
Discovering Branching Conditions from Business
Process Execution Logs

Massimiliano de Leoni1, Marlon Dumas2, and Luciano Garćıa-Bañuelos2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 University of Tartu, Tartu, Estonia

Abstract. Process mining is a family of techniques to discover business
process models and other knowledge of business processes from event logs.
Existing process mining techniques are geared towards discovering models
that capture the order of execution of tasks, but not the conditions under
which tasks are executed – also called branching conditions. One existing
process mining technique, namely ProM’s Decision Miner, applies decision
tree learning techniques to discover branching conditions composed of
atoms of the form “v op c” where “v” is a variable, “op” is a comparison
predicate and “c” is a constant. This paper puts forward a more general
technique to discover branching conditions where the atoms are linear
equations or inequalities involving multiple variables and arithmetic
operators. The proposed technique combine invariant discovery techniques
embodied in the Daikon system with decision tree learning techniques.

1 Introduction

The use of business process models to analyze and automate business operations
is a widespread practice. Traditionally, business process models are obtained
from interviews and workshops with domain experts and workers. Studies have
shown however that models obtained in this way may deviate significantly from
the way processes are actually conducted on a daily basis [1]. Workers tend to
take shortcuts or workarounds in order to deal with special cases or to simplify
their work. At the same time, contemporary enterprise systems maintain detailed
records of transactions performed by workers, which can be exploited to discover
models that more faithfully reflect the way processes are actually performed.

This observation has spawned a research area known as process mining [1],
which is concerned with the automated discovery of process models and other
knowledge of business processes from event logs. Several algorithms for automated
process discovery have been developed, which strike different tradeoffs between
accuracy and comprehensibility of the discovered models.

To illustrate the capabilities and limitations of these algorithms, we consider
a process for handling loan applications (cf. Figure 1). This process starts when
a loan application is made. First, the loan application details are entered into
a system – in particular the amount and length of the loan which are hereby
treated as variables of the process. Next, data about the applicant (e.g. age and
salary) are retrieved from the customer database. In parallel, the amount of

Enter Loan
Application

Retrieve
Applicant

Data

Compute
Installments

Approve
Simple

Application

salary/installment <= 2
|| lenght+age > 70

Approve
Complex

Applicationamount >= 10000

Notify
Rejection

salary

installment

Notify
Eligibility

amount < 10000salary/installment > 2
&& lenght+age ≤ 70

length

amount

age

Fig. 1. Running example: loan application process model (in BPMN notation).

each installment is calculated and stored as a variable. The request is eligible
if the applicant’s salary is more than twice the amount of the installment and
they would finish paying installments by the age of 70. If the applicant is not
eligible, the application is rejected. If eligible, the applicant is notified and their
application is forwarded for approval. If the requested amount is less that 10000,
a simple approval suffices; otherwise, a more complex approval is required.

The bulk of automated process discovery algorithms are focused on extracting
control-flow relations between events or tasks in a process. In the working example,
these algorithms would discover the sequence relations in the model, the parallel
execution relations (the “+” gateways in Figure 1) and the conditional branching
points where a choice is made between alternative branches (the “X” gateways in
Figure 1). However, they do not discover the conditions attached to the outgoing
branches of these branching points – also called branching conditions.

An attempt to address this limitation is the Decision Miner [2] embodied in
the ProM toolset [1]. The Decision Miner applies decision tree learning to infer
conditions composed of atoms of the form “v op c” where “v” is a variable, “op”
is a comparison predicate and “c” is a constant. In the running example, the
Decision Miner can discover the condition amount ≥ 10000 (and its dual), but
not the conditions attached to the leftmost branching point in the model.

This paper tackles the problem of discovering branching conditions where the
atoms are equalities or inequalities involving arithmetic expressions on multiple
variables. The starting point is the invariant detection technique embodied in the
Daikon system [3]. A direct application of Daikon allows us to discover invariants
that hold before (or after) a task is executed. The discovered invariants are of the
form “v1 op c” or “v1 op v2” where v1 and v2 are variables and c is a constant.
By combining these invariants via conjunction, we can discover conditions that
hold at the start of each branch. However, this approach has three limitations:

L1. Many of the invariants detected by Daikon are not suitable for inclusion in
a branching condition. A branching condition should discriminate between
the cases when one branch is taken and those when it is not taken, while an
invariant that holds in one branch may equally well hold in the alternative

2

branch. In the running example, Daikon may detect that invariants age ≤ 70
or salary ≤ amount hold just before task Notify Rejection, but these are
clearly not relevant for inclusion in the corresponding branching condition.

L2. Daikon does not discover conditions that include disjunctions.
L3. Daikon does not discover inequalities where the atoms involve more than

two variables combined via arithmetic operators.

To overcome these limitations, we combine Daikon with decision tree learning. In
particular, we use the notion of information gain from decision tree learning to
determine which invariants should be combined into branching conditions. Three
techniques of increasing degree of sophistication are proposed, which overcome
each of the above three limitations in turn. The techniques have been validated
on a set of test cases covering branching conditions with different structures.

The paper is structured as follows. Section 2 introduces ProM’s Decision Miner
and Daikon and discusses other related work. Section 3 presents the techniques
for branching condition discovery while Section 4 documents their validation.
Section 5 discusses some remaining limitations and directions for future work.

2 Background and Related Work

2.1 ProM Decision Miner

ProM’s Decision Miner allows one to discover branching conditions for a given
branching point in a process model. These conditions depend on the value of
the variables of the process when the point is reached. Accordingly, the input of
ProM’s Decision Miner consists of an event log where each event contains: (i) a
timestamp; (ii) an event type that allows to link the event to a task; and (iii) a
set of 〈 variable, value 〉 pairs, representing the new values of variables modified
by the event in question. The events in the log are grouped into traces, where
each trace is a temporally-ordered sequence of events representing one execution
of a process from start to end (also called a case). The mechanism used to group
events in a log into traces is not relevant for this paper (see e.g. [1]).

ProM’s Decision Miner assumes that a process model has been discovered
from the event log prior to discovering the branching conditions. This process
model can be obtained using one of the existing process discovery algorithms.

Given the event log, the discovered process model, and one of the branching
points P in the model, ProM’s Decision Miner first calculates, for each enablement
of P in a trace (i.e. each traversal of P when replaying the trace against the
model), the following: (i) the values of each variable in the process when P is
enabled; and (ii) the identifier of the branch that was taken after the branching
point was traversed (the outcome). A variable assignment and its associated
outcome for a given enablement of P is called an observation instance. The set of
observation instances of P is used to mine a decision tree. This decision tree is
transformed into a disjunction of conjunctions of atomic expressions as follows:
Each path from the root to a leaf labelled with outcome ti becomes a conjunctive

3

expression associated to branch ti. The branching condition of a branch ti is the
disjunction of the conjunctive expressions derived from the paths leading to ti.

ProM’s original Decision Miner [2] cannot handle process models with cycles
or with invisible (“skip”) tasks. These limitations however are addressed in [4].

Since the internal nodes of a decision tree are labeled with expressions of the
form variable-op-constant, the Decision Miner only discovers conditions consisting
of atoms of this form. In the running example, the Decision Miner cannot discover
the conditions associated with Notify Rejection and Notify Eligibility.

The Decision Miner assumes that the branches of a branching point are
exclusive, i.e. exactly one of the branches is selected. Process modeling languages
also support inclusive branching points where more than one branch can be taken
in parallel. However, an inclusive branching point can be transformed into an
exclusive branching point and one or more parallel gateways.

2.2 Invariant Discovery and Specification Mining

Daikon [5] is a dynamic analysis tool for inferring likely value-based invariants
from a collection of execution traces. It operates by instantiating a set of invariant
templates with the variables in the logs, and trying to match each instantiated
template against the variable assignments recorded in the traces. It outputs a set
of invariants with sufficient statistical support.

Daikon relies on code instrumentation tools that expose the value of variables
at points of interest in a program. For example, Java bytecode can be instrumented
so as to monitor actual parameters used in method calls. In this way, Daikon
discovers method pre- and postconditions, and derives object-level invariants.

Daikon comes with a large set of invariant templates, ranging from simple
relational expressions on variable/value or variable/variable pairs (e.g., x < y) to
sophisticated templates of linear relations over multiple variables (e.g., x−3∗y =
115). Daikon usually discovers interesting invariants but it may also report
irrelevant invariants. In our running example, for instance, Daikon may discover
the invariant length < salary, assuming that both variables length and salary
have integer values. To cope with this problem, Daikon uses static analysis of the
target program source code to identify meaningful combinations of variables [6].
Such analysis may reveal, for instance, that variables salary and installment
are used together in arithmetic expressions while variables salary and length are
not. Daikon then avoids instantiating templates that combine variables salary
and length, thus improving the relevance of the discovered invariants. In our
setting, however, static analysis is not possible as no source code is available.

For the problem at hand, we can use Daikon to discover invariants for each
task that follows a branching point in the target process model. These invariants
could be put into conjunctive expressions, that would be then used as branching
conditions. This approach has been explored in [7, 8]. However, Daikon may
discover invariants that are not necessarily branching conditions. For example,
amount > 0 holds for all activities in the process model in Figure 1. This atom
may appear in all the branching conditions in the process model, even if it is not
directly involved in the decision in question.

4

Several extensions of Daikon have been proposed. One of them [9] discovers
object-level invariants including disjunctions (limitation L2 in Section 1). However,
this extension requires the source code to be analyzed and in our problem setting
no source code is available. Other related work includes alternative oracles for
discovering potential invariants, such as the one proposed by [10], which produces
higher-order polynomial invariants as opposed to only linear invariants as Daikon.

Daikon is an exemplar of a broader class of so-called specification mining
techniques [11–13]. Specification mining is concerned with discovering temporal
and data-dependent knowledge about a program or protocol. The discovered
knowledge is represented, for example, as state machines. A distinctive feature
of process mining compared to specification mining is that process mining is
concerned with discovering concurrent behavior in addition to sequential behavior.
Also, in process mining, no source code is assumed to be available.

3 From Invariants to Branching Conditions

This section proposes three techniques to address the limitations of Daikon
highlighted in Section 1. Section 3.1 addresses L1. Section 3.2 extends the
technique of Section 3.1 to address L2. Finally, Section 3.3 extends further to
overcome L3. Section 3.4 discusses the case of N-ary branching points.

A binary branching point is denoted by a set {t1, t2} where t1 and t2 are the
first tasks of the two branches. For convenience, we associate each branching
condition with the first task of the respective branch, i.e. with t1 or t2.

Daikon is trained on a set of observation instances relative to a task. Here,
an observation instance is a function i : V → U that assigns a value i(v) to each
variable v ∈ V . Given a set I of observation instances, we abstract Daikon as
a function DiscoverInvariantsWithDaikon(I) that returns a conjunctive
expression of atoms that are invariants with respect to instances in I. Sometimes,
Daikon is not able to discover invariants; in these cases, the special value ⊥ is
returned. Observation instances relative to a task are extracted from an event
log as follows:

Definition 1 (Event Log). Let T and V be a set of tasks and variables, re-
spectively. Let U be the set of values that can be assigned to every variable v ∈ V .
Let Φ be the set of all functions V 6→ U that define an assignment of values to
a subset of variables in V . An event log L over T , V and U is a multiset of
traces where each trace is a sequence of events of the form (t, φ), where t ∈ T
is a task and φ ∈ Φ is an assignment of values to a subset of variables in V In
other words, L ∈ B((T × Φ)∗).3

The observation instance relative to an execution of a task t in a given case (i.e.
a process execution) consists of the values of the variables in the case prior to
the execution of t. Algorithm 1 shows how observation instances are constructed
from an event log. The output is a function I that associates each task t ∈ T
3 B(X) the set of all multisets over X.

5

Algorithm 1: generateObservationInstances

Data: L – An event log over T and V
Result: A function I that associated each task in T with a set of observation

instances

1 Let I be a function whose domain is T and ∀t ∈ T. I(t) = ∅.
2 foreach trace 〈(t1, φ1), . . . , (tn, φn)〉 ∈ L do
3 Let M be a function whose domain is V and ∀v ∈ V. M(v) = ⊥
4 for i← 1 to n do
5 I(t1)← I(t1) ∪M
6 foreach variable v in the domain of φi do M(v)← φi(v)

7 end

8 end
9 return I

Algorithm 2: discoverConjuntiveConditionsWithDaikon (CD+IG)

Data: L – An event log, P – A process model
Result: A map that associates some transitions with the corresponding

branching conditions

1 I ← generateObservationInstances(L)
2 foreach {t1, t2} ∈ branchingPoints(P) do
3 C(t1)← DiscoverInvariantsWithDaikon(I(t1))
4 C(t2)← DiscoverInvariantsWithDaikon(I(t2))
5 C(t1)← BuildConjuntiveExpr(I(t1), I(t2), C(t1))
6 C(t2)← BuildConjuntiveExpr(I(t1), I(t2), C(t2))
7 adjustConditions(I(t1), I(t2), C(t1), C(t2))

8 end
9 return C

with a set of observation instances relative to t. The algorithm is based on the
principle of replay. Each trace is associated with a function M : V → U that
keeps the assignment of values to variables. After an event is replayed, function M
is rewritten according to the event’s value assignments. Initially, for each v ∈ V ,
M(v) = ⊥, where ⊥ is a special value that identifies an undefined assignment.
Before replaying an event e for a certain task t, a new observation instance is
created and added to the set of instances for task t (line 5). Afterwards, e is
replayed and function M is rewritten accordingly (line 6).

For convenience, we will say that the observation instances of a branch are
the observation instances relative to the first task of that branch.

3.1 Discovery of Conjunctive Conditions

In order to construct the branching conditions from the invariants discovered
by Daikon, we leverage on the concept of information gain. In data mining, the
concept of information gain captures how well a given predicate distinguishes

6

Algorithm 3: BuildConjuntiveExpr

Data: I1, I2 – Two sets of observation instances, P – A conjunctive expression
Result: A conjunction of a subset of the atoms in P that maximizes the

information gain

1 if P =⊥ then return ⊥
2 S ← {p1, p2, . . . , pn} s.t. P = p1 ∧ p2 ∧ . . . ∧ pn
3 Pick q ∈ S s.t. ∀q′ ∈ S. IG(I1, I2, q′) ≤ IG(I1, I2, q)
4 P ← q
5 S ← S \ {q}
6 while S 6= ∅ do
7 Pick q ∈ S s.t. ∀q′ ∈ S. IG(I1, I2, P ∧ q′) ≤ IG(I1, I2, P ∧ q)

8 if IG(I1, I2, P ∧ q) > IG(I1, I2, P) then P ← P ∧ q S ← S \ {q}
9 end

10 return P

between two or more possible outcomes (tasks in our case). In our context, the
information gain of a predicate P relative to a binary decision point leading
to tasks T1 and T2, is a measure of how well predicate P distinguishes the
observations instances where task T1 is executed from those where task T2 is
executed. A predicate that holds iff T1 is executed or a predicate that holds iff
T2 is executed has maximum information gain. A predicate that does not give
any gain (beyond random choice) when it comes to determining whether task
T1 or T2 is executed has zero information gain. Given a two sets of observation
instances leading to two tasks, the maximum possible value of the information
gain is called the entropy, as formally defined below.

Definition 2 (Entropy). Let I ′ and I ′′ be two sets of observation instances
that lead to the execution of to task t′ and task t′′, respectively. Moreover, let p(t)
denote the probability of executing the task t. Then, the entropy of I ′ and I ′′ is
defined as H(I ′, I ′′) = −p(t′) · log2(p(t′))− p(t′′) · log2(p(t′′)). Since p(t′) can be
expressed as |I ′|/(|I ′|+ |I ′′|), we reformulate entropy as:

H(I ′, I ′′) = −
(

|I ′|
|I ′|+ |I ′′|

· log2

|I ′|
|I ′|+ |I ′′|

)
−
(

|I ′′|
|I ′|+ |I ′′|

· log2

|I ′′|
|I ′|+ |I ′′|

)
Entropy is 1 if sets I ′ and I ′′ are of the same size. It becomes close to 0

if the sets are of very different sizes. It is 0 if either I ′ or I ′′ is empty (taking
0 log2 0 = 0). The intuition is that if we partition a set into a large subset and a
small one, this partition has little information, as the smaller set can be encoded
with few bits. Meanwhile, if we partition a set into equal-sized subsets, more
information is required to distinguish between the two subsets. Given two disjoint
sets of observation instances, our goal is to identify a predicate that comes as
close as possible to perfectly classifying instances between these two sets and
thus fully capturing the information in this partition of observation instances. In
other words, we seek a predicate that reduces as much as possible the partition’s
entropy.

7

The information gain of a predicate P with respect to a set of instances is
a measure that quantifies how much entropy is reduced by partitioning the set
according to predicate P . A predicate that perfectly determines whether or not
a given instance belongs to the set has an information gain equal to the entropy.

Definition 3 (Information Gain). Let I ′ and I ′′ be a set of observation
instances for two tasks. The information gain of a predicate P with respect to I ′
and I ′′ is defined as follows:4

IG(I ′, I ′′, P) = H(I ′, I ′′)− (|I′P |+|I
′′
P |)·H(I′P ,I′′P)
|I′|+|I′′| − (|I′¬P |+|I

′′
¬P |)·H(I′¬P ,I′′¬P)
|I′|+|I′′|

Algorithm 2 describes the technique to discover conjunctive branching con-
ditions. Initially, we generate the observation instances through Algorithm 1.
Afterwards, the algorithm iterates on each branching point {t1, t2}. Conditions
C(t1) and C(t2) are computed by Daikon using the observation instances rela-
tive to tasks {t1, t2}. Then, function BuildConjuntiveExpr is called to build
a conjunctive condition by combining the invariants discovered by Daikon in
a conjunction that maximizes the IG relative to the outcomes of the branch-
ing point. The conditions are then adjusted to ensure that C(t1) = ¬C(t2).

X1 X2 X3

3 4 true
7 12 true
9 34 true
12 44 true

(a) t1

X1 X2 X3

10 4 true
14 4 true
17 4 true
20 4 true

(b) t2

Fig. 2. Examples of observation
instances relative to two tasks
t1 and t2 of a binary branching
point.

Algorithm 3 shows how function Build-
ConjuntiveExpr is implemented. In order to
simplify the manipulation of conditions, we as-
sume that the invariants discovered by Daikon
are given as a conjunctive expression, i.e.

P = p1 ∧ p2 ∧ . . . ∧ pn. Let S =
{p1, p2, . . . , pn} be the set of atoms of P . If
P is undefined (no invariant was discovered by
Daikon) the algorithm returns ⊥. Otherwise,
the algorithm starts by picking the atom q
with highest IG (line 6). This atom becomes
the first conjunct in the result P (line 4). The algorithm continues by greedily
adding a new atom q to the conjunctive expression P (line 9), provided that the
conjunction P ∧ q increases the IG. The loop stops when all the atoms in P have
been considered. The resulting expression P is then returned (line 13).

Once the conditions are built for the two branches, they are adjusted so as
to ensure that C(t1) = ¬C(t2) (function adjustConditions). The adjustment
is performed as follows. If Daikon was unable to discover C(t1) (or C(t2)), we
set C(t1) = ¬C(t2) (or vice versa). Otherwise, if the IG of C(t1) is higher (resp.
lower) than that of C(t2), we set C(t2) = ¬C(t1) (resp. C(t1) = ¬C(t2)).

As an example, let us suppose to have an event log and a process model
with a branching point {t1, t2}. Using the event log as input, we apply Algo-
rithm 1 to build the observation instances I ′, I ′′ relative to t1 and t2. Then, we
employ Daikon with input I ′ and input I ′′, thus discovering invariant C(t1) and

4 Given a set I of observation instances and a predicate P , IP and I¬P denote the sub
set of instances of I for which predicate P evaluates to true and to false, respectively.

8

Algorithm 4: discoverDisjunctiveExpressionWithDaikon (DD+IG)

Data: A – A set of alignments, P – Process Model
Result: A map that associates some transitions with the corresponding

branching conditions

1 I ← GenerateInstanceTuple(A)
2 foreach {t1, t2} ∈ BranchingPoints(P) do
3 C(t1)← false
4 C(t2)← false
5 DT ← BuildDecisionTree(I(t1), I(t2))

6 foreach (t, I) ∈ EnumeratePartitions(DT) do

7 J ← DiscoverInvariantsWithDaikon(I)
8 J ← BuildConjuntiveExpr(I(t1), I(t2), J)
9 C(t)← C(t) ∨ J

10 end
11 C(t1)← BuildDisjuntiveExpr(I(t1), I(t2), C(t1))
12 C(t2)← BuildDisjuntiveExpr(I(t1), I(t2), C(t2))
13 adjustConditions(I(t1), I(t2), C(t1), C(t2))

14 end
15 return C

C(t2) for t1 and t2, respectively. Daikon may discover the following invariants:
C(t1) is (x1 < x2 ∧ x3 = true) and C(t2) is (x1 > 0 ∧ x2 = 4 ∧ x3 = true).
Some atoms may be irrelevant as they do not discriminate the branch. E.g.,
to discover if any atom in C(t1) is irrelevant, we compute the IG of every
atom: IG(I ′, I ′′, (x1 < x2)) = 1 and IG(I ′, I ′′, (x3 = true)) = 0. We retain
the atom with the highest IG, i.e. x1 < x2. Afterward, we pick (x3 = true);
since IG(I ′, I ′′, (x1 < x2 ∧ x3 = true)) = IG(I ′, I ′′, (x1 < x2)), we discard atom
(x3 = true), so that C(t1) becomes the single atom (x1 < x2). Similarly, atom
(x3 = true) is discarded from C(t2): C(t2) is simplified as (x1 > 0 ∧ x2 = 4). To
finally obtain the branching conditions to associate with t1 and t2, we compute
the IG of the simplified conditions C(t1) and C(t2): IG(I ′, I ′′, C(t1)) = 1 and
IG(I ′, I ′′, C(t2)) = 0.90. Since the IG of C(t1) is higher, we set C(t2) = ¬C(t1),
i.e. C(t2) becomes (x1 ≥ x2).

3.2 Discovery of Disjunctive Conditions

Algorithm 4 (DD+IG) describes the technique for discovering disjunctive branch-
ing conditions. For each branching point {t1, t2}, we build a decision tree using
the observation instances relative to tasks t1 and t2. In a decision tree, each
path from the root to a leaf corresponds to an expression that is a conjunction
of atoms of the form v op c. Such expressions are then used to partition the
observation instances. In line 6, the invocation EnumeratePartitions(DT)
returns a set of pairs, one for each leaf node of the decision tree. In particular, if
a pair (t, I) is in the set, there exists a tree path to a leaf node associated with
a classification attribute value t and I is the set of instances associated with

9

that leaf. Note that there might be several leaves for each task t (t stands for
t1 or t2). For each pair (t, I), Daikon is used to discover the set of invariants
J for partition I. From J we build a conjunctive expression that maximizes
the IG. The resulting conjunction is stored in C(t). Once all partitions induced
by the decision tree are analyzed, we proceed to combine the conjunctions into
a disjunction. This is done by function BuildDisjuntiveExpr. The latter is
similar to function BuildConjuntiveExpr except that atoms (in this case
conjunctions) are combined in disjunctions, looking at maximizing the IG. Finally,
we adjust C(t1) and C(t2) to ensure C(t1) = ¬C(t2).

3.3 Extensions for Arithmetic Operators

Daikon includes invariant templates to discover linear equalities with 2 or 3
variables and an optional constant. However, there are no equivalent templates
for inequalities. In process models, inequalities are common and leaving these
aside is a major restriction. For instance, the running example involves inequalities
with 2 variables and a constant (length+age ≤ 70 and salary/installment ≥ 2).

To cope with this limitation, we propose to enrich the original log with
so-called latent variables. A latent variable is defined as a variable derived by
combining multiple variables in the original log by means of one arithmetic
operator (+, −, * or /). In the running example, an example of a latent variable
is “salary div by installment” = salary/installment.

We extend CD+IG and DD+IG with latent variables as follows. We identify
the set of numerical variables and generate all combinations of N variables with
one arithmetic operator (for each of the four arithmetic operators). Then, we aug-
ment the log by adding the latent variables and give it as input to Daikon. Daikon
treats each latent variable as a regular variable. Thus, it discovers invariants
involving one latent variable and one constant or one latent variable on one or
both sides of an equality or inequality (e.g., a+ b ≤ c ∗ d). The invariants thereby
discovered are post-processed with either CD+IG and DD+IG. The extended
techniques with latent variables are called CD+IG+LV and DD+IG+LV.

Importantly, invariants involving latent variables compete with invariants
involving observed variables when CD+IG or DD+IG construct a branching
condition out of the invariants returned by Daikon. Consider for example a
situation where there are two numeric variables in the log (x1 and x2) and we
seek to discover a branching condition x1 ≤ 8000 ∧ x2 ≤ 8000. Daikon naturally
discovers invariant x1 + x2 ≤ 16000 in addition to x1 ≤ 8000 and x2 ≤ 8000.
Invariant x1 + x2 ≤ 16000 may have a higher IG than each of the two other
atoms taken separately. Thus, x1 + x2 ≤ 16000 is integrated in the discovered
condition and the other two invariants may then be left out if they do not
increase the RIG. We observed this behavior when conducting preliminary tests.
Accordingly, we adopt a two-step approach. In the case of CD+IG+LV, first,
CD+IG (without latent variables) is run. If the result is not satisfactory (i.e., RIG
below a threshold), CD+IG+LV is run again with all latent variables involving
N terms (N is a tunable parameter). The same applies for DD+IG+LV.

10

T1

T2

T3

T4

(a)

T1

T2

T3

T4

I1

I2

’

’

’

’

(b)

Fig. 3. N-ary to binary transformation

The complexity of CD+IG+LV and DD+IG+LV is combinatorial on N , since
one latent variable is generated for each subset of size N of the variables in
the log, and for each arithmetic operator. Thus these techniques are practical
only for small values of N . Another limitation of CD+IG+LV and DD+IG+LV
is that they only discover equalities or inequalities where each side involves a
single type of arithmetic operator (only + or − or * or /). Introducing latent
variables combining multiple types of arithmetic operators would lead to a higher
combinatorial explosion when N > 2.

3.4 Extension to N-ary Branching Points

Hitherto, we have assumed that every branching point is binary. The technique can
be extended to N-ary branching points as follows. Given an N-ary branching point,
we rewrite this point into a number of of binary branching points by leaving
one branch intact, collapsing the remaining N − 1 branches into a separate
branching point and so on recursively. For instance, the quaternary branching
point in Figure 3(a) is rewritten into binary branching points in Figure 3(b). The
transformed model has 2 new (black-filled) tasks (I1 and I2). These dummy (τ)
tasks are introduced purely for the purpose of the branching condition discovery.

Any of the above techniques (CD+IG, DD+IG or their extensions with latent
variables) can be applied to each binary branching point using the extended
log. In the example, this allows us to discover the 6 conditions C(t) – t ∈
{T ′1, T ′2, T ′3, T ′4, I1, I2}. Having discovered the conditions for each binary branching
point, the branching condition C(Ti) of the ith branch of the N-ary branching
point is then defined as the conjunction of C(T ′i) and each of the C(Ij) where
task Ij is on the path from the first binary branching point to T ′i in the rewritten
model. In the example, this means that: C(T1) = C(T ′1), C(T2) = C ′(I1)∧C(T ′2),
C(T3) = C ′(I1) ∧ C ′(I2) ∧ C(T ′3) and C(T4) = C ′(I1) ∧ C ′(I2) ∧ C(T ′4).

An N-ary branching point can be rewritten into binary ones in multiple ways
depending on the order in which the N branches are refactored. Each rewriting
leads to different branching conditions. Since we seek to maximize information
gain, we perform the rewriting as follows. First we run CD+IG (or an extension)
on each of the N original branches. We then select the branch for which the
discovered condition has the highest Relative Information Gain (RIG). The RIG
of a branching condition is the IG of the condition divided by the entropy of the
observation instances of the branch in question and the union of the observation

11

instances of all other branches. RIG is equal to 1 when the IG is equal to the
entropy. This normalization of information gain relative to the entropy allows us
to compare the gain of conditions in different branches (which may have different
entropies). Having selected the branch with the highest RIG, we refactor this
branch and apply the procedure recursively on the remaining branches.

4 Evaluation

The proposed techniques have been prototyped in Java using Daikon5 for invariant
detection and Weka6 for decision tree learning. The prototype and the testbed
presented below are available at http://sep.cs.ut.ee/Main/BranchMiner.

4.1 Testbed

We designed a battery of test cases covering different types of conditions. Daikon
supports three primitive data types (integer, float and string) and sequences
these primitive types. The testbed includes branching conditions with integers
and strings. Strings are used to encode categorical (unordered) domains (i.e.
enumerated types). Floats are not included in the testbed because Daikon handles
integers and floats in the same way, and thus testing for both is redundant. We
also left out sequences, because we consider they deserve a separate study.

The testbed includes conditions composed of atoms including variables with
either categorical domain or numerical domain as follows. We defined 3 variables
(c1, c2 and c2p) with categorical domains. Each domain includes 3 values: C11,
C12. C13 for c1 and C21, C22. C23 for c2 and c2p. Since categorical domains
are treated as unordered, we created atoms of the form variable-equals-constant
and variable-equals-variable over the 3 variables. Thus two types of atoms were
defined for categorical domains. We defined 4 variables (x1 to x4) over a numerical
domain ([1000, 15000])7. With these variables, we created atoms of the form
variable-operator-variable and variable-operator-constant, where the operator
can be =, ≤ and ≥. We did not produce atoms for operators < and > because
these operators appear anyway in the negations of ≤ and ≥ and each test case
includes a condition and its negation. Thus 3 types of atoms are defined over
numerical variables. Test cases for ≥ and = are omitted for the sake of brevity.

Given these atom types, we designed test cases covering 4 types of expressions:
(i) single-atom; (ii) conjunctions of two atoms; (iii) disjunctions of two atoms; and
(iv) disjunction of a conjunction and an atom. These test case design principles
led us to 6 test cases for categorical domains and 15 for numerical domains of
which only 5 are shown below for brevity. To test branching conditions with
arithmetic operators, we introduced 2 additional variables (x5 and x6) and 3

5 http://groups.csail.mit.edu/pag/daikon/dist/
6 http://www.cs.waikato.ac.nz/ml/weka/
7 Daikon was configured to discover invariants of upper and lower bound for numerical

variables in the range of their corresponding domain, the default being [−1 . . . 2].

12

additional cases (one single-atom, one disjunctive and one conjunctive) containing
atoms with ≤, > and ≥. The test cases are presented in Tables 1 and 2.

For each test case, we generated an event log of 200 execution traces via
simulation using CPNTools8. The simulation model is a Coloured Petri net with
three transitions. The first transition randomly assigns a value to each of the
9 variables (c1, c2, c2p, x1-x6) according to a uniform distribution. The other
two transitions correspond to the branches of a branching point. One of these
two transitions is labelled with the branching condition corresponding to the test
case and the other with its negation. In the case of conditions xi = c and xi = xj
where xi and xj are numeric variables, we adjusted the random assignment so
that these conditions hold in 50% of the cases. If we simply used a uniform
distribution for these variables the probability of xi = c would be too low to
generate enough traces that take the corresponding branch.

4.2 Results

Branching conditions without arithmetic operators. Table 1 presents
the original and the discovered conditions for the test cases without arithmetic
operators. The table also shows the RIG (cf. Section 3.4) for each discovered
condition. We observe that DD+IG discovered each of the original conditions
in this category and the corresponding RIG is exactly one, indicating that the
discovered conditions have perfect discriminative power. Meanwhile, CD+IG
failed in case 11 with very low RIG, discovered alternative (equivalent) conditions
in cases 3 and 6, and a similar (non-equivalent) condition in case 9. In these
three latter cases, the original condition included a disjunction of atoms, which is
equivalent to a conjunction of negations of the original atoms. This conjunction
is discovered by the conjunctive approach with the caveat that the negated atoms
involve the duals of the comparison operators of the original conditions. Thus,
c2 = c2p is discovered as ¬(c2 6= c2p) in case 6, while c1 = C12 is discovered as
¬(c1 ∈ {C11,C13}). For case 9, atom x1 ≤ 8000 was discovered as ¬(x1 ≥ 9000)
because Daikon does not discover invariants of the form “x < C” but instead
it finds invariants with ≤. CD+IG failed in case 11 because both the original
expression and its dual contain a disjunction.

Branching conditions with arithmetic operators. Table 2 show the results
of test cases for branching conditions with arithmetic operators. In all three cases,
CD+IG+LV and DD+IG+LV succeeded to discover either the original condition,
an alternative (equivalent) one or a similar (non-equivalent) one. In spite of
having a RIG of 1.0, the solution to case 14 given by DD+IG+LV is unnecessarily
elaborated, in addition to being non-equivalent to the original condition. It is
clear that the presence of two disjoints comes from the partitioning induced by
the decision tree used in Algorithm 4. Not shown in the table is that CD+IG
and DD+IG (without latent variables) failed in all these cases, as expected. They
returned conditions with very low RIG.

8 http://cpntools.org

13

Case Original CD+IG RIG DD+IG RIG

1 c1=C12 c1=C12 1.0 c1=C12 1.0

2 c1=C12 ∧ c2=C22 c1=C12 ∧ c2=C22 1.0 c1=C12 ∧ c2=C22 1.0

3 c1=C12 ∨ c2=C22
¬(c2∈{C23,C21} ∧
c1∈{C11,C13}) 1.0 c2=C22 ∨ c1=C12 1.0

4 c2=c2p c2=c2p 1.0 c2=c2p 1.0

5 c2=c2p ∧ c1=C12 c2=c2p ∧ c1=C12 1.0 c1=C12 ∧ c2=c2p 1.0

6 c2=c2p ∨ c1=C12 ¬(c2 6=c2p ∧ c1∈{C11,C13}) 1.0 c2=c2p ∨ c1=C12 1.0

7 x1≤8000 x1≤8000 1.0 x1≤8000 1.0

8 x1≤8000 ∧ x2≤8000 x2≤8000 ∧ x1≤8000 1.0 x2≤8000 ∧ x1≤8000 1.0

9 x1≤8000 ∨ x2≤8000 ¬(x2≥9000 ∧ x1≥9000) 1.0 x2≤8000 ∨ x1≤8000 1.0

10 x1≤x2 x1≤x2 1.0 x1≤x2 1.0

11
x1≤8000 ∨
c2=C22 ∧ x3≤x4 ¬(x1 ≥ 9000) 0.39

x1≤8000 ∨
c2=C22 ∧ x3≤x4 1.0

Table 1. Test suite with no arithmetic operator.

Case Original CD+IG+LV RIG DD+IG+LV RIG

12 x1≤x2 ∧ x3+x4>15000 x1≤x2 ∧ x3+x4≥16000 1.0 x1≤x2 ∧ x3+x4≥16000 1.0

13 x1≤x2 ∨ x3+x4>15000 ¬(x1>x2 ∧ x3+x4≤15000) 1.0 ¬(x1>x2 ∧ x3+x4≤15000) 1.0

14 x5∗x6≥49 x5∗x6≥49 1.0
x5∗x6≥50 ∨
x5∗x6 ∈ [49 . . . 56]

1.0

Table 2. Test suite with arithmetic operators.

Execution times. The experiments were conducted on a laptop, using a Java
VM 1.7 on a 64 bit operating system. To gather the execution times, we ran every
test case five times and took the average time of these runs. For the Conjunctive
approach, the times had an average of 2 s, with 0.1 s of standard deviation, and
a maximum of 2.18 s. For the Disjunctive approach, the average execution times
was 11.2 s, with 0.8 s of standard deviation, and a maximum of 35.8 s.

Discussion. The results show that the proposed techniques have increased levels
of precision (pecentage of correctly discovered conditions) but also decreasing
performance. The results also show that the RIG of a discovered condition is
a useful indicator of whether or not this condition has sufficient discriminative
power. Thus, the techniques can be applied in a “trial-and-error” manner. Given
a branching point, we can first apply CD+IG. If the RIG is less than a given
threshold, we can apply DD+IG. If the resulting RIG is still low, we can introduce
latent variables with the aim of maximizing the RIG of the discovered condition.

5 Conclusion

We have shown that a combination of invariant detection and decision tree
learning techniques allow us to discover a wide spectrum of branching conditions
from business process execution logs, thereby allowing us to enhance the output
of existing automated process discovery techniques. Specifically, we proposed
three branching condition discovery techniques of increased level of complexity.

14

The proposed techniques have been validated on synthetically-generated logs
covering branching conditions with varying structures. The test results show that
the techniques discover non-trivial branching conditions in a few seconds (for the
simpler technique) and in less than a minute for the more complex technique.
In the future, we plan to apply the proposed techniques in practice on real-life
event logs for example in the field of insurance where complex decisions are often
involved when classifying claims, and similarly in the field of healthcare.

The approach to discover inequalities with more than two variables suffers
from two key limitations. First, it is only possible to discover inequalities where
each side has at most N variables (with N fixed) and where only one type of
arithmetic operator appears in each side of the inequality. Second, the complexity
of the approach increases combinatorially with N . Recent work [10] has put
forward a technique to discover invariants consisting of equalities and inequalities
among nonlinear polynomials. Adapting this technique for branching condition
discovery is a direction for future work.

Acknowledgments. Work supported by EU’s FP7 program (ACSI project).

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

2. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Proc. of
BPM’2006, Springer-Verlag (2006) 420–425

3. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming 69 (2007) 35–45

4. de Leoni, M., van der Aalst, W.M.P.: Discovery of data-aware process models. In:
Proc. of the 28th ACM symposium on Applied Computing (SAC’13), ACM (2013)

5. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically Discovering
Likely Program Invariants to Support Program Evolution. IEEE Trans. Software
Eng. 27 (2001) 99–123

6. Guo, P.J., Perkins, J.H., McCamant, S., Ernst, M.D.: Dynamic inference of abstract
types. In: Proc. of ISSTA’2006, ACM (2006) 255–265

7. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proc. of ICSE’2008, IEEE (2008) 501–510

8. Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better
together. Autom. Softw. Eng. 19 (2012) 423–458

9. Kuzmina, N., Paul, J., Gamboa, R., Caldwell, J.: Extending dynamic constraint
detection with disjunctive constraints. In: Proc.of WODA’2008, ACM (2008) 57–63

10. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: Proc. of ICSE’2012, IEEE (2012) 683–693

11. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Proc. of POLP’2002,
ACM (2002) 4–16

12. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using
automata-based abstractions. In: Proc. of ISSTA’2007, ACM (2007) 174–184

13. Lo, D., Khoo, S.C., Han, J., Liu, C., eds.: Mining Software Specifications: Method-
ologies and applications. CRC Press (2011)

15

