LABORATORIO DI CALCOLO NUMERICO

Integrazione composita e gaussiana
Università di Verona
Prof. S. De Marchi
Verona, 14 marzo 2008

1 Integrazione numerica

Per il calcolo approssimato di integrali definiti, abbiamo visto due metodi importanti: la formula dei trapezi e il metodo di Simpson. Per entrambi i metodi, che sono di tipo interpolatorio, si sono viste sia la forma semplice che quella composita. Se indichiamo con $I(f) = \int_a^b f(x) dx$, detti metodi si descrivono con le formule seguenti.

• Formula dei trapezi semplice ed relativo errore.

$$I_T(f) = \frac{b-a}{2} (f(a) + f(b)) ,$$

$$I(f) - I_T(f) = -\frac{(b-a)^3}{12} f''(\xi) , \xi \in (a,b).$$

• Formula dei trapezi composita e relativo errore. Qui dobbiamo prendere una suddivisione equispaziata di [a,b] del tipo $\{x_0=a,\ldots,x_i=a+ih,\ldots,x_n=b\}$, con h=(b-a)/n:

$$I_T^c(f) = \frac{h}{2} (f(a) + f(b)) + h \sum_{i=1}^{n-1} f(x_i),$$

$$I(f) - I_T^c(f) = -\frac{b-a}{12}h^2f''(\xi) , \ \xi \in (a,b).$$

• Formula di Simpson semplice e relativo errore.

$$I_S(f) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right) ,$$

$$I(f) - I_S(f) = -\frac{1}{16} \frac{(b-a)^5}{180} f^{(4)}(\xi), \ \xi \in (a,b) .$$

• Formula di Simpson composita e relativo errore. Qui dobbiamo prendere, come nel caso dei trapezi, una suddivisione equispaziata di [a,b]. Quindi nel generico intervallo $I_k = [x_{k-1}, x_k]$, si considerano come punti di interpolazione $x_{k-1}, \bar{x}_k = \frac{x_{k-1} + x_k}{2}$ e x_k . Posto h = (b-a)/n:

$$I_S^c(f) = \frac{h}{6} \sum_{k=1}^n \left[f(x_{k-1}) + f(\bar{x}_k) + f(x_k) \right] ,$$

$$I(f) - I_S^c(f) = -\left(\frac{b-a}{180}\right) \frac{h^4}{16} f^{(4)}(\xi), \ \xi \in (a,b).$$

Esercizio 1. Si calcoli numericamente

$$\int_0^{2\pi} x e^{-x} \cos 2x dx = \frac{3(e^{-2\pi} - 1) - 10\pi e^{-2\pi}}{25} \approx -0.12212260462,$$

mediante le tre formule *composite* dei trapezi, di Simpson, determinando *a priori* il numero di punti necessari in entrambi i casi. Si determini anche l'errore assoluto rispetto al valore esatto.

1.1 Formule gaussiane

• Formula di Gauss composita e relativo errore.

Per ottenere risultati più accurati, abbiamo visto che si possono usare **formule di quadratura** di tipo gaussiano.

Per costruire queste formule operiamo come segue. Partendo da una suddivisione equispaziata consideriamo, invece dei punti x_{k-1} e x_k , i punti

$$y_{k-1} = x_{k-1} + \frac{h}{2} \left(1 - \frac{1}{\sqrt{3}} \right) , \quad y_k = x_{k-1} + \frac{h}{2} \left(1 + \frac{1}{\sqrt{3}} \right) .$$

La formula di quadratura di Gauss composita si esprime allora come segue.

$$I_G^c(f) = \frac{h}{2} \sum_{k=1}^n \left(f(y_{k-1}) + f(y_k) \right) ,$$

$$I(f) - I_G^c(f) = \frac{b-a}{4320} h^4 f^{(4)}(\xi) , \ \xi \in (a,b).$$

• Formula di Gauss-Legendre La formula di quadratura di Gauss-Legendre si può esprimere

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_{i} f(z_{i}) . \tag{1}$$

ove, il vettore dei nodi \mathbf{z} e dei pesi \mathbf{w} si possono determinare con la M-function:

```
return
end
A=zeros(n);k=[1:n-1];
v=k./(sqrt(4*(k.^2)-1));
A=A+diag(v,1)+diag(v,-1);
[w,z]=eig(A);
nm2=sqrt(diag(w'*w));
w=(2*w(1,:)'.^2)./nm2;
z=diag(z);
```

Esercizio 2 Calcolare l'integrale di $f(x) = \frac{x}{2}e^{-\frac{x}{2}}\cos(x)$ su [-1,1] a meno di tol = 1.e-9 mediante le formule di Gauss composite.

Si chiede inoltre di calcolare l'integrale (1) con la formula di Gauss-Legendre costruita prendendo $n=2^i,\ i=0,1,\ldots,imax=8$ punti a meno di tol = 1.e-9 (ci si arresterà quando $n>2^8$ oppure l'errore in modulo diventa minore di tol, assumendo come valore esatto quello che si ottiene con la funzione quad1).

1.2 Quadratura con il metodo di Romberg

Il metodo di Romberg per la quadratura si applica usando la seguente *ricetta*: si costruisce una tabella, \mathbf{T} triangolare (inferiore), la cui prima colonna consiste dei valori approssimati dell'integrale mediante la formula trapezoidale costruita usando suddivisioni regolari con $N=2^m,\ m=0,1,2,...$ punti.

Se indichiamo con $T_{i,1}$ il generico elemento della prima colonna di \mathbf{T} , che contiene il valore dell'integrale calcolato con la formula trapezoidale con passi) $h_i = 1, 2, 2^2, 2^3, ...$, gli elementi delle successive colonne sono costruiti mediante la ricorrenza

$$T_{i,k} = T_{i,k-1} + \frac{T_{i,k-1} - T_{i-1,k-1}}{\left(\frac{h_{i-k}}{h_i}\right)^2 - 1}, \quad k \ge 2.$$
 (2)

Esercizio 3. Ricordando che ciascuna formula $T_{1,k}, T_{2,k}, T_{3,k}, \dots$ è una formula di grado di esattezza 2k-1, calcolare l'integrale di $f(x)=\frac{x}{2}\mathrm{e}^{-\frac{x}{2}}\cos(x)$ su [-1,1] per k=3. Tempo massimo: 2 ore.