
Aligning Event Logs and Process Models for
Multi-Perspective Conformance Checking: An

Approach Based on Integer Linear Programming

Massimiliano de Leoni and Wil M. P. van der Aalst

Eindhoven University of Technology, Eindhoven, The Netherlands
m.d.leoni,w.m.p.v.d.aalst@tue.nl

Abstract. Modern organizations have invested in collections of descriptive and/or
normative process models, but these rarely describe the actual processes ade-
quately. Therefore, a variety of techniques for conformance checking have been
proposed to pinpoint discrepancies between modeled and observed behavior. How-
ever, these techniques typically focus on the control-flow and abstract from data,
resources and time. This paper describes an approach that aligns event log and
model while taking all perspectives into account (i.e., also data, time and re-
sources). This way it is possible to quantify conformance and analyze differences
between model and reality. The approach was implemented using ProM and has
been evaluated using both synthetic event logs and a real-life case study.

1 Introduction

Today’s organizations are challenged to make their processes more efficient and effec-
tive; costs and response times need to be reduced in all of today’s industries. Process
models are used to guide people, discuss process alternatives, and to automate parts
of critical business processes. Often these process models are not enforced and people
can deviate from them. Such flexibility is often desirable, but still it is good to analyze
differences between modeled and observed behavior. This illustrates the relevance of
conformance checking [1]. Conformance checking techniques take an event log and a
process model and compare the observed traces with the traces possible according to the
model. There are different dimensions for comparing process models and event logs. In
this paper, we focus of the fitness dimension: a model with good fitness allows for most
of the behavior seen in the event log. A model has perfect fitness if all traces in the
log can be replayed by the model from beginning to end. Other quality dimensions are
simplicity, precision, and generalization [1].

Various conformance checking techniques have been proposed in recent years [1–
4]. Unfortunately, they focus on the control-flow, i.e. the ordering of activities, thereby
ignoring the other perspectives, such as data, resources, and time. In a process model,
each case, i.e. a process instance, is characterized by its case variables. Paths taken
during the execution may be governed by guards and conditions defined over such vari-
ables. Process models define the domain of possible values to assign to each variable,
along with modeling the variables that each activity is prescribed to write or update. In
addition, process models describe which resources are allowed to execute which activ-
ities. An activity is typically associated with a particular role, i.e., a selected group of
resources. There may also be additional rules such as the “four-eyes principle” which

Fig. 1. BPMN diagram describing a process to handle credit requests. Besides the control-flow
perspective, also the data perspective (see data objects and conditions), the resource perspective
(see roles), and the time perspective (see timeout) are modeled. Dotted lines going from activities
to data objects indicate the variables manipulated by each activity. Each activity requires a person
having a particular role.

does not allow for the situation where the same resource executes two related tasks for
the same case. Finally, there may be time-related constraints, e.g., a registration activity
needs to be followed by decision activity within 30 days.

Since existing conformance checking techniques abstract from data, resources, and
time, many deviations remain undetected. Let us consider the process model in Figure 1
(taken from [5]). The model describes a process to deal with loans requested by clients
to buy small home appliances. After the credit request, the requester’s financial data are
verified and, if the verification is positive, the request is assessed. In case of a positive
assessment, the credit is provided and the requester is informed. In case of a negative
assessment, requesters can try to renegotiate the credit within one week or, otherwise,
the request is definitely rejected. In the remainder, data objects are simply referred with
the upper-case bold initials, e.g., V=Verification, and activity names by the letter in
boldface in brackets, e.g. a=Credit Request.

Let us also consider the following trace where variables are shortened with the initial
letter and Ex and Tx denote the executor of x and the timestamp when x was executed:1

⟨(a, {A = 1000,R = Mary, Ea = Pete,Ta = 03 Jan}), (b, {V = OK,Eb = Sue}),
(c, {I = 150,D = OK,Ec = Sue,Tb = 4 Jan}), (e, {Ee = Pete,A = 1000,Te = 15 Jan}),
(c, {I = 150,D = NOK,Ec = Sue,Tc = 16 Jan}), (g, {Eg = Pete,Tg = 17 Jan}),
(h, {Eh = Sara,Th = 18 Jan})⟩.

Conformance checking techniques only considering the control-flow perspective can-
not find the following conformity’s violations: (i) the requested amount cannot be 1000:

1 Notation (act, {attr1 = val1, . . . , attrn = valn}) is used to denote the occurrence of activ-
ity act in which variables attr1, . . . , attrn are assigned values val1, . . . , valn, respectively.

activity d should be executed, instead of c; (ii) for the considered credit loan, the inter-
est is against the credit-institute’s policy for large loans; (iii) ‘Sue’ is not authorized
to execute activity b since she cannot play role Assistant; (iv) activity e is performed
11 days after the preceding c occurrence, whereas it should not be later than 7 days;
(v) activity h has been executed and, hence, the last decision cannot be negative. The
approach we propose is based on the principle of finding an alignment of event log and
process model. The events in the log traces are mapped to the execution of activities
in the process model. Such an alignment shows how the event log can be replayed on
the process model. We allow costs to be assigned to every potential deviation: some
deviations may be more severe than others.

This paper proposes a technique based on building a suitable ILP program to find
a valid sequence of activities that is as close as possible to the observed trace, i.e., we
aim to minimize the cost of deviations and create an optimal alignment. To assess the
practical feasibility and relevance, the technique has also been implemented in ProM
and tested using synthetic event logs and in a real-life case study. Experimental results
show that conformance of the different perspectives can be checked efficiently.

When checking for conformance, pinpointing the deviations of every single trace
is definitely useful, but it is not enough. Process analysts need to be provided with a
helicopter view of the conformance of the model with respect to the entire log. There-
fore, this paper also introduces some diagnostics to clearly highlight the most frequent
deviations encountered during the process executions and the most common causes.

Our previous work [5] provides an initial approach for multi-perspective confor-
mance checking. However, our previous technique could not deal with variables defined
over infinite domains. The ILP-based approach presented in this paper also allows for
numerical values. Our new approach is also several orders of magnitude faster. Finally,
the work reported in [5] was limited to returning optimal alignments. In this paper,
we provide enhanced diagnostics guiding the user in finding the root-cause of specific
conformance problems.

Our conformance-checking technique is independent of the specific formalism used
to describe the control-flow and data-flow perspectives. Therefore, BPMN, EPC or any
other formalism can be employed to represent these perspectives. However, we need
a simple modeling language with clear semantics to explain our technique. For this
purpose we use Petri nets with data. The notation is briefly discussed in Section 2.
Section 3 illustrates the basic concepts related to aligning a process and an event log.
Section 4 details our new technique to compute optimal alignments and to provide en-
hanced diagnostics. Section 5 describes the implementation in ProM and reports on the
experimental results. Finally, Section 6 concludes the paper, comparing this work with
the state of the art and describing future research directions.

2 Petri Nets with Data

A Petri net with data (DPN-net) is a Petri net in which transitions can write variables.
This formalism was introduced in [6] and, later, revisited in [7]. A transition modeling
an activity performs write operations on a given set of variables and may have a data-
dependent guard. A transition can fire only if its guard is satisfied and all input places are
marked. A guard can be any formula over the process variables, using logical operators
such as conjunction (∧), disjunction (∨), and negation (¬).

Definition 1 (DPN-net). A Petri net with data (DPN-net) N = (P, T, F, V, U,W,G)
consists of:

– a Petri net (P, T, F);
– a set V of variables;
– a function U that defines the values admissible, i.e., for each variable v ∈ V , U(v)

is the domain of variable v;
– a write function W : T → 2V that labels each transition with a set of write opera-

tions, i.e. with a s the set of variables whose value needs to be written/updated;
– a guard function G : T → GV that associates a guard with each transition.2

When a variable v ∈ V appears in a guard G(t), it refers to the value just before the
t occurrence. Nonetheless, if v ∈ W (t), it can also appear as v′ (i.e., with the prime
symbol). In this case, it refers to the value after the t occurrence. Some transitions can
be invisible and correspond to τ -steps: they do not represent actual pieces of work.
Pictorially, they are represented as black boxes in the model.

Example 1 Figure 2 shows the DPN-net that models the same process as that modeled in Fig-
ure 1 through the BPMN notation. In particular, Figure 2(a) depicts the control-flow and the write
operations. In addition to the variables depicted in the figure, there exists a set of variables to
model the resource and time perspective, i.e., for each transition t, there are two variables Et

and Tt. Moreover, these two variables are associated with a write operation of t. Figure 2(b)
enumerates the data-perspective guards Gd(t) for each transition t. When defining guards, we
assume that string values can be lexicographically ordered and, hence, it is also possible to use
inequality operators (i.e., < and >) for strings.

To also model the resource and time perspective, a second guard Gr(t) can be associated
with each transition t (see Figure 2(c)). Formally, only one guard G(t) can be assigned to t
and, hence, we set G(t) = Gd(t) ∧ Gr(t). Note the atom E′

c ̸= Ec in the guard of transition
Simple Assessment in Figure 2(c): it models the resource constraint that the Simple Assessment
cannot be performed the i-th time by the same resource that performed it the (i − 1)-th time
within the same case (i.e., the “four-eyes” principle mentioned in Section 1). Formula (T ′

e ≤
Tc + 7days ∨ T ′

e ≤ Td + 7days) in the guard of transition Renegotiate Request to model that it
must occur within 7 days from the occurrence of the Assessment, Simple or Advanced. Conditions
are never satisfied when involving variables that are not set.

Space limitations prevent us from describing a complete operational semantics of DPN-
net. Interested readers are referred to [7]. We only introduce the concepts needed later.
The preset of a transition t is the set of its input places: •t = {p ∈ P | (p, t) ∈ F}. The
postset of t is the set of its output places: t• = {p ∈ P | (t, p) ∈ F}. Definitions of pre-
and postsets of places are analogous. A marking of a Petri net (with data) is a multiset
of its places, i.e., a mapping M : P → N. We say the marking assigns to each place a
number of tokens. A state is a pair (M,A) where M is a marking for Petri net (P, T, F)
and A is a function that associates a value with each variable, i.e. A : V → D ∪ {⊥},
with A(v) ∈ U(v) ∪ {⊥}.3 Each DPN-net defines two special places po, pe ∈ P , the
initial and final place. The initial state is (M0, A0) where the initial place p0 ∈ P
contains exactly one token, i.e. M0(p0) = 1, and any other p ∈ P \ {p0} contains no
tokens, i.e. M0(p) = 0. Moreover, A0(v) = ⊥ for each v ∈ V . A transition firing
s = (t, w) is valid in state (M,A) if each place in the preset of t contains at least one

2 The guard is defined over (a sub set of) variables in V . If a transition t has no guard, we set
G(t) = true.

3 A special value ⊥ is assigned to variables that have not been initialized.

(a) The control-flow and write operations. Transitions and places are represented as squares
and circles, respectively. Each rounded orange rectangle identifies a different process vari-
able. A dotted arrow from a transition t to a variable v is a pictorial representation of the fact
that v ∈ W (t). Dark squares identify invisible transitions.

Transition Guard
Advanced
Assessment Verification = true ∧Amount > 5000∧

0.1 < Interest′/Amount < 0.15

Inv1 Verification = false
Inv2 Decision = true
Inv3 Decision = false
Open Credit
Loan Verification = true ∧ Decision = true

Register Deci-
sion and Inform
Customer M-Z

Requester ≥ “M”

Register Deci-
sion and Inform
Customer A-L

Requester ≤ “L”

Renegotiate Amount′ ≤ Amount

Simple
Assessment Verification = true ∧Amount ≤ 5000∧

0.15 < Interest′/Amount < 0.2

(b) The guards to encode the data-
perspective constraints.

Transition Guard
Credit Request E′

a ∈ {“Pete”, “Mike”, “Ellen”}
Verify E′

b ∈ {“Pete”, “Mike”, “Ellen”}
Simple Assessment E′

c ∈ {“Sue”, “Sean”, “Sara”} ∧ E′
c ̸= Ec

Advanced Assessment E′
d ∈ {“Sue”, “Sean”, “Sara”} ∧ E′

d ̸= Ed

Renegotiate Request E′
e ∈ {“Pete”, “Mike”, “Ellen”}

∧(T ′
e ≤ Tc + 7days ∨ T ′

e ≤ Td + 7days)
Open Credit Loan E′

h = “Sara”

Register Decision and In-
form Customer M-Z

E′
f ∈ {“Pete”, “Mike”, “Ellen”}

Register Decision and In-
form Customer A-L

E′
g ∈ {“Pete”, “Mike”, “Ellen”}

(c) The guards to encode the constraints over re-
sources and time. Ei ∈ {a1, . . . , an} is a short-
cut for expression Ei = a1 ∨ . . . ∨ Ei = an.

Fig. 2. The DPN-net of the working example.

token, i.e. iff ∀p ∈ •t. M(p) > 0, t writes all and only the variables that it is prescribed
to and G(t) evaluates true with respect to assignment A. We introduce the following
functions to access to the components of s: #vars(s) = w and #act(s) = t. Function
#vars is also overloaded such that #vars(s, v) = w(v) if v ∈ dom(#vars(s)), or
#vars(s, v) = ⊥ if v ̸∈ dom(#vars(s)).4

Firing a transition s in a state (M,A) leads to a state (M ′, A′) where M ′ assigns
a token less than M to the t’s input places •t and a token more that M to t’s output
places t•; the number of tokens in the other places remains unchanged. Moreover, for
each v ∈ V , A′(v) = A(v) if #vars(s, v) = ⊥, or, otherwise, A(v′) = #vars(s, v).
The set of valid process traces of a DPN-net N is denoted with PN and consists of all
firing sequences σ ∈

(
T × (V ̸→ U)

)∗ that, from an initial state (M0, A0), lead to a
state (MF , AF) where MF (pe) > 0.

4 The domain of a function f is denoted with dom(f).

A DPN-net is data sound iff, for each sequence of transitions yielding a token in the
final place, there is a sequence of write operations for the transitions in the sequence
such that the guard of every transition t in the sequence is satisfied when t fires.

Definition 2 (Data Soundness). Let N = (P, T, F, V, U,W,G) be a DPN-net. Let
N ′ = (P, T, F,∅, U ′,W ′, G′) be a DPN-net such that dom(U ′) = dom(W ′) =
dom(G′) = ∅. DPN-net N is data sound iff, for each ⟨s′1, . . . , s′n⟩ ∈ PN ′ , there exists
a sequence ⟨s1, . . . , sn⟩ ∈ PN where, for all 1 ≤ i ≤ n, #act(si) = #act(s

′
i).

3 Alignments of Event Logs and Process Models

An event log contains events associated to cases, i.e., process instances. Each case fol-
lows a trace of events. Each trace records the execution of a process instance. Different
instances may follow the same trace. Let SN be the set of (valid and invalid) firing of
transitions of a DPN-net N with SN . An event log is a multi-set of traces: L ∈ B(S∗

N).5

Conformance checking requires an alignment of event log L and process model P:
the events in the event log need to be related to model elements and vice versa. Such an
alignment shows how the event log can be replayed on the process model. This is far
from being trivial since the log may deviate from the model and not all activities may
have been modeled and recorded.

We need to relate “moves” in the log to “moves” in the model in order to establish
an alignment between a process model and an event log. However, it may be the case
that some of the moves in the log cannot be mimicked by the model and vice versa.
We explicitly denote “no move” by ≫. For convenience, we introduce the set S⊥

N =
SN ∪ {≫}.

Event-Log Trace Proc
a {A = 1000,R = Mary} a {A = 5001,R = Mary}
b {V = OK) b {V = OK}
c {I = 150,D = OK} c {I = 650,D = NOK}

Inv3
e {A = 1000} e {A = 5001}

b {V = OK}
c {I = 150,D = OK} c {I = 650,D = OK}

Inv2
g {} g
h {} h

Inv5

Table 1. A complete alignment.

One move in an alignment is repre-
sented by a pair (s′, s′′) ∈ (S⊥

N × S⊥
N) \

{(≫,≫)} such that

– (s′, s′′) is a move in log if s′ ∈ S and
s′′ =≫,

– (s′, s′′) is a move in process if
s′ =≫ and s′′ ∈ S,

– (s′, s′′) is a move in both without in-
correct write operations if s′ ∈ S,
s′′ ∈ S and ∀v ∈ V #vars(s

′, v) =
#vars(s

′′, v),
– (s′, s′′) is a move in both with incor-

rect write operations if s′ ∈ S, s′′ ∈ S and ∃v ∈ V #vars(s
′, v) ̸= #vars(s

′′, v).

AN = (S⊥
N × S⊥

N) \ {(≫,≫)} is the set of all legal moves.
The alignment of two execution traces σ′, σ′′ ∈ S∗

N is a sequence γ ∈ A∗
N such

that, ignoring all occurrences of ≫, the projection on the first element yields to σ′ and
the projection on the second yields σ′′. In the remainder, σ′ and σ′′ are referred to as the
log and the process projection of alignment γ. In particular, γ is a complete alignment
if σ′′ ∈ PN . Table 1 shows a complete alignment of the process model in Figure 2 and
the log trace in Section 1.

5 B(X) the set of all multi-sets over X .

In order to define the severity of a deviation, we introduce a cost function on legal
moves: κ ∈ SA → R+

0 . The cost of each legal move depends on the specific model
and process domain and, hence, cost function κ needs to be defined ad-hoc for every
specific case. The cost function can be generalized to an alignment γ as the sum of the
cost of each individual move: K(γ) =

∑
(s′,s′′)∈γ κ(s

′, s′′).
However, we do not aim to find any complete alignment. Given a log trace σL ∈ L,

our goal is to find a complete alignment of σL and P which minimizes the cost. We
refer to it as an optimal alignment. Let ΓσL,P be the multi-set of all complete align-
ments of σL and P . The alignment γ ∈ ΓσL,P is an optimal alignment if ∀γ′ ∈
ΓσL,P K(γ) ≤ K(γ′). Note that there may exist several optimal alignments, i.e. several
complete alignments having the same minimal cost.

Regarding the complexity, in [8] we discuss a polynomial-time reduction of SAT
problems (i.e., simply satisfiability problems) to problems of finding an optimal align-
ment. The existence of this reduction implies that finding an optimal alignment is an
NP-hard problem. Therefore, while it is clear that no deterministic algorithm can guar-
antee an optimal alignment to be computed in polynomial time, this paper attempts to
reduce the computation time in the average case.

4 The ILP-based Technique and Diagnostics

In order to find an optimal alignment of a DPN net N = (P, T, F, V, U,W,G) and a log
trace σL, we rely on existing techniques to build an alignment that only considers the
control-flow perspective. Later, we construct a problem of Integer Linear Programming
(ILP) to obtain an optimal alignment which also takes the other process perspectives
into account.

The approach assumes four functions to be provided by process analysts. Functions
κl(t) and κp(t) return a non-negative cost associated with a move in log or process for
transition t. Function kv(v) returns a non-negative cost relative to a variable v and a
move in both (sLi , s

P
i) where #vars(s

L
i , v) ̸= ⊥ and #vars(s

L
i , v) ̸= #vars(s

P
i , v)

(i.e., sLi assigns to v a value that is out of the domain or incompatible with some guard).
Function kn(v) returns a non-negative cost relative to a variable v and a move in both
(sLi , s

P
i) where #vars(s

L
i , v) = ⊥ and #vars(s

P
i , v) ̸= ⊥ (i.e., sLi does not perform

a prescribed write operation for v). These four functions can be suitably composed to
obtain cost functions κ as defined in Section 3. Our ILP-based technique comprises of
three phases:

1. We employ the off-the-shelf techniques described in [9] to build an alignment γC =
⟨(sL1 , sP1), . . . , (sLn , sPn)⟩ between the Petri net (P, T, F) and the log trace σL using
the cost functions kl and km. Since such techniques only take the control-flow
into account, the process projection of γC does not contain write operations, i.e. if
sPi ̸=≫, dom(#vars(s

P
i)) = ∅ for all 1 ≤ i ≤ n. In the remainder, γC is called

control-flow alignment and is not a complete alignment since its process projection
is not a trace in PN .

2. We enrich the firings of transitions in the process projection σC of γC with the
opportune write operations so as to minimize their difference with respect to the
write operations observed in σL. Since it is a minimization problem, finding the
opportune write operations can be formulated as solving a certain ILP problem:
when a solution is found, the values of certain variables of the ILP-problem denote

those to be assigned to variables in the writing operations of σC . The ILP-problem
objective function f is the alignment cost.

3. We compute the fitness value F(σL) ∈ [0, 1]. Adriansyah et al. [9] propose a
fitness measurement where only the control-flow is considered. Let FC(σL) ∈
[0, 1] be this measure. Here, we propose a fitness with respect to all perspectives:
F(σL) =

(
FD(σL) + FC(σL)

)
/2 which is the mean of FC(σL) and a certain

quantity FD(σL) ∈ [0, 1] that considers the fitness with respect to any of the non-
control-flow perspectives (data, resource, time):

FD(σL) =
fmin∑

(sL,sP)∈γO : sP ̸=≫
∑

v∈#vars(sP) max(kd(v), kn(v))

where fmin is the value of the objective function for the solution found of the ILP
problem. The denominator corresponds to the highest cost in term of deviations,
i.e. for each move (sL, sP) in both, the deviations between the write operations of
sL and sP have the highest cost.

Section 4.1 discusses how to build an ILP problem to obtain optimal solutions. To keep
the discussion simple, each guard is assumed to be atomic (e.g., Amount > 5000).
However, this limitation can be easily addressed, as discussed in technical report [8].
The technical report also discusses how to convert date- and string-typed variables into
integers and, hence, to support these types of variables. Section 4.2 discusses our pro-
posal for a helicopter view where common deviations and their causes are shown.

4.1 Construction of the ILP problem

Given a DPN-net N and a log trace σL, the outcome of the first phase is a control-flow
alignment γC = ⟨(sL1 , sP1), . . . , (sLn , sPn)⟩.

Example 2 In order to maintain the example of a reasonable size, in the remainder, we only
consider the data perspective (i.e., we ignore the guards in Figure 2(c)). Let us assume κl(t) =
κp(t) = 1 for each transition t ∈ T \ {Inv1, Inv2, Inv3, Inv4} and κl(t) = κp(t) = 0 for
each transition t ∈ {Inv1, Inv2, Inv3, Inv4}. The latter transitions are invisible and, hence,
by definition, they never appear in the log. Therefore, they are always associated with moves in
process, without them being real deviations. Figure 3(a) is a possible control-flow alignment γ
for the trace considered in Section 1, which is returned by the technique reported in [9]. This is
the output of the first phase, which needs to be extended to obtain an optimal alignment.

In order to build the ILP problem, we introduce a helper function #V (γ, v) that returns
the number of write operations that are prescribed to happen for variable v, considering
the transitions fired in the process projection of γ.

For each write operation that is prescribed to happen for a variable v ∈ V , there
exist an ILP variable vi. The set of such variables is denoted with VILP : VILP =
{vi : v ∈ V ∧ 0 < i ≤ #V (γ, v)}.

By analyzing the control-flow alignment, it is possible to determine whether the i-
th write operation for v has or has not occurred. In remainder, constant vi denotes the
actual value observed in the log trace , with vi = ⊥ if the i-th write operation has not
been observed. For instance, considering the control-flow alignment in Figure 3(a) and,
specifically, the first move, it can be observed that A1 = 1000 and R1 = 1000, whereas,
considering the 6th move (i.e., for transition b), V2 = ⊥. In addition to the variables in

Event-Log Trace Proc
a {A = 1000, R = Mary} a
b {V = OK) b
c {I = 150,D = OK} c

Inv3
e {A = 1000} e

b
c {I = 150,D = NOK} c

Inv2
g {} g
h {} h

Inv5

(a) Control-flow
Alignment.

min 10 + V̂1 + Î1 + D̂1 + Â1
+Â2 + Î2 + D̂2 + R̂1

V1 = 1
I1 > 0.1 A1
I1 < 0.15 A1
D1 = 0
A2 < 0.6 A1
I2 > 0.1 A2
I2 < 0.1 A2
I2 < 0.15 A2
D2 = 0
R1 < “M”

A1 = 1000 ⇔ Â1 = 0

R1 = “Mary” ⇔ R̂1 = 0

I1 = 150 ⇔ Î1 = 0

A2 = 1000 ⇔ Â1 = 0

I2 = 150 ⇔ Î2 = 0

D2 = 1 ⇔ D̂2 = 0

(b) The ILP problem to
find an optimal alignment.

Event-Log Trace Proc
a {A = 1000,R = Mary} a {A = A∗

1 ,R = R∗
1}

b {V = OK) b {V = V ∗
1 }

c {I = 150,D = OK} c {I = I∗1 ,D = D∗
1}

Inv3
e {A = 1000} e {A = A∗

2}
b {V = V ∗

2 }
c {I = 150,D = NOK} c {I = I∗2 ,D = D∗

2}
Inv2

g {} g
h {} h

Inv5

(c) Optimal Alignment obtained as
solution of an ILP problem: v∗i de-
notes the value assigned to variable
vi in the ILP-problem solution that
is found.

Fig. 3. The technique applied to the working example. First, a control-flow alignment is built,
which, later, is used to build an ILP problem, whose solution allows for extending the control-
flow alignment to obtain the write operations of the process projection. The constraints in bold
in Figure 3(b) are non-linear. Nevertheless, as discussed in the text, each can be transformed into
two equivalent linear constraints.

VILP , the ILP problem also includes a boolean variable v̂i, for each vi ∈ VILP such
that vi ̸= ⊥. For the solution found for the ILP problem, variable v̂i is assigned value
1 if variable vi is not assigned value vi, i.e. there is a deviation relative to the i-th write
operation for variable v. Otherwise, v̂i is given value 0.

We create a set ΦγC of ILP-problem constraints as follow. For each prefix γ′
C =

⟨(sL1 , sP1), . . . , (sLi , sPi)⟩ of control-flow alignment γC , there exists a constraint ϕ ∈
ΦγC if sPi ̸=≫. Constraint ϕ is obtained starting from G(#act(s

P
i)) and replacing, for

each v ∈ V , all occurrences of v with vk−1 ∈ VILP and all occurrences of v′ (i.e., with
the prime symbol) with vk ∈ VILP , where k = #V (γ

′
C , v).

Example 3 By analyzing the control-flow in Figure 3(a), variables V, I,D need to be written
twice each and variable R once. Therefore, following variables V1, V2, I1, I2, D1, D2 and R1

are introduced to the ILP problem. Moreover, besides the write operation for V associated with
the 6th move of the control-flow alignment (i.e., the second execution of transition b), they have
all occurred. Therefore the following boolean variables V̂1, , Î1, Î2, D̂1, D̂2, R̂1 needs to be in-
troduced, i.e. V̂2 is excluded. Figure 3(b) shows the ILP problem to find the optimal alignment:
the constraints not in bold are those in Φγ , i.e. relative to the transitions’ guards. Each occur-
rence v and v′ is replaced with the respective variable vi−1 and vi of ILP problem, as described
above. To enhance the example’s comprehension, string constants are not converted into their
respective numeric representations. Nonetheless, the conversion is necessary to be able to solve
the ILP problem.

Once these elements are introduced, the structure of the entire ILP problem can be
described. Let CN(γC , k

n) be the cost relative to missing write operations:

CN(γC , k
n) =

∑
(sLi ,sPi)∈γC s.t. sPi ̸=≫

(∑
v∈(dom(#vars(sPi))\dom(#vars(sLi)))

kn(v)
)

The objective function to minimize is the cost associated with deviations of any per-
spective different from the control-flow:

min
(
CN(γC , k

n) +
∑

vi∈VILP :vi ̸=⊥

(
kd(v) · v̂i

))
(1)

subject to the constraints in ΦγC and the following ones:

∀vi ∈ VILP s.t. vi ̸= ⊥. vi = vi ⇔ v̂i = 0 (2)

and
∀vi ∈ VILP . vi ∈ U(v); ∀vi ∈ VILP s.t. vi ̸= ⊥. v̂i ∈ [0, 1]

The constraints in Equation 2 are clearly not linear. Nonetheless, each of these con-
straints can also be written as a pair of linear constraints:

vi −Mv̂i ≤ vi; −vi −Mv̂i ≤ −vi

where M is a sufficiently large number (e.g., the maximum machine-representable num-
ber). The equivalence of each pair of these constraints can be easily observed: in the so-
lution of the ILP problem, if v̂i = 0, then vi = vi must hold; otherwise any value can be
assigned to vi. Nonetheless, we aim to minimize the objective function in Equation 1;
hence, v̂i = 1 only if value vi cannot be assigned to vi.

Example 4 Let us suppose that kn(v) = 10 and kd(v) = 1 for each v ∈ V . In Figure 3(b),
the constraints in bold are those which are introduced to enforce that v̂i = 0 iff vi = vi, i.e.
the constraints of the type described in Equation 2. Figure 3(c) shows the optimal alignment in
function of the solution of the ILP problem. It contains write operations of form v = v∗i where v∗i
is the value assigned to variable vi in the solution found for the ILP problem. Note the objective
function has an added constant 10, which is relative to the only missing write operation, which is
for V .

The following theorem discusses the admissibility of the ILP problems constructed as
described above (see [8] for a sketch of the proof):

Theorem 1 (Admissibility of the ILP problem). Let N = (P, T, F, V, U,W,G) be a
data-sound DPN-Net and σL be a log trace. The ILP problem constructed as mentioned
above to find an optimal alignment of σL and N is always admissible.

4.2 A Helicopter View on the Optimal Alignments

Alignments can be projected on the process model to obtain a helicopter view. Transi-
tions and variables are colored based on their level of conformance: a value between 0
and 1. Extreme values 1 and 0 identify the situations in which, according to the behavior
in an event log L, the executions of a transition or the write operations for a variable are
always or never conforming with the model. When projecting deviations on the model,
transitions and variables are colored according to their level of conformance: if the level
is 1 or 0, a white or black color is used, with intermediate values associated with in-
termediate shades of color, including different intensities of yellow, orange, red, purple
and brown. Readers are referred to [8] for more details on how levels of conformance
are computed.

Each transition t is also associated with a decision tree that relates the deviations for
t (e.g., moves in log) to the typical causes, e.g. the typical DPN-net states (M,A) when
such deviations occurred. Decision trees classify instances by sorting them down in a
tree from the root to some leaf node. Each non-leaf node specifies a test of some clas-
sification feature and each branch descending from that node corresponds to a range of
possible values for the feature. Leaf nodes are relative to the value for the classification
feature.

Decision trees are constructed starting from a set of training instances. In our case, a
different training instance −→o is associated with each prefix γ′ = ⟨(sL1 , sP1), . . . , (sLi , sPi)⟩
of every optimal alignment γ ∈ Γ . Instance −→o is used to train the decision tree for
transition #act(s

P
i), if sPi ̸=≫, or #act(s

L
i), if sPi =≫. The possible value of the clas-

sification feature in −→o corresponds to one of 4 types of moves, i.e. moves in process, in
log, as well as moves in both with or without incorrect write operations. Let σ′

L be the
log projection of alignment prefix ⟨(sL1 , sP1), . . . , (sLi−1, s

P
i−1)⟩, i.e., ignoring the last

move in γ′. If γ occurs multiple times in Γ , i.e. #Γ (γ) > 1, each γ prefix generates
#Γ (γ) training instances, which are giving the same values to all classification features.

For each variable v ∈ V , there exist two classification features: v and v′. The value
of the classification feature v is the value of the last write operation for v in log trace σ′

L.
If there is no write operation for v in σ′

L, no value is assigned to the feature. As a matter
of fact, decision-tree construction algorithms can deal with missing values of features.
The value of the classification feature v′ is the value assigned to v by log event sLi , i.e.
#vars(v, s

L
i). If sLi =≫ or #vars(v, s

L
i) = ⊥, no value is assigned to the feature. We

also add an additional feature #t for each transition t ∈ T . The value for feature #t is
the number of firings of transition t in σ′

L, i.e. the number of execution of t before the
last move of γ′.

5 Implementation and Experiments on Real Life Event Logs

Our multi-perspective conformance checking approach is realized through two software
plug-ins of ProM, a generic open-source framework for implementing process mining
tools in a standard environment.6 A first ProM plug-in, the Data-aware Conformance
Checker, takes a process model in form of a DPN-net and an event log as input and
operationalizes the techniques described in Section 4, including the extensions for non-
atomic formulas. The output is a set of optimal alignments, one for each trace in the
event log. A second plug-in, the Data-aware Conformance Projector, projects the op-
timal alignments onto the process model, operationalizing the approach described in
Section 4.2. To solve ILP problems our implementation uses the lp solve library, which
is based on the revised simplex method combined with a branch-and-bound method
for the integers.7 To construct decision trees, we leverage on the implementation of the
C4.5 algorithm in the WEKA toolkit.8

To assess the practical feasibility of the approach, the two ProM plug-ins have been
tested on a real-life case study involving a Dutch insurance institute. We used an event
log containing 12319 traces (i.e. process instances), where, on average, each trace is
composed by around 7 events, with a minimum of 4 events and a maximum of 11

6 http://www.promtools.org/
7 http://lpsolve.sourceforge.net/
8 http://weka.sourceforge.net

Fig. 4. The ProM User Interface to show the optimal alignments.

Fig. 5. The process model relative to the case study of a Dutch insurance institute. The alignments
have been projected on the model to pinpoint where deviations occur more often.

events. The event log has been generated through XESame, which is bundled in ProM.
XESame allowed us to extract the event log from the database of the insurance insti-
tute. A control-flow process model has been designed in collaboration with a process
analyst of the institute. Figure 5 shows the DPN-net for the case study. Each transition t
modeling an activity t is associated with a guard G(t) = Gr(t)∧Gd(t) where formulas
Gr(t) and Gd(t) encode the constraints on the resource and data perspective, respec-
tively. We have derived Gr(t) for every transition t after a number of talks with the
process analyst; formulas Gd(t) have automatically been mined through the Decision
Miner [7] and validated with the process analyst. Although the event log contains 32
data attributes, only five are actually involved in the guards of the activities. Therefore,
we did not include the others in the process model to preserve the model’s readability.
These five attributes are written once with the Start activity when a insurance claim is
submitted and never updated. Here, the Data-aware Conformance Checker plug-in is
used to evaluate whether this process model is a good representation of the real behav-
ior observed in the event log. The process analyst could not identify some deviations as
more severe than others. Therefore, the four cost functions were defined so as to return
1 for any control-flow and data-flow deviation.
Visualization of the Optimal Alignments in ProM. Figure 4 shows how the optimal
alignments are visualized in ProM: the optimal alignment of each log trace is shown

Fig. 6. The decision tree associated with activity/transition Quick Scan. Each tree leaf corresponds
to one of the possible types of moves: in log, in process and in both, with or without incorrect
write operations.

as a sequence of triangles, each representing an alignment’s move. Each triangle is
colored according to the move that it represents. The green and white colors are used to
identify moves in both without or with incorrect write operations, respectively; yellow
and purple are for moves in the log or in the process, respectively. Finally, the gray is
used for moves for invisible transitions. When the user passes over a triangle with the
mouse, the plug-in highlights the two transition firings sL and sP associated with the
move (sL, sP). Specifically, the figure refers to a move in both with an incorrect write
operation for variable Availability Employment History. The value next to the optimal
alignment for every trace σL is the fitness value F(σL). On the top of the screen view,
the average fitness of all traces is shown.
Enhanced Diagnostics in ProM. Figure 5 illustrates the output of the Data-aware
Conformance Projector in ProM. Activities and variables are colored according to their
level of conformance, as discussed in Section 4.2. Activity Start is the most involved
in deviations, since the rectangle of respective transition is filled with the darkest color.
Similarly, BR11 Self Resigner is the variables for which there is the highest num-
ber of incorrect write operations. When passing over a transition/activity or variable
with the mouse, more information is given: the figure shows that activity Start is 3249
moves in both with incorrect write operations and 9070 moves without incorrect write
operations. It is worthy observing that variable res is filled with a white color, which
implies activities are generally performed by authorized resources. When clicking on a
transition’s rectangle, as discussed in Section 4.2, an associated decision tree is shown
which classifies the types of deviations relative to the transition as function of the pro-
cess state when the deviations occurred. Figure 6 shows the decision tree associated
with transition Quick Scan. In brackets, each tree leaf shows the number of moves in
the computed optimal alignments that are classified in that leaf. Some moves can be

incorrectly classified: the type of moves may be different from what the values of the
classification features would suggest. In these cases, after the slash, a second number is
shown, which is the number of wrongly classified moves. The labels around the deci-
sion tree, i.e. Variables, Configuration and Summary, allow users, on the one hand, to
access information about the quality of the decision tree and, on the other hand, to set
the configuration parameters and the classification features to consider when construct-
ing the decision tree. By analyzing the tree in Figure 6, one can observe that activity
Quick Scan is usually correctly executed if it has never been previously executed (i.e.,
#3QuickScan = 0) and the claim’s request channel is known and the previous activity
is performed by any resource different from #6011, #29313, #32478, #6024, #17338.
This statement is not confirmed in only 7 out of 1248 moves as indicated by the label
“Move in Both without incorrect write operation (1248/7)” associated with the tree’s
leaf. In any different state of the DPN-net when Quick Scan was performed, a move in
log is expected.

Event Log & Model New Previous
Dutch Insurance Institute 3+7.02 > 2 hs
Synthetic Log (n = 4) 0.17+0.38 13.3
Synthetic Log (n = 5) 0.2+0.21 48
Synthetic Log (n = 6) 0.2+0.44 205

Table 2. Execution time comparison be-
tween the new technique and the technique
in [5] for some log-model combinations.
When unspecified, the time units are sec-
onds.

Execution-Time Analysis. As men-
tioned in the introduction, our new
technique is several orders of mag-
nitude faster than it predecessor de-
scribed in [5]. To support this claim,
we performed a number of experi-
ments with different combinations of
event logs and process models.
The experimental results are summarized
in Table 2: the second column is relative
to the results for our new technique, i.e.
the ILP-based technique described in this
paper, whereas the third refers to the pre-

vious technique. For the new technique, the execution time is reported as x + y where
x and y are, respectively, the execution times to compute the control-flow alignments
and to complement them to consider the other perspectives.

Fig. 7. Scalability of the approach with event
logs of different sizes.

The first row is relative to the
real-life event log of the Dutch insur-
ance institute used before to show-
case the implementation. Along with
the real-life event log, we have em-
ployed the same process models that
were used for execution-time analy-
sis reported in Section 5 of paper [5].
In particular, a process model has
been considered with n parallel ac-
tivities. Each of n parallel activities
performs a write operation for a dif-
ferent integer variable, which can be
assigned a value between 0 and 42.
After the n activities, a different ac-
tivity is performed which is associ-

ated with a guard involving the n variables. Further details on the model are given

in [5]. To perform the comparison, we have conducted experiments for n = 4, 5 or 6.
For each of these three values, we have generated an event log that contained 60 traces
with data-related deviations on the write operations. Finally, we have employed both of
techniques and compared the execution time to find the 60 optimal alignments. Com-
paring the results reported in Table 2, the improvements of the new ILP-based technique
are evident.

As further evaluation, we performed detailed experiments to see how the approach
scales up with logs of different sizes. To this purpose, we generated 7 events logs by
simulating the model in Figure 2 with CPNTools9. Each event log contained a different
number of events while the number of traces were always 3000 (i.e., the average length
of traces was different in each of 7 event logs). To generate event logs of different
sizes, we instructed the simulation in a way that, on average, each loan request required
a different number of renegotiations (i.e., the loop was executed a large number of
times in each trace). After the generation of the logs, 20% of events were moved to a
different position in the respective trace to introduce deviations. Figure 7 shows the the
execution time required to compute the optimal alignments for the traces in the 7 event
logs. The dotted line indicates the general trend. This shows that optimal alignments
can be computed efficiently (at least, for the considered example): the execution time
grows almost linearly with event logs of increasing sizes.

6 Conclusion

Various conformance checking techniques have been proposed in recent years. As men-
tioned in Section 1, they only focus on the control-flow thereby ignoring, e.g., incorrect
routing decisions, incorrect values assigned to variables, delayed activities, and unqual-
ified resources executing activities.

This paper presents a technique that consider data, resources and time when check-
ing for process conformance. The proposed technique using state-of-the-art techniques
to first create control-flow alignments. Such alignments are extended to incorporate
the other perspectives. To extend alignments with other perspectives, an additional ILP
problem is constructed and solved for each log trace. The conformance-checking tech-
nique discussed in this paper has been implemented in ProM and was tested with various
synthetic log-model combinations and, also, using a real-life case study. This way we
were able to demonstrate the practical relevance and feasibility of the technique.

Our approach goes much further than existing techniques for data-aware behav-
ioral compliance checking [10, 11]. The setting considered in [10, 11] is different from
ours: a set of compliance rules rather than a multi-set of log traces is checked. There
also exist efficient algorithms to perform sequence alignments (e.g., the algorithms of
Needleman-Wunsch and Smith-Waterman). Similarly, in Process Mining, J.C. Bose et
al. [12] have proposed techniques to efficiently align pairs of log traces. Unfortunately,
they cannot be applied to find an alignment between a log trace and a process model.
In our setting, we do not know a priori the process trace to align with the log trace;
conversely, the process trace needs to be chosen, thus minimizing the severity of the
deviations. Moreover, sequence and trace alignments only focus on the activity names,
i.e. the control-flow perspective, ignoring the other perspectives.

9 http://cpntools.org/

Montali [13] developed some techniques to check the conformity of running process
instances with respect to a set of temporal- and data-related constraints. Certainly, these
techniques can also be applied for a-posteriori analysis, but they would not be able to
pinpoint where the deviations exactly occur, which we aim to do. For this purpose,
one could also leverage on existing techniques in the field of distributed systems for
system debugging [14, 15]. Unfortunately, they would also be limited to alert deviations,
without highlighting where they actually occur.

References
1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of

Business Processes. Springer (2011)
2. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitor-

ing Real Behavior. Information Systems 33 (March 2008) 64–95
3. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J.: Process Compliance Measurement

based on Behavioural Profiles. In: Proceedings of the 22nd International Conference on
Advanced Information Systems Engineering. CAiSE’10, Springer-Verlag (2010) 499–514

4. Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Correspon-
dence of a Process to a Model. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 8 (April 1999) 147–176

5. de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and Resource-Aware Con-
formance Checking of Business Processes. In: 15th International Conference on Business
Information Systems. Volume 117 of LNBIP., Springer Verlag (2012) 48–59

6. Sidorova, N., Stahl, C., Trčka, N.: Soundness Verification for Conceptual Workflow Nets
With Data: Early Detection of Errors With the Most Precision Possible. Information Systems
36(7) (2011) 1026–1043

7. de Leoni, M., van der Aalst, W.M.P.: Data-Aware Process Mining: Discovering Decisions in
Processes Using Alignments. In: Proc. of the 28th ACM symposium on Applied Computing
(SAC’13), ACM (2013)

8. de Leoni, M., van der Aalst, W.M.P.: Aligning Event Logs and Process Models for Multi-
Perspective Conformance Checking: An Approach Based on Integer Linear Programming
(2013) BPM Center Report BPM-13-05.

9. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.: Conformance Checking Using Cost-
Based Fitness Analysis. In: IEEE International Enterprise Distributed Object Computing
Conference, IEEE Computer Society (2011) 55–64

10. Ly, L., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process compliance
using compliance rule graphs. In: Proceedings of OnTheMove Federated Conferences &
Workshops: OTM 2011. Volume 7044 of LNCS. Springer (2011) 82–99

11. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-Based Artifact-Centric Sys-
tems through Finite Abstraction. In: Proceedings of the 10th International Conference on
Service-Oriented Computing (ICSOC’12). Volume 7636 of LNCS. Springer (2012) 17–31

12. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Process Diagnostics Using Trace
Alignment: Opportunities, Issues, and Challenges. Information Systems 37(2) (2012)

13. Montali, M.: Specification and Verification of Declarative Open Interaction Models - A
Logic-Based Approach. Volume 56 of Lecture Notes in Business Information Processing.
Springer (2010)

14. Reynolds, P., Killian, C., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat, A.: Pip: detecting
the unexpected in distributed systems. In: Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, USENIX Association (2006) 115–128

15. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system prob-
lems by mining console logs. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, ACM (2009) 117–132

