

Zeros of functions with Matlab: Newton's method

Emma Perracchione

Corso di Calcolo Numerico per Ingegneria Meccanica - Matr. PARI (Univ. PD)

A.A. 2017/2018, secondo semestre

27 Marzo 2018

Introduction

- Finding the zeros of a function means finding:

$$\bar{x} : f(\bar{x}) = 0.$$

- We already know two approaches to solve such problem:
 - ① bisection method,
 - ② fixed-point iteration.
- In this lecture we will see the Newton's method.
- It is the faster one provided that we take an initial condition *close* to the zero.

Bisection

Property

Given a continuous function $f : [a, b] \rightarrow \mathbb{R}$ such that $f(a)f(b) < 0$ then $\exists \bar{x} \in (a, b)$ so that $f(\bar{x}) = 0$.

- Thus, at the first step of the bisection method, we evaluate the mid point m_1 of $[a, b] = [a_1, b_1]$. If $f(m_1)f(a) < 0$ then

$$[a_2, b_2] = [a_1, m_1],$$

else

$$[a_2, b_2] = [m_1, b_1].$$

- We proceed in this way until a stopping criterion is satisfied, such as $f(m_k) < \tau$, for a fixed tolerance τ , at a certain step k .

Fixed point

We want to find \bar{x} so that $f(\bar{x}) = 0$ or equivalently the fixed point of $g(x) = x$, for $f(x) = x - g(x) = 0$.

Theorem

Let us consider $x^{(k+1)} = g(x^{(k)})$, for $k \geq 0$, with $x^{(0)}$ given. If

- ① $g : [a, b] \rightarrow [a, b]$;
- ② $g \in C^1([a, b])$;
- ③ $\exists K < 1$ such that $|g'(x)| < K \ \forall x \in [a, b]$;

then g has a unique fixed point \bar{x} in $[a, b]$ and $\{x^{(k)}\}_{k \geq 1}$ converges to $x^{(0)} \in [a, b]$.

Newton

Theorem (Convergence of Newton's method)

Let $f(x) \in \mathcal{C}^2([a, b])$. Suppose $f(\bar{x}) = 0$ and $f'(\bar{x}) \neq 0$ for some $\bar{x} \in (a, b)$. Then, there exists $\delta \in \mathbb{R}$, $\delta > 0$ such that for $x_0 \in [\bar{x} - \delta, \bar{x} + \delta]$ the iterations via Newton's method

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 1, 2, \dots,$$

converges quadratically to \bar{x} .

- The main drawback is that with Newton's method we need to start with an initial condition *sufficiently close* to the zeros of functions.

Exercise 1

Exercise

Write the Matlab function `newton.m` for computing the zeros of functions with the Newton's method.

Hint

Use an exit criterion in case the method does not converge.

The inputs that we need are `f`, `fp`, `x0`, `tol`, `maxiter`.

Fix the stopping criterion as $\text{abs}(f(x_0)) < \text{tol}$, where x_0 is the k -th approximation.

Exercise 2

Exercise

Consider the function $f(x) = e^x - 4x^2$. Write a Matlab script that

- plot the function in $[-2, 5]$ and observe that in this interval the function has 3 zeros: $\xi_1 \in (-1, 0)$, $\xi_2 \in (0, 1)$ and $\xi_3 \in (4, 4.5)$;
- find ξ_1 with the bisection method, ξ_2 with Newton's method and ξ_3 with the fixed point iteration $x_{i+1} = \log(4x_i^2)$. Does this last method converge for every initial point x_0 ?

Exercise 3

Exercise

Take the function

$$f(x) = x^2 - c,$$

$c \geq 0$, and the following two iteration functions:

$$① \quad g_1(x) = x - \frac{x^2 - c}{2x}.$$

$$② \quad g_2(x) = x - \frac{x^2 - c}{2x} - \frac{\left(x - \frac{x^2 - c}{2x}\right)^2 - c}{2x}.$$

Study the convergence of these two iterative methods. In particular take $c = 2$ or $c = 3$.