

Zeros of functions with Matlab: Bisection method and fixed point iteration

Emma Perracchione

Corso di Calcolo Numerico per Ingegneria Meccanica - Matr. PARI (Univ. PD)

A.A. 2017/2018, secondo semestre

20 Marzo 2018

Introduction

- Finding the zeros of a function means finding:

$$\bar{x} : f(\bar{x}) = 0.$$

- In the lecture we will see two approaches:

- ➊ bisection method,
 - ➋ fixed-point iteration.
- The first one is the simplest approach. It divides iteratively the searching interval into two subsets with respect to the midpoint.
 - The second one is based on building $\{x_k\}_{k \geq 1}$ converging to the fixed-point of an auxiliary function $g(x) = x - f(x)$.

Bisection

Property

Given a continuous function $f : [a, b] \rightarrow \mathbb{R}$ such that $f(a)f(b) < 0$ then $\exists \bar{x} \in (a, b)$ so that $f(\bar{x}) = 0$.

- Thus, at the first step of the bisection method, we evaluate the mid point m_1 of $[a, b] = [a_1, b_1]$. If $f(m_1)f(a) < 0$ then

$$[a_2, b_2] = [a_1, m_1],$$

else

$$[a_2, b_2] = [m_1, b_1].$$

- We proceed in this way until a stopping criterion is satisfied, such as $f(m_k) < \tau$, for a fixed tolerance τ , at a certain step k .

Fixed point

We want to find \bar{x} so that $f(\bar{x}) = 0$ or equivalently the fixed point of $g(x) = x$, for $f(x) = x - g(x) = 0$.

Theorem

Let us consider $x^{(k+1)} = g(x^{(k)})$, for $k \geq 0$, with $x^{(0)}$ given. If

- ① $g : [a, b] \rightarrow [a, b]$;
- ② $g \in C^1([a, b])$;
- ③ $\exists K < 1$ such that $|g'(x)| < K \ \forall x \in [a, b]$;

then g has a unique fixed point \bar{x} in $[a, b]$ and $\{x^{(k)}\}_{k \geq 1}$ converges to $x^{(0)} \in [a, b]$.

Built-in routines: `roots`, `fzero` and `fsolve`.

- ① `roots` computes the zeros (also complex ones) of polynomials. Call it as `roots(a)`, with `a` the vector of the polynomial coefficients from the coefficient of higher order to that of the constant term.
- ② `fzero` can be called in the following way: `x=fzero(fun,x0,opt)` with `fun` specified using the symbol `@`. For example,

```
f = @(x,c) sin(x^3/c); x0 = 2; sol = fzero(f,x0,[],9),
```

here 9 is the value of the parameter `c` and `[]` is for the options.

- ③ `fsolve` is more general since it works on systems of non linear equations. A typical call is `x = fsolve(fun,x0)` where `fun` can be specified using `@`. For example,

```
x = fsolve(@myfun, [2 3 4]),
```

where `myfun` is a Matlab function such as:

```
function F = myfun(x)
F = sin(x);
```

Note that the initial point is specified as a real vector or real array.

Exercise 1

Exercise

Write the functions bisection.m and fixedpoint.m for computing the zeros of a functions with the bisection's method and fixed point iteration.

Hint

Use an exit criterion in case the methods do not converge.

For the bisection method the inputs that we need are

f,a,b,tol,maxiter, while fixedpoint.m requires g,x0,tol,maxiter.

Fix the stopping criterion for the bisection as $\text{abs}(f(c)) < \text{tol}$, where c is the midpoint of the k-th interval.

Fix the stopping criterion for the fixed point as $\text{abs}(x_1 - x_0) < \text{tol}$, where x_1, x_0 are two successive iterations.

Exercise 2

Exercise

Take the function $f(x) = x^2 - \log(x^2 + 2)$ of which we want to compute its zeros.

- By plotting the graph of f , individuates the two real roots of $f(x) = 0$ and the corresponding separation intervals, I_1 e I_2 .
- Find two convergent iterative methods, with iteration functions $g_i(x)$, $i = 1, 2$. For each one of them determine the number of necessary iterations. Consider $k_{max} = 50$, as max number of iterations and, for the test on the relative error $tol = 1.e - 6$.
- Compare the results with the ones obtained with `fzero`.

Exercise 3

Exercise

Using a suitable iteration function, compare the bisection method, and the fixed point iteration method for computing the only real root of

$$1 = \frac{g}{2x^2}(\sinh(x) - \sin(x)),$$

$g = 9.81$. Take $k_{max} = 50$ and the tolerance $tol = 1.e - 06$ for the relative error.

Hint

Remark that

$$\sinh(x) = \frac{e^x - e^{-x}}{2},$$

and

$$\text{arsinh}x = \ln \left(x + \sqrt{x^2 + 1} \right).$$