

Lab exercises on polynomial interpolation

Course on Mechanical Engineering, AY 2017-18

Prof. S. De Marchi

Padova, April 24, 2018

1 Bernstein polynomials and Bézier curves

We recall that the Bernstein polynomial approximating a function f in $[0, 1]$ is

$$b_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \beta_k^n(x) \quad (1)$$

where $\beta_k^n(x) = \binom{n}{k} x^k (1-x)^{n-k}$ indicates the k -th Bernstein basis polynomial of degree n .

Moreover, given the set $P = \{P_0, \dots, P_n\}$ (called the *control polygon*) of $n+1$ bi-dimensional points $P_k = (x_k, y_k)$, the *Bézier curve* of degree n is

$$\mathcal{B}_n(t) = \sum_{k=0}^n P_k \beta_k^n(t) = \begin{pmatrix} \sum_{k=0}^n x_k \beta_k^n(t) \\ \sum_{k=0}^n y_k \beta_k^n(t) \end{pmatrix}, \quad t \in [0, 1]. \quad (2)$$

1.1 Exercises

- Consider the function $f(x) = x(1-x)$, $x \in [0, 1]$. Write a Matlab script that constructs the Bernstein polynomial approximating f .

To do this, we suggest to write a function `bern_poly.m` that given in input the vector of evaluation points `x`, the degree `n` and the index `k`, returns the vector, say `b`, consisting of the k -th Bernstein basis polynomial of degree n , evaluated at `x`.

- Consider the set `P=[0 0; 0.5 0.8; 1 1; 2 1; 2.5 0.8; 3.5 0]`. Construct the Bézier curve of degree 5 approximating the point set `P`. Moreover construct the curve

$$\mathcal{B}_{n,w}(t) = \begin{pmatrix} \frac{\sum_{k=0}^n w_k x_k \beta_k^n(t)}{\sum_{k=0}^n w_k} \\ \frac{\sum_{k=0}^n w_k y_k \beta_k^n(t)}{\sum_{k=0}^n w_k} \end{pmatrix}, \quad t \in [0, 1]. \quad (3)$$

where the weights `w=[0 1/2 1/2 1/2 500]`. What's about the vector `w1=[3 3 3 3 3]`?

2 Least-square approximation

As we have seen, consider the points set $X = \{(x_i, y_i), i = 0, \dots, n\}$. Fix a $m \ll n$. The approximating polynomial

$$p_m(x) = \sum_{i=0}^m a_i x^i$$

is determined as the solution of *normal equations*

$$A^T A \mathbf{x} = A^T \mathbf{y} \quad (4)$$

where the rectangular $(n + 1) \times (m + 1)$ matrix A has components $A_{k,j} = (x_k^{n-j+1})$, $k = 1, \dots, n + 1$, $j = 1, \dots, m + 1$.

- Consider the point set `[x,y] = titanium` (which returns measurements of a certain property of titanium as a function of temperature). Approximate the titanium data with polynomials of degree 30 in the least-squares sense, that is by solving the normal equations (4). As evaluation points consider the set `t=linspace(min(x),max(x),1000)`. Compare the results by using the functions `polyfit` and `polyval`. Compute also the *relative errors*.
- Approximate the values with the cubic spline, given by command `s= spline(x,y,t)`. What do you see?

Time: **2 hours**.