

Degree in Mechanical Engineering - Lab exercises

Prof. S. De Marchi

Padova, 22 May 2018

1 Solution of linear systems by gaussian elimination

- **Elimination**

Given the linear system $Ax = b$, the Matlab code for the **elimination step** of Gauss elimination method is as follows

```
for i=1:n-1,
    for j=i+1:n,
        m=A(j,i)/A(i,i); %multiplier
    %-----
        A(j,i:n)=A(j,i:n)-m*A(i,i:n); %row elimination
    %-----
        b(j)=b(j)-m*b(i);
    end
end
```

the result is an upper triangular matrix, stored again on matrix **A** and a new right hand side (r.h.s.) vector, again stored on **b**.

- **Back substitution**

The algorithm for back substitution of a linear system $Ux = b$, with U upper triangular matrix, can be written in Matlab as in Table 1. The lines

```
function x = BS(U,b)
% x = BS(U,b)
n = length(b);
x = b;
x(n) = x(n)/U(n,n);
for i = n-1:-1:1
    for j = i+1:n
        x(i) = x(i)-U(i,j)*x(j);
    end
    x(i) = x(i)/U(i,i);
end
```

Table 1: Back substitution

```

for j = i+1:n
    x(i) = x(i)-U(i,j)*x(j);
end
x(i) = x(i)/U(i,i);

```

using matrix operators, can be substituted by the following ones

```
x(i) = (x(i)-U(i,i+1:n)*x(i+1:n))/U(i,i);
```

where, in this case, the operator $*$ is the scalar product of vectors.

1.1 Exercises

- Consider the linear system $Ax = b$ with $A = \text{toeplitz}([4 \ 1 \ 0 \ 0 \ 0 \ 0])$ and b chosen so that the exact solution is $x = [2, 2, 2, 2, 2, 2]^T$. Solve it by the *gaussian elimination*. In the gaussian elimination, do you need to apply the pivoting?
- Solve by gaussian elimination, the system $Ax = b$ with

$$A = \begin{bmatrix} 8 & 1 & 2 & 0.5 & 2 \\ 1 & 0.5 & 0 & 0 & 0 \\ 2 & 0 & 4 & 0 & 0 \\ 0.5 & 0 & 0 & 7 & 0 \\ 2 & 0 & 0 & 0 & 16 \end{bmatrix}.$$

and b chosen so that $x = [0 \ 0 \ 1 \ 1 \ 1]^T$.

2 Solution of linear systems with iterative methods

Write the M-functions

- (i) `function [x, iter, err] = Jacobi(A,b,tol,maxit)`
- (ii) `function [x, iter, err] = GaussSeidel(A,b,tol,maxit)`

that implement the Jacobi and Gauss-Seidel iterative methods, respectively.

The output parameters are: `x` the solution vector, `iter` the number of iterations and `err` the vector of *relative errors* among iterations.

In the body of the functions define

- the initial solution `x0=zeros(length(b),1)` .
- the matrices `J` and `GS` of Jacobi and Gauss-Seidel.

2.1 Exercises

1. Consider the linear system $Ax=b$ with $A = \text{toeplitz}([4 \ 1 \ 0 \ 0 \ 0 \ 0])$ and b chosen so that the exact solution of the system is $x=[2,2,2,2,2,2]'$.

As initial vector, take $x0=zeros(6,1)$. Solve the system with Jacobi and plot the relative errors (using `semilogy`).

Do the same for the Gauss-Seidel iteration.

2. Take now $n = 10$ and consider the tridiagonal matrix

$A=\text{diag}(\text{ones}(n,1)*10)+\text{diag}(\text{ones}(n-1,1)*3,+1)+\text{diag}(\text{ones}(n-1,1)*3,-1)$

and the vector b so that the solution is $x=[\text{ones}(9,1); \ 0]$.

- (a) Why do the Jacobi and Gauss-Seidel iterations converge for the solution of $Ax = b$.
 (b) Consider the Jacobi matrix J (which has for any natural norm $\|J\| < 1$) and the tolerance $\epsilon = 1.e - 9$. By using the inequality

$$\frac{\|P\|^k}{1 - \|P\|} \|x^1 - x^0\| < \epsilon \quad (1)$$

where P is the iteration matrix, compute a priori the minimum number k_{min} of iterations necessary to solve the linear system $Ax = b$ with the Jacobi method, $\epsilon = 1.e - 9$, $x0=zeros(n,1)$, $\text{maxit}=50$ and $\|\cdot\|_2$.

- (c) Do the same for the Gauss-Seidel iteration.
3. Construct the matrix $A=\text{pentadiag}(\alpha, -1, -1)$ for $n = 10$, $\alpha \in [0.5, 1.5]$, i.e. by using $A=\text{toeplitz}([\alpha, -1, -1, 0, 0, 0, 0, 0, 0, 0])$. Decompose it as $A = M + D + N$ with $D=\text{diag}([\alpha - 1, \dots, \alpha - 1])$, $M=\text{tril}(A)-D$ and $N = A - D - M$.
- (a) For which α^* the iterative method $(M + N)x^{(k+1)} = -Dx^{(k)} + q$ results converging faster?
 (b) Letting $b=(1:n)'$, compute by the previous iterative method, the solution of $Ax=b$ with $x0=[\text{ones}(m,1); \ \text{zeros}(n-m,1)]$, with $m < n$. Use $\text{tol}=1.e-6$, $\text{maxit}=50$.

Time: **2 hours**.

2.2 Home works

1. Take the Hilbert matrix of order n , in Matlab is $H=\text{hilb}(n)$, with n chosen by the user, and the linear system $Hx = b$. The vector b is taken so that the solution is $x = (1, \dots, 1)^T$
- Find the diagonal vector d , the upper triangular U and lower triangular L matrices of H . What do you see?
 - Using the vector d , do the command $D=\text{diag}(d)$: what do you see?

- Solve the system $H x = b$ by using Matlab elementary functions.
- Perturb the vector b by the vector $\delta b = (0, \dots, 0, 1.e - 4)^T$. Solve the new system $H \hat{x} = b + \delta b$ whose solution is (\hat{x}) .
Estimate the **2-norm condition number**, $\kappa_2(H)$ of H by means of the relation

$$\frac{\|x - \hat{x}\|}{\|x\|} \leq \kappa_2(H) \frac{\|\delta b\|}{\|b\|}.$$

Compare κ_2 with `cond(H)`.

Notice: given a vector v , $\|v\|$ is computed by the command `norm(v)` which gives by default the 2-norm of v .

2. Consider the matrix $A=\text{diag}(1:n)$, for some chosen n .

Study the iteration

$$x^{(k+1)} = (I - \theta A)x^{(k)} + \theta b, \quad k \geq 0.$$

- (a) For which $\theta \in [0, 2/3]$ does the method converge? (*Hint: plot $\rho(\theta) = \rho(I - \theta A)$*).
 - (b) Let $\theta_0 = \min_{0 \leq \theta \leq 2/3} \rho(\theta)$ and let b be such that `x=ones(n,1)`. Solve the linear system with the iteration above for θ_0 , `x0=zeros(n,1)`, `tol=1.e-6`, `maxit=100`.
3. Consider the random values `x=rand(20,1)` and stretch them to $[0, 5]$. Call this vector again x . The corresponding values along y are defined as follows

$$y_i = x_i^2, \quad \text{for } i \text{ odd} \tag{2}$$

$$y_i = x_i^2 + 0.5, \quad \text{for } i \text{ even.} \tag{3}$$

Find the polynomial of degree 2 that approximates the couples (x_i, y_i) , $i = 1, \dots, 20$ in the least-squares sense. Try then with a polynomial of degree 3