Lab exercises Prof. S. De Marchi Padova, 13th April 2015

Solve the following problems

1. Take the function $f(x) = x^2 - \log(x^2 + 2)$, of which we want to compute its zeros. Then, consider the iteration functions $g_{1,2}(x) = \pm \sqrt{\log(x^2 + 2)}$, which converge to the positive and the negative root, respectively (see below the graph of f and g'_1)

Figure 1: The plot of f and g' of Exercise ??

- Plot relative error showing a linear convergence of the method
- By using the Aitken acceleration method, show that the sequence $x_{k+1} = g(x_k)$ can be accelerated at least with order of convergence 2. For helping the implementation of Aitken's method, the following steps should be done
 - (a) Choose x = 0, the tolerance ϵ and maximum number of iterations max_it.
 - (b) Compute $x_1 = g(x_0)$ and $x_2 = g(x_1)$.
 - (c) Then set the first element of the Aitken's sequence $y = x_0 \frac{(x_1 x_0)^2}{x_2 2x_1 + x_0}$.
 - (d) Set the new $x_0 = y$ and x_1, x_2 as before.
 - (e) Continue until $|y x_2| \ge \epsilon$ and the iterations are less than max_it.
- 2. Take the function $f(x) = \tan(x) \log(x^2 + 2)$, $x \in [0, 1]$, which has a zero $\alpha \approx 0.76$. Consider the fixed point iteration with $g(x) = \arctan(\log(x^2 + 2))$. Compare the behavior of this iterative scheme and the Aitken's one for the computation of α

3. Implement the Steffensen's method for solving $f(x) = (x-1)e^x = 0$ (which has the unique zero in x = 1). Compare it with the fixed point iteration schemes

$$g_1(x) = \log(x e^x), \ g_2(x) = \frac{e^x + x}{e^x + 1}, \ g_3(x) = \frac{x^2 - x + 1}{x}$$

by checking the convergence evaluating their first derivatives at the zero. Take as initial value, tolerance and max number of iteration the values $x_0 = 2$, $tol = 10^{-10}$, nmax = 100, respectively.

Just to remind, the sequence generated by Steffensen is the following

$$x_{k+1} = x_k - \frac{(f(x_k))^2}{f(x_k + f(x_k)) - f(x_k)}, \ k \ge 0.$$

Time: 2 hours.