
The Benefits of Sensor-Measurement Aggregation in
Discovering IoT Process Models:

A Smart-House Case Study

Massimiliano de Leoni and Lucia Pellattiero

University of Padua
Padua, Italy

Abstract. IoT systems collect and exchange data whose analysis opens up in-
credible opportunities to improve the human satisfaction with IoT systems. The
IoT data can be indeed used to discover human habits and interaction patterns,
useful to both improve human experience and further automatize the system. Pro-
cess Mining can be leveraged on for this purpose, but a gap needs to be bridged
between IoT-device event data and logs by aggregating events to take to the right
granularity for Process Mining. This papers reports on the experience on real-life
data to discover the human habits in a smart house. In particular, the benefits are
reported on how to aggregate event data to the right granularity to further apply
process-mining discovery techniques. The results illustrate that, when applied on
the case study, the proposed technique is able to discover human-habit models
that are more readable and accurate, thus providing actionable insights for a sub-
sequent optimization of the human experience with the IoT system.

Key words: Sensor Data, Event-log Abstraction, Clustering, Human Habits
Model Discovery, Smart House.

1 Introduction

The Internet of Things (IoT) is the inter-networking of physical objects, which can
range from sensors and actuators to software systems and devices [1]. The interest for
IoT systems is nowadays gaining momentum. In general, IoT systems collect and ex-
change data via local networks or the Internet. Analysing these data opens up incredible
opportunities to improve IoT systems from many viewpoint, e.g. considering the human
satisfaction. The data harvested from the sensors can be used to discover the personal
habits of the subjects who interact with the IoT system. The discovery can potentially
provide valuable input to guide an improvement of the interaction of the IoT-system de-
vices. Furthermore, discovering the main interaction patterns can also be used to reduce
the needs of human intervention, thus increasing the level of automation.

Personal habits can be seen as instances of a process, namely a sequence of
steps/activities/actions aiming at a certain goal (e.g., cooking food, dressing or wash-
ing). With this view in mind, Process Mining can provide the techniques to discover
personal habits from sensor data. However, “a challenge is to bridge the gap between
clouds of sensor data and event logs for process mining.” [1]. As a matter of fact,
“sensor data must be aggregated and interpreted to detect activities that can be used
as input for process mining algorithms that support decision making” [1]. Otherwise,
the risk is that the results are given in terms of sensor measurements, which are too
low-level to provide interpretable insights. As a matter of fact, existing approaches that

2 M. de Leoni, L. Pellattiero

apply Process Mining in IoT scenarios overlook the practical need of aggregation (see,
e.g., [2, 3, 4, 5, 6]). Typical, they tackle the intrinsic variability by focusing on the main
paths, thus potentially filtering out plenty of relevant behavior. In fact, they “sweep the
actual problem under the carpet”, as well as they generate low-level models that provide
little insights for analysts.

This paper reports on an experience to employ process-mining techniques to dis-
cover the habit of a human subject who was living in a fully-automated house, which
was equipped with sensors to monitor the subject’s presence in the different rooms. The
sensors produced a stream of events, each of which referred to a measurement: the pres-
ence of the subject in a room, or environmental information (e.g., the presence/absence
of ventilation in room and its temperature, or power and water usage. Process Mining
required a set of event traces, each of which is the recording of one instance of human
behavior. The stream of events were transformed in traces, each of which containing
the events of a different day. As a result, the mined model encodes the typical subject’s
behavior in one day.

This case study shares the typical IoT challenge indicated above: the events were
sensor measurements instead of actual instances of human actions. This triggered the
need to tune the granularity of the events and to abstract these low-level measurements
to a higher-level event concepts. To this aim, we employed an event-log abstraction
technique developed in the realm of process mining [7] and specialized here to the IoT
case. In a nutshell, the idea is that the IoT system events are split per day, and each day
corresponds to different trace. Events of the same trace can be clustered into sessions
such that the time distance between the last event of a session and the first event of the
subsequent session is larger than a user-defined threshold. Each trace is thus seen as a
sequence of sessions of events. These sessions are encoded into data points, which are
later clustered. Each cluster is given a name. The abstract event log is created such that
the entire session is replaced by a sequence of two high-level events with the name of
the cluster, indicating the moments when the session started and concluded.

The abstraction effort has ultimately made possible to mine a model of the human
habit from an event log at the right granularity. The resulting abstract model is clearly
more informative and accurate than the flat model obtained without abstracting. The
abstraction has in fact enabled to only focus on the salient aspects.

The abstract model is actually the highest level of a hierarchical model. Each tran-
sition/activity represents an entire sub-process, whose activities are referred to by the
low-level events. Recall that each abstract-model activity is associated to a cluster,
which contains a multiset of session traces, i.e., a sub event-log. This enables discover-
ing the sub-process associated to each abstract-model activity by using so-constructed
sub event-logs. The hierarchical model has now the same granularity as the flat model.
The experiments show the hierarchical model to be more structured and readable, while
better balancing fitness (i.e., recall) and precision.

2 The Abstraction Technique

The starting point is an event log, which is composed by a set E of events. Events can
be arranged in traces σ = 〈e1, . . . , en〉 ∈ E∗ that group events that refer to executions
of activities within the same instance of process (e.g., every event that refers to human
activities in a domotics house within a certain day). Each event ei carries information.
For the scope of this paper, any ei is at least associated with the activity λA(ei) to

The Benefits of Sensor-Measurement Aggregation in Discovering IoT Process Models 3

Original Event Log

e1 e2 ... en-1 en
Create

Sessions

e1 e2

e3 e4 e5

e6 ... en

Cluster

(e1,e2)

(e3,e4,e5)

(e6,...,en)

Visualize
Heat Map

Create
Abstract Log

Abstract Event Log

c1
st c1

co c2
st c2

co c3
st c3

co

Mine Abstract
Model

c1

c2

Mine one Model
per Cluster

c1

c2
c1

c2
a1

a2

Merge
to Create

Hierarchical
Model

c1

c2

c3

Fig. 1. The Abstraction-Technique Framework for Process Discovery, extended from [7]. For
compactness, we assume that each cluster ci is given name ci.

which the event refers, and the timestamp λT (ei) when the event occurred. Figure 1
summarizes the idea behind the technique: the framework is composed by seven steps,
which are discussed below in detail. Note that the first four steps coincide with those
in [7], whereas the others are discussed in this paper as new.

Create Sessions. All the traces of the event log are split into sessions; each session of
a log trace is a the smallest sub-sequences of the trace such that, for each session, the
difference between the timestamp of the last event of the session and that of the first
event of the session that follows is larger than a user-defined threshold. For instance,
let us consider a trace σ = 〈a1, b3, c4, a10, d13〉. The letter indicates the activity name
associated with the event, and the subscript is the timestamp of the event’s occurrence
(e.g. d occurred at time 13). Assume that the time interval ∆ = 5. One can easily see
that the time difference between the second occurrence of a and the first of e is greater
than∆: λT (a10)−λT (c4) = 6 > ∆ = 5). This yields two sessions: s©∆(σ) = 〈s1, s2〉
where s1 = 〈a1, b3, c4〉 and s2 = 〈a10, d13〉. Note that their concatenation results in σ.

Cluster. Each session s is converted into a vector via an encoding function ENCODE(s)
that abstract the behavior observed in the session. All these vectors (e.g. the ses-
sions) are clustered. The encoding can be obtained in many ways. Here we consider
ENCODE(s) = (vx1

, . . . , vxn
), where x1, . . . , xn are the activities observed in the log

and any vxi
is obtained in one of the two following alternatives:

Frequency-based encoding. The value of dimension vxk
is the number of events for

activity xk in s. If both starting and completion events are observed for an activity
xk, the number of events is ultimately divided by two, to prevent double counting.

Duration-based encoding. The value of dimension vxk
is the average duration of in-

stances of activity xk in the session s (a zero value is given if xk does not occur in
s). To further clarify, let us again consider session s1 introduced above in paragraph
Create Sessions. We can estimated that the duration of activity a is 2, because a oc-
curred at time 1 and b at time 3. Similarly, b lasted 1 time unit because b was at time

4 M. de Leoni, L. Pellattiero

a

A1

An

B1

Bm
..

.

..
.

C1

Cj

D1

Dk

..
.

..
.

A1

An

B1

Bm

..
. ..
.a

C1

Cj

D1

Dk

..
.

..
. a

Abstract-Model Transition Cluster Model

Incorporation of the

Cluster Model inside the

Abstract Model

Cluster

Model

Cluster

Model

Fig. 2. Merging one Cluster model into the Abstract Model to create the Hierarchical Model
.

3 and the subsequent event, for c, was at time 4; in the example, the duration of c
cannot be estimated because it is the last of the session. In [7], the average duration
of c was considered among those executions when the duration was estimated.

Note that the output of the cluster phase can be abstracted as a set C ∈ 2E
∗

of clusters
where each cluster is a set of sessions (i.e. sequences). Given a cluster c ∈ C and an
encoding function, the centroid can be easily computed by encoding every session in c
and compute the center.

Visualize Heat Map. Clusters are visualized on heatmap to provide analysts with some
insights on how sessions were clustered. See example in Figure 1: each column is a clus-
ter (e.g. a human activities) and each row is a low-level activity (e.g. a sensor measured
in a domotics house). The cell related to a cluster c a low-level activity a corresponds to
the value of the dimension a for cluster c for the centroid of c. Note that, for compara-
bility of the dimension values at centroid, the values are normalized. The normalization
of a given centroid (y1, . . . , yn) is achieved by dividing by the sum of the centroid’s
values: (y1

sum , . . . ,
yn
sum) where sum = y1 + . . .+ yn.

Create Abstract Event Log. The third step focuses on visualizing the centroids of the
clusters on a heatmap, thus providing information about the most predominant activi-
ties for low-level events. This information is used by process analysts to assign cluster
names NAME(c) to each cluster c ∈ C. The fourth step creates the abstract event log.
For each log trace σ, we compute the sessions’ sequence s©∆(σ) = 〈sσ1 , . . . , sσm〉 and
then the abstract trace σABST = 〈fstσ1

, f coσ1
. . . , fstσn

, f coσn
〉 where, for every 1 ≤ i ≤ m,

fstσi
andf coσi

are the abstract events for session sσi
: the activity names of λA(fstσi

) and
λA(f

co
σi
) are equal to the name NAME(ci) of the cluster ci to which sσi

.

Mine Abstract Model and Mine one Model per Cluster. Here, we can use employ any
discovery algorithms available in literature [8]. The step to mine one Model per Cluster
is only necessary when one wants to create a hierarchical model. In particular, it aims to
mine the sub-process related to each activity of the abstract model. Each cluster c ∈ C
consists of a set of sessions, which is in fact an event log to be used as input to mine
a model of the behaviour of the sessions within the cluster. Here we also assume to
employ a miner that returns strongly connected Petri nets.

Merge to Create Hierarchical Model. Figure 2 illustrates how one cluster model can
be incorporate into the abstract model to create the hierchical model: the leftmost part
shows the portion related to the high-level activity a where the center part depicts the

The Benefits of Sensor-Measurement Aggregation in Discovering IoT Process Models 5

Fig. 3. Curves indicating the distribution of event occurrence over time. Each curve is associated
with a different weekday and colored differently. Pink: Sunday, Yellow: Monday, Green: Tuesday,
Aqua: Wednesday, Purple: Thursday, Orange: Friday, Light Blue: Saturday.

structure of the model of the cluster referring to high-level activity a. The incorporation
of the cluster model into the abstract model is illustrated in the rightmost part of the
figure, where two invisible transitions are introduced (the black squares) in the abstract
model along with the cluster model, which is connected as shown in figure. This pro-
cedure is repeated for each cluster, thus finally producing the hierarchical model. Note
that often those invisible transitions are not necessary (see, e.g., the case study): in that
case, the invisible transitions can finally be removed.

3 A Case Study in Domotics

This case study is based on the smart-home event data that were employed as challenge
for the 4th International Workshop on BP-Meet-IoT in 2020.1 The complete dataset in-
cludes three different scenarios: morning routine of one person, daily routine of one per-
son and daily routine of two people. For our experiments we used the second one which
includes recordings for all the activities of one user within 21 days. All the datasets pro-
vide an event stream of all the activities performed by the user inside the smart home.

3.1 Preprocessing of the Event Dataset

In order to apply our abstraction method we had to perform a preprocessing of the event
data. The aims of this phase were two: to remove the activities that represent noise and
to split the event stream into traces.

In the original log the noisy activities were conveniently named as “Noise”, so they
were removed using a filter on the activity name. Secondly, to split the stream into traces
we analysed the time distribution of the activities within a day. To do that we extract
the hour from the timestamp and we used a dotted chart visualization. We arranged
all the activities in an interval from midnight to 11:59pm. Figure 3 shows the time
distribution of low-level events over day time. Each curve refers to a different weekday
and is associated with a different color. Note that, e.g., between around 12:30pm and
7pm, events only occurred on Saturdays and Sundays, since the house inhabitant was
likely at work on the other days. The identification of potential breaking points is based
on the analysis of the the areas with the lowest density of activities. We can identify two
possible breaking points, highlighted by the red dashed lines in the figure: one around
1 BP-Meets-Iot Challenge page: http://pros.webs.upv.es/sites/bp-meet-iot2020/#six

6 M. de Leoni, L. Pellattiero

Fig. 4. Flat model of human habits, discovered on the smart-home transaction data via Inductive
Miner. Due to the structure in the area highlighted in red, the model is very imprecise, allowing
for too much behavior.

3am and one around 7pm. Based on this analysis, and on the domain knowledge we
had about the user habits, we have chosen to split the traces at 7pm, because this is
the hour at which the user ends its working day. The examination of the log and the
underlying process shows the alternative at 3am to not represent a meaningful splitting:
no recognizable pattern was observed around that time.

The result event log was composed by 22 traces, with overall 2918 events for 66
low-level activities.2

3.2 Application of the Event-Log Abstraction Technique and Results

The resulting event log was used to discover a flat model. The Inductive Miner [8] was
employed, using the default configuration: a noise threshold equal to 0.2. The model
is depicted in Figure 4. The model was discovered on 70% of the traces of the post-
processed event log, while 30% were used for fitness computation. Conversely, pre-
cision was computed using every trace in the post-processed log. Here, we have em-
ployed a token-based computation of fitness and precision [8] because the alignment-
based computation never completed on the flat model due to the its intrinsic complex-
ity. The fitness value is 0.94, but the precision was extremely poor: 0.034. This clearly

0 5 10 15 20

Fig. 5. Box plot of the distribution of elapsed
times between consecutive events in minute.
Outliers are removed for readability.

indicates that the model allows for an
excessive amount of behavior, compared
with what recorded in the event log. This
is ultimately caused by an excessive level
of parallelism: several activities are pos-
sible in any order (see in particular the
area shown in red). The application of
the event-abstraction method requires to
provide a session threshold. In this case
study, we computed the elapsing time be-
tween all couples of consecutive events in the log. Figure 5 shows the box plot of the
2 The post-processed event log is available at https://github.com/Ciaaa95/
TechniquesForClustering_LowLevelEvents.

The Benefits of Sensor-Measurement Aggregation in Discovering IoT Process Models 7

Encoding Clustering Fitness Precision Harmonic Mean
Frequency KMeans 0.51 0.69 0.59
Frequency DBScan 0.56 0.64 0.60
Duration KMeans 0.20 0.80 0.32
Duration DBScan 0.15 0.70 0.25

Table 1. Results of the abstraction

elapsed-time distribution, where the upper whisker is equal to 1.5 times the interquar-
tile range, namely 21 minutes. Note that the lower quartile is equal to 1 minute, which
is also the minimum value. Around 17% of values are outliers, namely larger than the
upper box-plot whisker, with values till 847 minutes. This shows that most of measures
are small, but a portion of values are very large. This motivates the reason to use the
median as session threshold, which is 3 minutes. This enabled the application of the
methods presented in Section 2. We employed KMeans and DBScan [9] as clustering
algorithms, which are the most widespread.

Parameters Tuning for KMeans and DBScan. KMeans requires determining the num-
ber of clusters to be obtained. Here, we employed a well-known technique called Elbow
Method, in which we compute the error curve in a given interval of number of clusters.
By displaying this curve in a graphic we can then easily identify the value that offers
the best tradeoff between too much generality and excessive specialization. DBScan
relies on two parameters: epsilon, which determines the cluster dimension of the region
to examine at each iteration, and minPts, which is the minimum number of samples
that identifies an high density region. Parameter epsilon was estimated by computing
the distance of the nearest neighbour for all the samples, then by ordering the points
by distance we chose the value that ensure us to include most of the samples. Then, we
computed the number of neighbour inside a region of radius epsilon for each sample
and we ordered the results by number of neighbours. The resulting distribution presents
a initial peak which means that most of the samples have very few neighbours within
epsilon distance meaning that their surroundings have low density of points. After the
peak the number decreases until it reach a local minimum. This minimum identifies
a good estimation for minPts because it represents the breaking point between low-
density and high-density regions.

Determination of the Best Abstract Model. We evaluate the quality of the abstract
models by (1) abstracting the log trace using DBScan and KMeans and via both a
frequency and time encoding of the sessions, and (2) discovering a model via inductive
miner, using the same configuration as for the flat model (cf. the beginning of this
Section). To evaluate the models we have calculated fitness and precision by computing
alignments, which has become a “de facto” standard [8]. We used 70% of the traces
as training set to mine the model and 30% to calculate the fitness, whereas for the
precision we use the entire log. Table 1 summarizes the results that we have obtained
for fitness and precision, highlighting their harmonic mean. We observe that frequency
encoding generates better abstract models in terms of harmonic means of fitness and
precision, both via KMeans and DBScan. Therefore, the used clustering algorithm is
largely irrelevant. We finally opted for DBScan with the highest mean of 0.6. Figure 6
shows the heatmap obtained for this abstraction, which highlights how each cluster has
one or two evident dominant low-level activities (the cells of the darkest colors). Table

8 M. de Leoni, L. Pellattiero

Fig. 6. Heatmap for the abstraction obtained with DBScan clustering and frequency encoding

Cluster Most predominant activity(ies) Automatic Cluster Name Manual Cluster Name Distance
0 brush teeth, go bathroom sink Go bathroom sink0 WC 0.29
1 go wardrobe, change clothes Go wardrobe1 Go work, Walk 0.50
2 dress up outdoor, go shoe shelf Go shoe shelf2 Go work, Walk 0.50
3 go workplace, work Go workplace3 Go work 0.25
4 dress down outdoor, go shoe shelf Go shoe shelf4 Go work, Walk 0.50
5 go kitchen sink Go kitchen sink5 Drink 1.00
6 go dining table Go dining table6 Eat cold, Eat warm 0.40
7 go wc, wc do Go WC7 WC 0.57
8 go computer chair Go computer chair8 Use computer 0.33
9 go bed, sleep in bed Go bed9 Prepared to sleep 0.44

Table 2. Comparison between domain knowledge based abstraction and our abstraction method

Fig. 7. Abstract model obtained using the frequency encoding and DBScan clustering, using
Inductive Miner with noise threshold of 0.2

2 reports on the associations between cluster number, name, and dominant activities in
the three leftmost columns: the name of each cluster coincides with that of the most
dominant activity in the cluster, followed by the cluster number. Figure 7 shows the
abstract model.

Automatic vs Manual Cluster Creation. The dataset used in this case study is ac-
companied by a document that provides a manual creation of the clusters of low-level
events. The manual abstraction was provided by the challenge as a separate log, in
which each trace identifies a high-level activity.3 It is hence worthwhile comparing our
clusters - hereafter automatic - with those manual created via domain knowledge. For
3 The dataset description is available at http://pros.webs.upv.es/sites/bp-meet-iot2020/
challenge/BP_Meets_Iot2020_Challenge_Dataset.pdf (Accessed June 2th, 2021)

The Benefits of Sensor-Measurement Aggregation in Discovering IoT Process Models 9

Fig. 8. Model for cluster number 2 named go shoe shelf

Fig. 9. Model for cluster number 9 named go bed

each automatic cluster, we compute the closest manual cluster. The distance between
an automatic A and a manual cluster M is 2·|AttA∩AttM |/|AttA|+|AttM | where AttA and
AttM are respectively the set of activities in A and M with a relative frequency above
0.01 in the centroid (cf. definition of frequency in paragraph Cluster in Section 2).

Note that the manual clusters were already given a name by the experts, using do-
main knowledge. We have made the automatic cluster names correspond to the dom-
inant activity name. The results are reported in Table 2: for each automatic cluster,
the table reports the automatic cluster name (i.e. via our technique), the manual clus-
ter names (i.e. via the domain knowledge) and the distance. Sometimes, two manual
clusters were equally distant from the corresponding automatic (see cluster 1, 2 e 4).
A qualitative comparison of the automatic and manual cluster names illustrates that
our technique seems to discover high-level activities that reflect similar concepts as the
manual clusters. See, e.g., cluster 0 (Go bathroom sink vs WC), cluster 3 (Go work-
place vs Go work, or cluster 5 (Go kitchen sink vs Drink). Furthermore, clusters 2 e 4
have the same most prominent activity (i.e., go shoe shelf), but the second prominent
changes: dress up outdoor and dress down outdoor, respectively. This means that, very
likely, automatic cluster 2 should correspond to manual cluster Go work, and automatic
cluster 5 should corresponds to Walk. Unfortunately, there were manual clusters, such
as Wash dishes and Doing exercises, that were not matched by any automatic cluster.
This is due to the fact that those manual clusters refer to low-level events that occur
more rarely in the log. As a consequence, our technique has failed to group them in a
standalone cluster, clustering them along with other events that were more frequent and
thus predominant.

Hierarchical Model The case-study last step was that to mine the inner workflow of
the high level activities. Figures 8 and 9 shows two example models, respectively for
cluster 2 (go shoe shelf) and cluster 9 (go bed). These models were mined using the
Inductive Miner with the same noise threshold as when we mined the abstract model.

In accordance with the technique discussed in Section 2, we replaced each high-
level activity of the model in Figure 7 with a whole process model that was mined
for the correspond cluster. By doing that we obtain the hierarchical model shown in
Figure 10. For a quantitative evaluation, we have compared fitness and precision of this
hierarchical model with the flat model in Figure 4. To ensure a failr comparison, fitness
and precision is again computed based on token replaying [8] because the alignment-

10 M. de Leoni, L. Pellattiero

Fitness Precision Harmonic Mean
Flat Model 0.91 0.034 0.065

Hierarchical Model 0.66 0.35 0.45

Table 3. Comparison between flat model and hierarchical model based.

based computation never completed on the flat model due to the its intrinsic complexity.
The precision and fitness values are summarized in Table 3 and compared with those of
the flat model: although the fitness of the hierarchical model is lower than that of the flat
model, the precision is ten-times higher. This large difference is mainly due to the fact
that the hierarchical model is much structured to capture the order relations between the
activities. In sum, it follows that the harmonic mean of fitness and precision shows that
the hierarchical is significantly better model. More qualitatively, if we compared the
lasagna-like structure of the hierarchical model with a more spaghetti-like structure of
the flat model, we can certainly conclude that the hierarchical model is more readable
and suitable to convey insights to process analysts.

4 Discussion and Conclusion

This paper has reported on the successful experience to employ event-log abstraction
techniques to learn the daily human habits. Data were harvested from sensors and de-
vices in a domotics house. Event-log abstraction is likely necessary in many IoT settings
that generate low-level logging data. If these data were directly used to discover some
model of the IoT system usage or human habits, the model would possibly be of little
use because it would talk in terms of technical details (e.g., from sensor), instead of
higher-level concepts. The abstraction enables tuning the granularity to a level that is
meaningful from a conceptual/business perspective.

Even when one does not need to change the event granularity, the event-log abstrac-
tion technique leads to hierarchical models where concepts are represented at different
levels. The human-habit case study has illustrated that it is possible to create hierar-
chical models that (i) can better balance fitness and precision and (ii) are significantly
more insightful than flat models.

We acknowledge the low precision of the abstract and hierarchical model for the
case study declinated in this paper. We expect similar values for those of other IoT sys-
tems. This is not caused by the abstraction techniques: in fact, the flat model scores
almost zero in precision. This is likely due to the use of Petri nets, which is less suitable
for processes that show high behavioral variability, in comparison with more struc-
tured processes. Future research directions ought to investigate declarative modelling
approaches [10] or hybrid. The latter refers to a modelling notation that can alternate
parts with a declarative notation with others using a Petri-net-like notation [11].

Every model for the case study was discovered via Inductive Miner [8], with the
same configuration of parameters. However, a more thorough assessment requires the
employment of different process-discovery techniques and the analysis of the quality of
results, when abstraction techniques are used. We do not expect though to see significant
differences.

Furthermore, we also tried to employ contextual information to provide additional
information to improve the clustering accuracy. The dataset of the human-habit case
study indeed contained information related to the room temperature and humidity or

The Benefits of Sensor-Measurement Aggregation in Discovering IoT Process Models 11

Fig. 10. Hierarchical Model of the daily human habits.

12 M. de Leoni, L. Pellattiero

the level of ventilation (e.g. because of open windows). As an example, the human
presence in a room might have a different meaning depending on the room temperature
and whether the window is open or close. However, this additional information showed
to not impact the clustering, which makes us believe that information is not relevant, at
least for the case study in question.

The case study certainly hints at the relevance of the abstraction approach employed
here. However, for a conclusive, definitive assessment, we plan to conduct further case
studies in different IoT system settings.

References

1. Janiesch, C., Koschmider, A., Mecella, M., Weber, B., Burattin, A., Di Ciccio, C., Fortino,
G., Gal, A., Kannengiesser, U., Leotta, F., Mannhardt, F., Marrella, A., Mendling, J., Ober-
weis, A., Reichert, M., Rinderle-Ma, S., Serral, E., Song, W., Su, J., Torres, V., Weidlich,
M., Weske, M., Zhang, L.: The internet of things meets business process management: A
manifesto. IEEE Systems, Man, and Cybernetics Magazine 6(4) (2020) 34–44

2. Hemmer, A., Badonnel, R., Chrisment, I.: A process mining approach for supporting iot pre-
dictive security. In: Proceedings of OMS IEEE/IFIP Network Operations and Management
Symposium (OMS 2020). (2020)

3. Coltellese, S., Maria Maggi, F., Marrella, A., Massarelli, L., Querzoni, L.: Triage of iot
attacks through process mining. In: On the Move to Meaningful Internet Systems: OTM
2019 Conferences, Springer International Publishing (2019)

4. Dimaggio, M., Leotta, F., Mecella, M., Sora, D.: Process-based habit mining: Experiments
and techniques. In: 2016 IEEE 13th International Conference on Ubiquitous Intelligence &
Computing. (2016) 145–152

5. Tax, N., Sidorova, N., Aalst, W.M.P.: Discovering more precise process models from event
logs by filtering out chaotic activities. Journal of Intelligent Information Systems 52(1)
(2019) 107–139

6. Cameranesi, M., Diamantini, C., Potena, D.: Discovering process models of activities of
daily living from sensors. In: Business Process Management Workshops. Volume 308 of
LNBIP., Springer (2018)

7. de Leoni, M., Dündar, S.: Event-log abstraction using batch session identification and clus-
tering. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing. SAC
’20, New York, NY, USA, Association for Computing Machinery (2020) 36–44

8. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer (2016)
9. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

10. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full support for loosely-
structured processes. In: EDOC 2007, IEEE (2007) 287–287

11. van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini, C.: Learning
hybrid process models from events - process discovery without faking confidence. In: 15th
International Conference on Business Process Management (BPM 2017). Volume 10445 of
LNCS., Springer (2017) 59–76

