

Lab exercises
Degree in mechanical engineering
AY 2017-18
Prof. Stefano De Marchi
Padova, 13th March 2018

Functions declaration and evaluation in Matlab

- In Matlab, to define a **function**, say **fun.m** we proceed as follows

```
function [o1,...,oM]=fun(i1,..., iN)
%-----
%function body
%-----
return
```

where i_1, \dots, i_N are input parameters and o_1, \dots, o_M are the output ones.

- Suppose now that **f.m** is a file containing the function $f(x) = x^2 \sin x$, that is

```
function [y]=f(x)
    y=x.^2.*sin(x);
    return
```

Therefore, given the vector **x**, by using the command **y=feval(@f,x)** is equivalent to **y=f(x)**.

All are equivalent commands

- Finally there are two ‘‘**inline**’’ ways to define a function. Considering the same function as before, the definition and evaluation of the function at the vector **x** can be done in the following way

```
f=@(x) x.^2.*sin(x);
y=f(x);
```

or

```
f=inline('x.^2.*sin(x)');
y=f(x);
```

Solve the following problems

1. Build an M-function, `pigreco.m`, that computes the recursive sequence

$$\begin{aligned} z_1 &= 2 \\ z_n &= 2^{n-1/2} \sqrt{1 - \sqrt{1 - 4^{1-n} z_{n-1}^2}}, \quad n \geq 2 \end{aligned}$$

which should converge to π as $n \rightarrow \infty$. The output will be the sequence \mathbf{z} . Then, on the calling M-script, plot the relative errors. Is the sequence a stable method to compute π ?

2. Build another function for the recursive sequence

$$\begin{aligned} z_1 &= 2 \\ z_n &= \sqrt{2} \frac{z_{n-1}}{\sqrt{1 + \sqrt{1 - 4^{1-n} z_{n-1}^2}}}, \quad n \geq 2 \end{aligned}$$

The output will be as before the sequence \mathbf{z} . Then, on the calling M-script, plot the relative errors. Is this sequence a stable method to compute π ?

3. Compute the succession

$$I_n = \frac{1}{e} \int_0^1 x^n e^x dx, \quad n \geq 0,$$

firstly with the unstable formula then with the stable one. Use M-functions.