or two values), and 7-(%)
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Fig. 1: Overview of our debiasing framework for process’ predictive analytics.

is the projection of & over V, namely retaining the dimensions of Z for the protected
variables. The normalization in A(§,y) is performed by dividing by the largest out-
come value y = K(o) for all traces o in the training event log. The normalization in
A(Z, my7(Z)) is achieved by dividing by the largest vector m-(pr (o)) for all traces o in
the training event log. Minimizing loss function Ly implies that prediction accuracy is
kept reasonably high while the influence of protected variables is minimized.

The whole framework has been implemented through the training of two FCNNs
on a stochastic-gradient-descent based algorithm. The inplementation is in Python and
available at https://anonymous.4open.science/r/Fairness-D70B,
leveraging on the PyTorch package for FCNN’s training and fairlearn for other de-
biasing utilities.

4 Evaluation

The evaluation focuses on evaluating how our framework mitigates the influence of
protected variables while still ensuring a good quality. The framework evaluation was
carried out by training two FCNNSs that implement functions ¢ and @ 7. In particular, we
carried out a grid search to tune the hyper-parameters related to the learning rate, layers
shape, epochs, and weight decay, so as to prevent over- and under-fitting problems.

Our debiasing framework was evaluated on four use cases, aiming to assess (i) the
mitigated influence of the protected variables on the prediction, and (ii) the extent of
the reduction of the prediction accuracy when our framework was employed. Note that
a reduction in accuracy is expected when addressing the fairness problem: if the pro-
tected variables have some good predictive power, their exclusion has a natural negative
impact on the ML-model accuracy. The baseline of comparison is with the only existing
framework by Qafari et al. [6].

4.1 Introduction to Use Cases

Our technique was assessed through three process for which we have identified four use
cases. The first and the second use case are from Volvo Belgium and refer to a process
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that focuses on an incident and problem management system called VINST.! In the first
use case, our aim is to predict the total time of an execution that is running, while in
the second our aim is to predict whether or not the activity Awaiting Assignment will
occur in the future; it is

The third use case refers to the Hiring process provided by Pohl et al. in [4]. For
this use case we aim to predict the total time a running execution.

The last use case is based on the Hospital process discussed by Pohl et al. [4]. For
this use case our aim is to predict whether or not the activity Treatment unsuccessful
will occur in the future.

For each use case, the available process log has been temporarily split into 70% of
the traces that were used for training the prediction and adversarial models and 30% for
testing. Protected variables have to be clearly different between the different use cases,
since their choice depend on process and is also related to specific fairness-preserving
considerations. The different protected variables are summarized in the column 3 of the
Table 2 the choices for the four use cases.

4.2 Evaluation Metrics

The evaluation’s goal is twofold: it aims to assess the mitigation influence of the pro-
tected variables on the prediction and the reduction extent of the prediction accuracy.

For the first and third use cases in which we aim to predict the total time of running
traces, i.e. a regression problem, the results are provided in terms of Absolute Per-
centage Accuracy (APA) , which is defined as 100% minus Mean Absolute Percent-
age Error, between the actual value and the predicted one. For the second and fourth
use cases, we aim to test the accuracy prediction on the occurrence for the activities
Awaiting Assignment and Treatment unsuccessful, respectively. This is a classification
problem: hence, we choose F-score for assessing the accuracy of our predictions.

To assess the reduction in the influence of protected variables, we employ the the-
ory of Shapley values?, computing them both when our framework is employed and
when it is not: our framework is expected to reduce the absolute Shapley value, which
corresponds to a lower influence. For classification problems, we also assess an en-
hanced fairness through the analysis of the false positive rate (FPR) and true positive
rate (TPR), and the verification of the Equalized Odds criterion [7]: this criterion states
that, if we group the samples in the test set by the values of the protected variables, the
FPR and TPR should be somewhat similar in all groups. The rationale behind this crite-
rion is that, splitting the test-set samples based on the values of the protected variables,
one obtains groups that are statistically equated, including for false and true positive
rates, if the model’s prediction are not based on the protected variables.

4.3 Evaluation Results

Table 1 illustrates the results in terms of accuracy for the processes, logs and predicted
outcomes introduced in Section 4.1. The results are based on a test set that is are con-
structed as discussed in Section 4.1, and they refer to the work proposed in this paper,

! https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_
incidents/12693914

% More details on our use of Shapley values are given in Section 3.2 of this paper’s extended
version [2].
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Process Outcome Methodology |Without| With A
. Qafariet al. [6]| 69% 60% | 9%
VINST Total Time Our Framework| 78% 74% | 4%
Occurrence of Qafari et al. [6]| 0.71 0.59 | 0.12
Awaiting Assignment |Our Framework| 0.80 0.72 | 0.08
Qafari et al. [6] | 79.9% |70.02%{9.88%
Our Framework| 83.6% | 81.1% | 2.5%
Occurrence of Qafari et al. [6]| 0.69 0.58 | 0.11
Treatment Unsuccessful|Our Framework| 0.78 0.76 | 0.02
Table 1: Results achieved by our framework and by Qafari et al. [6], in terms of accu-
racy.

VINST

Hiring Total Time

Hospital

Process Outcome Protected Variable Without| With |Ratio
VINST Total Time Resource country | 112h %h 8%
VINST O'c'curren?e of Organization 18 0.03 1%

Awaiting Assignment country
Hirin Total Time Gender -463min |-156min| 20%
J Religious  |-447min| -12min | 3%
. Occurrence of Citizen 0.25 0.04 | 16%
Hospital

Treatment Unsuccessful| german_speaking 0.17 0.06 |35%
Table 2: Differences in Shapley Values of protected variables with and without the de-
biasing framework, for the four use cases.

which is then compared with the results that Qafari et al. [6] can achieve, which is
considered as baseline. Columns without and within report on the results when the cor-
responding techniques doesn’t or does aim at achieving fairness, respectively. Column
A highlights the reduction of accuracy when the techniques aims at fairness. Our frame-
work consistently obtains higher accuracy for all use cases, if compared with Qafari et
al. [6], and also the accuracy reduction is significantly more limited.

The assessment the effectiveness of our fairness framework to reduce the influence
of the protected variables, we computed the Shapley values of the protected variables
for the four use cases, both when we employed our framework and when we simply
used the FCNN predictor that implements @ (namely excluding the adversial FCNN for
@ ). The results are reported in Table 2. In the use case related the VINST process for
predicting the Total-Time outcome, the protected variable Resource country is charac-
terized by a Shapley value of 112 hours without using the debiasing framework, and 9
hours using the framework: the use of our framework brought the Shapley value down
to 8% of the value without using our framework, which is a remarkable result, given
that the Shapley values are directly correlated with the feature importance in the pre-
diction. For the same process, when the outcome was whether or not activity Awaiting
Assignment Occurrence is predicted to eventually occur, the protected variable Orga-
nization country was characterized by a Shapley value that dropped from 1.8 to 0.03,
when the debiasing framework was employed: the Shapley value has become 1% of the
value without debiasing. Similar results can be observed in Table 2 for the other use
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Poland Sweden India Brazil Usa Std
Without | With | Without| With| Without| With| Without| With| Without| With| Without| With
FPR| 0.20 |0.18| 0.13 |0.24| 0,11 |0,12| 0,17 |0,17| 0,32 [0,41| 0.143 | 0.086
TPR| 091 |0.85| 0.78 |0.89| 0.79 |0.89| 0.98 [0.81| 0.89 [0.83]0.0641 [0.0451
FPR| 0.04 |0.08| 0.11 |[0.09| 0,14 |0,08| 0,02 (0,06 0,01 [0,06| 0.153 |0.018
TPR| 0.67 |0.61| 0.72 |0.63| 0.62 |0.63| 0.59 [0.65| 0.59 [0.65| 0.052 |0.024

Qafari et al. [6]

Our framework

(a) VINST use case when aiming to predict the eventual occurrence of Awaiting Assignment.

Citizen german_speaking
True False Std True False Std
without|with |without |with|without| with |without|with |without|with|without| with
FPR| 0.30 |0.35| 0.36 |0.41| 0.03 [0.03 | 031 |0.35| 0.38 |0.40| 0.035 |0.025
TPR| 0.71 [0.67| 0.62 |0.51| 0.05 |0.08 | 0.71 |0.67| 0.62 |0.51| 0.09 |0.16
FPR| 0.28 |0.26| 0.22 |0.21| 0.03 [0.025| 0.3 |0.24| 0.22 |0.21| 0.04 |0.015
TPR| 0.82 [0.76 0.77 |0.74| 0.025 | 0.01 | 0.82 [0.76] 0.77 |0.74| 0.025 | 0.01

Qafari et al. [6]

Our framework

(b) Hospital-process use case, when aiming to predict the eventual occurrence of Treatment Un-
successful

Table 3: False Positive Rate (FPR) and True Positive Rate (TPR) achieved by the debi-
asing framework proposed here and by the framework by Qafari et al for two use cases.
The standard deviation of the FPR and TPR among groups is also shown.

cases, yielding the conclusion that observing the significant drop of the Shapley values
of the protected value after applying our debiasing framework, the framework is ex-
tremely effective to reduce the influence of the protected variables and, thus, enhance
the prediction fairness.

Space limitation does not allow us to show the whole list of Shapley values for the
use cases, which are however available in the extended version [2]. If, e.g., we analyze
Shapley values for the VINST use case (cf. Figure 3 in [2]), we can see that, indeed,
the Shapley value for the protect variable resource country has significantly dropped.
One could also observe that the Shapley value for variable organization country is also
significantly reduced, likely because it is correlated with the protected variable. If we
had simply removed the protected variable, the correlated variable organization coun-
try would have gained strong influence onto the predictions: the bias would have simply
moved from one sensitive variable to another, leaving the prediction model unfair. Con-
versely, our debiasing framework can also reduce the influence of the unfair variables
that are strongly correlated to the one that has explicitly been stated as protected.

We complete the section by reporting the results with respect to the criterion of
Equalized Odds (cf. Section 4.2), which can only be apply to use cases where the set of
outcome’s values is finite, here namely for the use cases related to VINST process and
the Hospital using the activity-occurrence process’ outcome.

For the VINST use case related to the occurrence of activity Awaiting Assignment,
we considered the groups related to top five organization countries, which cover 89% of
the instances in the test set (recall that the protected variable is organization country):
Sweden, Poland, India, Brazil and USA. False positive and negative rates are reported in
Table 3a, without and with using the framework, both for our framework and for that of
Qafari et al. [6], for all five groups. The last two columns with header Std summarizes
the standard deviation for FPR and TPR: in case of perfectly meeting the Equalized
Odds criterion, there would be no difference among the groups, and thus the standard
deviation would be zero. For our framework, the introduction of the debiasing phase, the
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FPR’s standard deviation within the five groups is characterized by a 88% drop, moving
from 0.153 to 0.018, whereas the TPR’s standard deviation shows a 53% drop (from
0.052 to 0.024). Using the fairness approach by Qafari et al. [6], the FPR’s and TPR’s
standard deviation within the five groups show a drop of 53% and 29%, which is nearly
half the drop that our debiasing framework achieves. We conducted the same analysis
for the hospital use case, which is reported in Table 3b. FPRs and TPRs are computed
for both protected variables. Also for this use case, our debiasing framework guarantees
lower FPR’s and TPR’s standard deviations for both variables, although the reduction
is more limited than what achieved for the VINST use case. However, The framework
by Qafari et al. [6] does not reduce the FPR’s and TPR’s standard deviations for any of
the two variables, expect for the FPR for variable german_speaking. As a matter of fact,
their framework increases the TPR’s standard deviation for both of variables, certainly
going against the criterion of Equalized Odds.

5 Conclusion

Considerable research efforts have been directed towards predictive process analytics.
Literature has shown that the fairness problem has generally been overlooked in predic-
tive process analytics (cf. Section 2 of extended version in [2]). This means that predic-
tions may potentially be discriminatory, unethical, and, e.g., targeting certain ethnics,
nationalities and religions. This paper proposes a predictive framework that specializes
those based on adversarial debiasing so as to allow sequences (i.e., traces) as input.

Experiments were carried out on three processes and four use cases, and the results
show that our debasing framework minimizes the influence of the protected variables
onto the prediction. At the same time, we illustrates that the reduction of the prediction
quality is limited and lower than what is achieved by an existing framework for fairness-
preserving process predictive analytics by Qafari et al. [6].
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