

Lab exercises on polynomial interpolation

Course on Mechanical Engineering, AY 2017-18

Prof. S. De Marchi

Padova, April 17, 2018

1 Chebyshev and Chebyshev-Lobatto points

The **Chebyshev points** belong to the interior of interval $[-1, 1]$ and are so defined:

$$x_i^{(C)} = \cos\left(\frac{(2i-1)\pi}{2n}\right), \quad i = 1, \dots, n.$$

The **Chebyshev-Lobatto** take into account also the endpoints of the interval $[-1, 1]$

$$x_i^{(CL)} = \cos\left(\frac{(i-1)\pi}{(n-1)}\right), \quad i = 1, \dots, n.$$

Note: if the interval is not $[-1, 1]$, say $[a, b]$, then by means of the linear transformation $g(x) = Ax + B$ we can map the points as follows

$$\tilde{x}_i^{(C)} = \frac{a+b}{2} + \frac{b-a}{2} x_i^{(C)}$$

where $x_i^{(C)}$ are the Chebyshev points in $[-1, 1]$. Similarly for the Chebyshev-Lobatto ones.

2 Divided differences and Hörner scheme

We start by providing two functions for today's laboratory.

```
function [d]=DiffDivise(x,y)
%-----
% This function implements the algorithm of divided differences
%-----
% Inputs
% x: vector of interpolation points,
% y: vector of function values.
%
% Output
% d: vector of divided differences
%-----
n=length(x); d=y;
for i=2:n,
    for j=2:i,
        d(i)=(d(i)-d(j-1))/(x(i)-x(j-1));
    end;
end;
```

To evaluate p_n at a generic point z , we use the so called *di Hörner scheme*:

$$\begin{aligned} p &= b_n; \\ p &= (z_k - x_i)p + b_i, \quad i = n-1, \dots, 0 \end{aligned} \tag{1}$$

⇒ Hence, given the vector \mathbf{d} of the divided differences of f , the vector of interpolation points \mathbf{x} and the vector of evaluation points \mathbf{z} it returns the value of the interpolating polynomial, p , at all \mathbf{z} .

```
function [p]=Horner(d,x,z)
%-----
% This function implements the Horner scheme for evaluating
% the interpolating polynomial in Newton form on a set of evaluation points
%-----
% Inputs
% d: divided differences vector
% x: vector of interpolating points
% z: vector of evaluation points
%
% Output
% p: the polynomial evaluated at all evaluation points
%-----
n=length(d);
for i=1:length(z);
p(i)=d(n);
for k=n-1:-1:1
p(i)=p(i)*(z(i)-x(k))+d(k);
end
end
```

Solve the following exercises

1. Interpolate the function $f(x) = \sin(x + 3/2)$, $x \in [0, 2\pi]$ by using Chebyshev-Lobatto nodes $n = 2, \dots, 20$
 - (a) by solving the corresponding Vandermonde system
 - (b) constructing the polynomial in *Lagrange form* .

In both cases, compute the max-err, that is

$$r_n(f) = \max_{x \in [0, 2\pi]} |f(x) - p_n(x)|.$$

For the evaluation of the polynomial and of the max-error, use a set of equally spaced target points $\mathbf{t}=\text{linspace}(0, 2\pi, 200)$.

2. Construct the interpolating polynomial in *Newton form*, of degrees $n = 2, \dots, 20$ of the *scaled Runge function*

$$g(x) = \frac{1}{1 + 25\epsilon^2 x^2}, \quad x \in [-1, 1]$$

on Chebyshev points. Consider two values of *shape parameter* $\epsilon = 0.2, 6$.

Write an M-function that takes as input n and ϵ , construct the interpolating polynomial and returns the corresponding relative errors (varying n and ϵ).

Time: **2 hours.**

3 Home works

1. Consider the function $f(x) = x + e^x + \frac{20}{1+x^2} - 5$ restricted to the interval $[-2, 2]$. Write an M-function that
 - (a) determines the interpolating polynomial of degree 5 in *Newton form* on the equispaced points $x_k = -2 + kh$, $k = 0, \dots, 5$.
 - (b) Compute an overestimate of the interpolation error in a chosen point $x^* \in (-2, 2)$.

Repeat the calculations by using Chebyshev points.
2. Consider the function $f(x) = \sin(x) + \sin(5x)$, $x \in [0, 2\pi]$. Write a script that
 - (i) Constructs the interpolating cubic spline (use `s=spline(x,y,xx)` where `x=0:h:2π` is a vector of equispaced nodes (with step $h = 2\pi/n$), `y` is the vector of the values of f at the nodes and `xx` is a vector of target points). Take $n = 5$.
PS: notice that taking $n = 6$ we sample the spline at the zeros of the function and the corresponding cubic spline is equal to 0.
 - (ii) Construct also the approximating polynomial of degree $n = 6$ on the same set of equispaced points `x=0:h:2π` computed by the command `polyfit` and evaluated at the targets using `polyval`.
 - (iii) In both cases, compute the 2-norm of the error. Among (i) and (ii) which one approximates $f(x)$ better?
 - (iv) Repeat the previous steps with a smaller $h = h/2, h/4, h/8, h/16$, that implies to double n at each new step size.
3. On the interval $[-1, 1]$ compute the *Lebesgue constant* on a set of $n = 1, \dots, 100$ equispaced points and a set of $n = 1, \dots, 100$ Chebyshev points. *Hints:* for the evaluation of all Lagrange polynomials, take a fine set of $m = 10000$ (or more) evaluation points where construct the matrix L , $m \times n$, whose columns are the n Lagrange polynomials at the m evaluation points. The Lebesgue constant is then $\|L\|_\infty$, i.e. `norm(L,inf)`.
4. Take the function $f(x) = \frac{20}{1 + \log(x^2)} - 5 \sin(e^x)$ restricted to the interval $[1, 2]$. Find the unique interpolating polynomial of degree 2, $p_2(x) = a_0 + a_1x + a_2x^2$ such that

$$p_2(1) = f(1), \quad p_2(2) = f(2), \quad \int_1^2 p_2(x) dx = \int_1^2 f(x) dx.$$

Find it by solving the 3×3 linear system.

To compute the integral, use the built-in function `quadl` of Matlab
 (use it as `integral=quadl(fun,a,b,tol)`)

with tolerance $tol = 1.e - 6$. Then make the graphs of the function, of the polynomial and of the abs of the error function $|f(x) - p_2(x)|$.

Solve the same problem by using three equispaced points $1, 3/2, 2$ (i.e. by solving the corresponding Vandermonde system).