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Motivation

From the Introduction of the first reference papers above

[...] we first analyze the structure of our data using a
clustering technique from the persistent homology framework [7] [....]

[7] G. Carlsson, “Topology and data”, Am. Mat. Soc. 46(2) (2009), pp.
255– 308.
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Data analysis is the heart of data science!
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Introduction

The birth of Topological Data Analysis (TDA)(∗)

Emerging discipline that examines geometric properties of data using tools
from Algebraic Topology

Big amount of data to analyze, complex and/or of high dimension

Dispose of tools able to extract new and intrinsic information from data,
that is features, related to the ”shape of data” or their characteristics;

The analysis is based on Persistent Holomogy (PH) (studied in algebraic
geometry) and in particular by means of Persistence Diagrams (PD) or
Persistent Barcodes (PB), connected to some features of the data, for
improving the performance of the classification problem by SVM and
other information connected to the data.

(∗) Gunnar Carlsson, Mikael Vejdemo-Johansson: Topological Data Analysis
with Applications (2022, Cambridge University Press)
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Fields of applications of TDA

Here a partial list

Chemistry
Townsend J.; Micucci C.P.; Hymel J. H.; Maroulas V.; Vogiatzis K. D.
Representation of molecular structures with persistent homology for
machine learning applications in chemistry. Nat. Commun 2020, 11, 3230

Oncology/Medicine
Bukkuri A.; Andor N.; Darcy I. K.: Applications of Topological Data
Analysis in Oncology. Front. Artif. Intell. 2021, 4, 659037
Moon C.; Li Q.; Xiao G.: Using persistent homology topological features
to characterize medical images: Case studies on lung and brain cancers.
Ann. Appl. Stat. 2023, 17

Biomedicine
Skaf Y.; Laubenbacher R.: Topological data analysis in biomedicine: A
review. Journal of Biomedical Informatics 2022, 130, 104082
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Neuroscience
Bhattacharya D.; Kaur R.; Aithal N.; Sinha N.; Issac T. G. Persistent
homology for MCI classification: a comparative analysis between graph and
Vietoris-Rips filtrations. Front. Neurosci. 2025, 19
Flammer M.: Persistent Homology-Based Classification of Chaotic
Multi-variate Time Series: Application to Electroencephalograms. Sn
Computer Science 2024, 5, 107
Pachauri D.; Hinrichs C.; Chung M.K.; Johnson S.C.; Singh V.:Topology
based Kernels with Application to Inference Problems in Alzheimer’s
disease. IEEE Transactions on Medical Imaging 2011, 30, 1760–1770

Computer graphics
Bruel-Gabrielsson R.; Ganapathi-Subramanian V.; Skraba P.; Guibas L.J.:
Topology-Aware Surface Reconstruction for Point Clouds. Computer
Graphics Forum 2020, 39, 197–207

Physics, Statistics, Agricolture, Engineering applications

ETC...

Notice: the majority of the references are quite recent.
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Algebraic topology

Simple definition

Branch of mathematics that uses tools form abstract algebra for studying
topological spaces. The main goal of algebraic topology is finding algebraic
invariants to classify topological spaces up to homeomorphism (homotopy
equivalence).

Among the ways to classify a topological space we recall: homotopy groups
(see Hn(X ) below), homology, co-homology (that are sequences of invariant
groups), manifolds (each point resembles a Euclidean space).

An example of invariant: Hn(X )

Given a topological space (X , τ) (τ is the topology on it), the n-th homology
group Hn(X ), consists of the n-dimensional holes that characterize the space
itself. In applications we usually considers the groups with n = 0, 1, 2 (as we
see more in details in the sequel).
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Example: X = S2, the 2 sphere

It’s a two-dimensional manifold, meaning that at any point on the sphere,
you can find a small region that looks like a piece of a two-dimensional
plane

Counting the number of connected components (0-dimensional holes),
loops/tunnels (1-dimensional holes) and cavities/voids (2-dimensional
holes) allow to characterize the space X from a qualitative and intrinsic
point of view. These are the Betti numbers

Figure: Sphere with its Betti Numbers

Notice: In general, for Sn, Betti numbers are
β0 = βn = 1, βk = 0, 1 ≤ k ≤ n − 1, k > n.
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Extension to discrete data sets or point clouds

The ingredient is now the Simplicial Homology
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Simplicial Homology

In algebraic topology, simplicial homology is the sequence of homology
groups of a simplicial complex (generalization of triangulations of a
topological space).

It formalizes the idea of the number of holes of a given dimension in
simplicial complexes.

It generalizes the number of connected components (the case of
dimension 0).

↪→ It is the basis of the Persistent Homology

S. De Marchi (Unipd) Intro to TDA and Applications
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Persistent Homology

TDA has had a fast development thanks to its strong basis on algebraic
geometry with its main tool Persistent Homology (cf. e.g. [Edelsbrunner,
Letscher and Zomorodian IEEE Symp. 2000], [Carlsson, Bull. AMS 2009])

Persistent Homology (PH) is a method that allows the computation of
persistent topological features from several objects and is able to extract
information about the ”shape of data” (a nicer survey on interaction
between kernels, frames and PH is by Guillemard, Iske ANHA 2017)

How to compute persistent features?

S. De Marchi (Unipd) Intro to TDA and Applications
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Simplicial complexes

Simplicial complex

A simplicial complex K consists of a set of simplices of certain dimensions that
has to meet the following conditions:

Every face of a simplex in K is also in K

The non-empty intersection of any two simplices σ1, σ2 ∈ K is a face of
both σ1 and σ2

↪→ The dimension of the complex K is the maximum dimension of simplices
that belong to K . ←↩
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Simplices and simplicial complex of low dimension

Figure: A simplicial complex of dimension 3, composed of simplices of dimensions
0, 1, 2, 3, respectively (in the first row)
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Algebra of simplices
Given a simplex σ of certain dimension n, it is completely defined by its set of vertices
denoted by {v1, . . . , vn+1}.

Every subset ρ of σ = {v1, . . . , vn+1} represents another simplex, a ”face of” σ,
briefly denoted by ρ ≤ σ.

Simplices in K can grouped (depending on their dimension k) and can enumerate
them using σk

i , which is the i-th simplex of dimension k.

If G = (Z,+) is the well-known Abelian group, we may build linear combinations
of simplices with coefficients in G getting chains of simplices.

k-chain

A integer valued k-dimensional chain is an object of the form

c =
∑
i

aiσ
k
i , with ai ∈ Z .

Examples:

σk
i and −σk

i are the simplest chains.

A 1-chain like 2σ1 − σ2 + 3σ3, where σi are 1-simplices (line segments). The
coefficients indicate how many times each simplex is included and its orientation
(positive or negative)

S. De Marchi (Unipd) Intro to TDA and Applications
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Cont

A chain of simplexes is a sequence where adjacent simplexes share a common
facet (a lower-dimensional face).
Example. A chain of 1-simplices (line segments) would be a sequence of line
segments where each segment starts where the previous one ends.

Homework: compute and represent σ2 − σ1

S. De Marchi (Unipd) Intro to TDA and Applications
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Summarizing (chain of simplices)

1 Importance in Topology
Chains of simplexes are used to define simplicial homology, which is a way
to assign algebraic invariants (homology groups) to topological spaces.
These homology groups capture information about the ”holes” or
”connectedness” of the space. As we already saw, the 1-dimensional
homology group (also called the fundamental group) captures information
about loops in the space. The 2-dimensional homology group captures
information about ”voids” or ”cavities” in the space.

2 Geometric Interpretation
A chain of simplexes can be thought of as a ”piecewise-linear”
approximation of a curve or surface in a topological space. Hence, by taking
finer and finer approximations using smaller and smaller simplexes, one can
study the topological properties of the space in more detail.

In essense

Chains of simplexes are fundamental building blocks for understanding the
topological structure of spaces using simplicial complexes and homology theory.
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Group structure

Definition

The set S of integer-valued k-dimensional chains endowed with the binary
operation

+ : S × S → S

defined for all c1, c2 ∈ S as

c1 + c2 =
∑
i

aiσ
k
i +

∑
j

bjσ
k
j =

∑
l

(al + bl)σ
k
l (1)

is the abelian group of the k-dimensional simplicial integer-valued chains of the
simplicial complex K , denoted with Ck(K).

Remarks

k chains are combinations of k-simplices not necessarely connected

if in (1) two simplices are different, their coefficients are added separately

To simplicial complexes we associate the abelian groups
C0(K), . . . ,Cn(K): the generators (...we have a finite number of points).
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The boundary operator

Definition

The boundary of a chain is the linear combination of boundaries of the
simplices in the chain. The boundary of a k-chain is a (k − 1)-chain. We
denote it with ∂kc.

Note: the boundary of a simplex is not a simplex, but a chain with coefficients
1 or -1 (see below). Thus chains are the closure of simplices under the
boundary operator.

Properties

1 ∂ is a linear operator

2 The square of ∂, i.e. ∂2 is identically 0 (that is, the boundary of a simplex
has no boundary)

3 If ∂(ac) = 0 with a ̸= 0 then ∂c = 0

In practise, the boundary of c ∈ Ck(K) is an element in Ck−1(K) that we
denote as ∂kc. If c =

∑r
i=1 aiσi then ∂kc =

∑r
i=1 ai∂kσi

S. De Marchi (Unipd) Intro to TDA and Applications
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An example

Example

Consider the path from points v1 to v4. Letting
s1 = [v1, v2], s2 = [v2, v3], s3 = [v3, v4] three 1-simplices and consider the chain
c = s1 + s2 + s3.

∂1c = ∂1(s1 + s2 + s3) = ∂1(s1) + ∂1(s2) + ∂1(s3)

= ∂1([v1, v2]) + ∂1([v2, v3]) + ∂1([v3, v4])

= (v2 − v1) + (v3 − v2) + (v4 − v3) = v4 − v1

S. De Marchi (Unipd) Intro to TDA and Applications
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Homeworks

Homeworks: • What is the boundary operator of a polygonal open curve
A1,A2, ....,A6? And if the same curve is closed?

• Given the tetrahedra T = [v0, v1, v2, v3] in the above figure, with basis
[v0, v1, v2] and faces [v1, v2, v3] and [v0, v1, v3], what is ∂T?

S. De Marchi (Unipd) Intro to TDA and Applications
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Homology group

Some definitions

A chain c is called a cycle when its boundary is zero, i.e. ∂c = 0 (Example
is the closed polygonal curve)

A boundary is a cycle that can be filled in or formed by the boundary of a
higher-dimensional object. The fact that every boundary is a cycle is a
fundamental property: the boundary of a boundary is always zero, i.e.
∂2 = 0.

A chain that is the boundary of another chain is called a (chain) boundary.

Boundaries are cycles (not the opposite!), so chains form a chain complex,
whose homology groups (cycles modulo boundaries) are called simplicial
homology groups.

Example

The plane punctured at the origin (i.e. the origin is removed!) has nontrivial
1-homology group (it can be shrinked to the unit circle!) i.e. the unit circle
which is a cycle, but not a boundary.

S. De Marchi (Unipd) Intro to TDA and Applications
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Definition

1 The set of all k-cycles is an abelian group, denoted by Zk(K) (subgroup of
Ck(K).

2 The set of all k-boundary is an abelian group, denoted by Bk(K)
(subgroup of Zk(K)).

Definition of k simplicial homological group

Given the simplicial complex K the k-dimensional integer-valued simplicial
homological group is the quotient

Hk(K) := Zk(K)/Bk(K) = ker(∂k)/Im(∂k+1) . (2)

Interpretation

The homology groups of K measure ”how far” the chain complex associated to
K is from being exact.

S. De Marchi (Unipd) Intro to TDA and Applications
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Examples: H0(K) collected the connected components (0-dimensional holes);
H1(K) collects the cycles (1-dimensional holes) and H2(K) collects the
cavities/voids 2-dimensional holes, and so on.

Corollary (see Rotman J. J.: An introduction to Algebraic Topology; Springer
1988)

If K is a simplicial complex of dimension n then

Hk(K) is finitely generated for every k ≥ 0

Hk(K) = 0 for k > n

Hn(K) is free abelian group (that is, it has a basis).

Betti numbers

Since Hk(K) has finite independent generators: the number of these generators
(the rank of Hk(K)), are the Betti numbers

S. De Marchi (Unipd) Intro to TDA and Applications
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Example 1: two triangles

Consider a simplicial complex with 0-simplices: a, b, c, and d, 1-simplices: E, F,
G, H and I, and the only 2-simplex is J, which is the shaded region in the figure.

There is one connected component in this figure b0 = 1; one hole, which is the
unshaded region b1 = 1 and no ”voids” or ”cavities” b2 = 0 (trinagles are in
the plane).

This means that the rank of H0 is 1, the rank of H1 is 1 and the rank of H2 is 0.
The Betti numbers sequence for this figure is 1, 1, 0, 0, ..

S. De Marchi (Unipd) Intro to TDA and Applications
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Example 2: torus

A torus has

one connected surface component so b0 = 1,

two circular holes (one equatorial (red curve) and one meridional (magenta
curve) ) so b1 = 2,

one single cavity enclosed within the surface so b2 = 1.

S. De Marchi (Unipd) Intro to TDA and Applications
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The Poincaré polynomial

Poincaré polynomial

The Poincaré polynomial of a surface is a polynomial whose coefficients are its
Betti numbers.

Examples. The Betti numbers of the torus are 1, 2, and 1; thus its Poincaré
polynomial is 1 + 2x + x2. The Poincaré polynomial of the two triangles is
1 + x

The same definition applies to any topological space which has a finitely
generated homology

General rule

Given a topological space which has a finitely generated homology, the
Poincaré polynomial is defined as the generating function of its Betti numbers,
via the polynomial where the coefficient of xn is bn, that is

pn(x) = bnx
n + · · ·+ b0

S. De Marchi (Unipd) Intro to TDA and Applications
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Motivation

In the context of Data Analysis, user usually has only a dataset
Xm = {xk}k=1,...,m that comes/represent from/a manifoldM or a topological
space (X , τ), or simply X , and no simplicial complex structure at hand. It is
indeed in this case that: Persistent Homology helps to compute topological
invariants of finite structures.

The main objective is to compute homological information of the topological
space X using only available data Xm.
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Consider the spaces

Xϵ =
m⋃
i=1

B(xi , ϵ) (3)

where B(xi , ϵ) denotes the ball centered at xi with radius ϵ > 0.
If ϵ is big enough, Xϵ cover completely the space X and it could suggest that
Xϵ could inherit also topological properties of X (and also the geometric ones).

Unfortunately, this kind of approach has revealed some drawbacks and ends up
being unstable. But we have simplicial complexes.

Another ”difficult” problem

The simplicial complex recognition problem is: given a finite simplicial complex,
decide whether it is homeomorphic to a given geometric object. This problem
is undecidable for any d-dimensional manifolds for d ≥ 5 (but we don’t talk!)

S. De Marchi (Unipd) Intro to TDA and Applications
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Čech Complex

A first example of the simplicial complex which can be constructed from X is
the Čech Complex.

The Čech complex is an abstract simplicial complex constructed from a point
cloud in any metric space which is meant to capture topological information
about the point cloud or the distribution it is drawn from.

Construction

Given a finite point cloud X and ϵ > 0, the Čech complex Čε(X ) is
constructued as follows

consider the elements of X as the vertex set of Čε(X )

a simplex σ (an edge, a triangle,...) is added to the complex, i.e.
σ ∈ Čϵ(X ), if the ϵ-balls centered at points in σ have common intersection

S. De Marchi (Unipd) Intro to TDA and Applications
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In other words, the Čech complex is the nerve of the set of ε-balls centered at
points of X .
Remark. By the nerve lemma (see J. Leray 1945), the Čech complex is
homotopy equivalent (by means of some homotopy) to the union of the balls,
known as offset filtration

S. De Marchi (Unipd) Intro to TDA and Applications
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Example

Figure: Čech complex generated on a set P of 6 points in the plane
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Another example

The Čech complex is a simplicial complex constructed from a proximity graph.
The set of all simplices is filtered by the radius of their minimal enclosing ball.

On this example, as edges (x , y), (y , z) and (z , x) are in the complex, the
minimal ball radius containing the simplex (x , y , z) is computed. Hence (x , y , z)
is inserted in the simplicial complex if min ball radius(x,y,z)≤ max radius

So on, in higher dimensions

S. De Marchi (Unipd) Intro to TDA and Applications
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Homework

Figure: Build the Čech complex of the set of point on the left using the ϵ-balls as
indicated
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Vietoris-Rips complexes

Computational problem

The construction of the Čech complex for some ϵ > 0 is costly. In fact, for any
subset of vertices we must solve a system of inequalities to find out if the
intersection of the ϵ-balls is empty or not.

For this reason data analysts use Vietoris-Rips complexes.

Vietoris-Rips complexes

Data analysts consider Vietoris-Rips complexes associated to a parameter ϵ and
to the set X = {x0, . . . , xk}, K = VR(X , ϵ):
”two vertices are connected by an edge iff ∥xi − xj∥2 ⩽ ϵ and r -dimensional
elements are determined by r + 1 connected (r − 1) dimensional faces, r ≤ d”
(d being the space dimension)

In practise: VK(X , ϵ) is a simplicial complex that generalizes proximity (ϵ-
ball) graphs to higher dimensions.
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VR complex: example

Figure: A Vietoris–Rips complex of a set of 23 points in the Euclidean plane. This
complex has sets of up to four points: the points themselves (shown as red circles),
pairs of points (black edges), triples of points (pale blue triangles), and quadruples of
points (dark blue tetrahedrons)
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Relation between Čech complexes and VR complexes

Important

The Vietoris-Rips complex is essentially the same as the Čech complex, except
instead of adding a simplex when there is a common point of intersection of all
the ϵ-balls, we just do so when all the balls have pairwise intersections.

Figure: Given 3 points on an equilateral triangle of unitary sides. Take ϵ = 1/2. On
the right VR1/2.

What’s the Čech complex?
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Note: Čech complexes are subcomplexes of Vietoris-Rips ones. Moreover,

Theorem

For all ϵ > 0 we have
Cϵ ⊂ VRϵ ⊂ C2ϵ

↪→ The theorem says that both complexes are homotopy equivalent. So if the
Čech complexes for both are good approximations of the underlying data, then
so is the Vietoris-Rips complex.

Theorem by de Silva, Ghrist, Alg. Geom. Top. 7(1)(2007)

Let X be a set of point in Rd . Let ϵ > 0, and Cϵ the Čech complex of X with
balls of radius ϵ/2

VRϵ′ ⊂ Cϵ ⊂ VRϵ, whenever
ϵ

ϵ′
≥

√
2d

d + 1

This ratio is the smallest possible for which the inclusion holds.
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Filtration and PH group

Persistent Homology analyzes not only simplicial complexes but nested
sequences of them and their evolution.

Definition

Given a simplicial complex K , a filtration is a nested family of subcomplexes
Kt , t ∈ T where T is a totally ordered set s.t. for all t1, t2 ∈ T , with t1 < t2,
then Kt1 ⊂ Kt2 and K = ∪t∈TKt

In applications T ⊂ R.
The previous definition can be extended to a topological space X . If
f : X → R, then the family (Kt)t∈T with T ⊂ R defines the so called
sublevel set filtration.

Given a subset X of a compact metric space, the family of Vietoris-Rips
complexes (VR(X , ϵ))ϵ∈R and the Čech complexes (Č(X , ϵ))ϵ∈R are
filtrations.

Note: the most used are the VR filtrations (computationally less expensive)
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Letting (0 <)ϵ1 < · · · < ϵl be an increasing sequence of real numbers, we obtain the
filtration

∅ = K0 ⊆ K1 ⊆ K2 ⊂ · · · ⊆ Kl

with Ki = VR(X , ϵi )

s-persistent homologycal group

Given r ≥ 0 and i ∈ {0, . . . , l}. The s-persistent homology group of X is defined as

Hr,s
i (X ) = Zi (Kr )/(Zi (Kr ) ∩ Bi+s(Kr )).

Remarks

This group contains all homology classes that persist in the interval [i , i + s], i.e
they are born before the time/index i and are still alive after s steps.

The classes that remain alive for large values of s are stable topological features
of the set X .
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Remarks continue

Along the filtration, the topological information appears and disappears,
thus it means that they may be represented with a couple of indexes.
If p is such a feature, it must be born in some Ki and die in Kj so it can
be described as (i , j), i < j . We underline here that j can be equal to
+∞, since some features can be alive up to the end of the filtration

Hence, all such topological invariants live in the extended positive plane,
that we denote by R2

+ = R≥0 × {R≥0 ∪ {+∞}}
Finally, some features can appear more than once: such collection of
points are called multisets.

Summarizing

Each element of the persistent homology groups obtained by the whole
filtration can be represented by a birth-death pair (b, d) ∈ R2, b = ϵh, d = ϵk
for some h ∈ {0, . . . , l}, k ∈ {0, . . . , l} ∪ {∞}, h < k
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Persistent diagram: definition

Persistent Diagram

A Persistence Diagram (PD), D r (X , ε) related to the filtration
K1 ⊂ K2 ⊂ · · · ⊂ Kl with ε := (ϵ1, . . . , ϵl) is a multiset (due to multiplicities),
subset R2 defined as

Dr (X , ε) := {(b, d)|(b, d) ∈ Pr (X , ε)} ∪∆

where Pr (X , ε) denotes the set of r -dimensional birth-death that came out
along the filtration, each (b, d) is considered with its multiplicity, while the
points of ∆ = {(x , x) | x ≥ 0} have infinite multiplicity.

Each point (b, d) ∈ Dr (X , ε) is called generator and the difference d − b
is called the persistence of the generator, that represents its lifespan and
shows the robustness of the topological property.

We denote by Dr all Pr (X , ε) for all r
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Example: points on S2

Figure: PD of the collection features of dimension 0 (in blue), of dimension 1 (in
orange), and of dimension 2 (in green). Points close to the diagonal represent features
with a short lifetime, and so usually they are concerned with noise; instead, features
far away are indeed relevant and meaningful, and, based on applications, one can
decide to consider both or only the most interesting ones. At the top of the figure,
there is a dashed line that indicates infinity and allows us to plot also couples as
(i ,+∞). In red, we highlight the most important features: 1 connected component, 1
cycle, and 1 cavity.
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MP4 videos

Growing, H0.

GROWING. We track when the balls
intersects. When two balls touch they become one connected component, that
is a first death and thus the first point in the PD

Collapsing, H0.

COLLAPSING. We emphasize that the
persistence increases when the noise of each cluster decreases.
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Barcode [Barannikov (1994), Carlsson et al. (2004)

A persistence barcode consists of a multiset of intervals in R ∪ {+∞}, where
the length of each interval (counterpart of points in the PD) corresponds to the
lifetime of a topological feature in a filtration.

Longer intervals in a barcode correspond to more robust features, whereas
shorter intervals are more likely to be noise in the data.

Figure: A series of four nested simplicial complexes and the 0-dimensional (i.e.
connected components) persistence barcode of the resulting filtration.
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The example of the sphere
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Stability

Persistent Diagrams are stable under perturbation of the data. How to measure
it?

For two nonempty sets X ,Y ⊂ R2 with the same cardinality, the Hausdorff distance is

dH(X ,Y ) := max{sup
x∈X

inf
y∈Y

∥x − y∥∞, sup
y∈Y

inf
x∈X

∥y − x∥∞}.

The p-Wasserstein distance, p > 0,

dW ,p(X ,Y ) = inf
γ

∑
x∈X

∥x − γ(x)∥p∞

where Γ = {γ : X → Y | γ bijection}. Taking p → +∞, we get the bottleneck distance

dW ,∞(X ,Y ) = dB(X ,Y ) := inf
γ∈Γ

sup
x∈X

∥x − γ(x)∥∞ (4)

where

∥v − w∥∞ = max{|v1 − w1|, |v2 − w2|}, for v = (v1, v2),w = (w1,w2) ∈ R2

Note: Wasserstein distance, also called the Earth mover’s distance or the optimal
transport distance or Monge problem, is a similarity metric between two probability
distributions. S. De Marchi (Unipd) Intro to TDA and Applications
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Haussdorff distance

MATLAB Central File Exchange
Zachary Danziger (2025). Hausdorff Distance
(https://www.mathworks.com/matlabcentral/fileexchange/26738-hausdorff-distance)
Homework: construct point cloud sets and their H-distances using this Matlab
function and comment the results.
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Wasserstein distance computation

Matlab: https://github.com/nklb/wasserstein-distance

Python:

This is 1-WSD for n-dimensional distributions. The last line represents the
weights for each set

S. De Marchi (Unipd) Intro to TDA and Applications
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Example of bottleneck distance

Figure: We show two different PDs overlapped, consisting of ∆ plus 2 points in red
and 11 points in blue, respectively. First, to apply the definition (4), we need two sets
with the same cardinality. For this aim, it is necessary to add points of ∆, more
precisely the orthogonal projection onto the diagonal of the 9 blue points closer to it,
to reach 11. Lines between points and ∆ represent the bijection that realizes the best
matching between points in definition (4).
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Čech complexes and Vietoris-Rips complexes

Filtration
Persistent barcode

Stability of PD
Python libraries

Basic python code for the BND of 2 simple diagrams

import matplotlib.pyplot as plt

import numpy as np

diag1 = [[2.7, 3.7], [9.6, 14.0], [14.2, 14.974], [3.0, float("Inf")]]

diag2 = [[2.8, 4.45], [9.5, 14.1], [15.2, 10.1], [3.2, float("Inf")]]

da1=np.array(diag1); da2=np.array(diag2)

message = "diag1=" + repr(diag1); print(message)

message = "diag2=" + repr(diag2); print(message)

message = "Bottleneck distance approximation=" + repr(

gudhi.bottleneck_distance(diag1, diag2, 0.1)); print(message)

message = "Bottleneck distance exact value=" + repr(

gudhi.bottleneck_distance(diag1, diag2)); print(message)

Bottleneck distance approximation=0.722013466408238
Bottleneck distance exact value=0.75

S. De Marchi (Unipd) Intro to TDA and Applications



Motivation and definitions
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Characterization

Proposition

Let X and Y be finite subset in a metric space (M, dM). Then, the the
Hausdorff and the bottleneck distances of the persistence diagrams D(X , ε),
D(Y , ε) satisfy

dB(D(X , ε),D(Y , ε)) ⩽ dH(X ,Y ).

For any further details see, for example

Rotman J. J. An introduction to Algebraic Topology, Springer, 1988.
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Python libraries

Gudhi: is a generic open source C++ library, with a Python interface, for
Topological Data Analysis (TDA) and Higher Dimensional Geometry
Understanding. The library offers state-of-the-art data structures and
algorithms to construct simplicial complexes, compute persistent
homology, show persistence diagrams and persistent barcodes, prune a
filtration.

https://gudhi.inria.fr/

Ripser: it is a lean PH package for Python. Building on the blazing fast
C++ Ripser package as the core computational engine, mainly it can
visualize persistence diagrams and compute lower star filtrations on
images,

https://ripser.scikit-tda.org/en/latest/

S. De Marchi (Unipd) Intro to TDA and Applications
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Giotto-tda: it is a high-performance topological machine learning toolbox
in Python built on top of scikit-learn and is distributed under the GNU
AGPLv3 license. It allows us to apply the theory of PH to a lot of different
kind of data, such as points cloud data, images, graphs, and series as well
as persistence Images, Betti curves and Persistence Landscapes.

https://github.com/giotto-ai/giotto-tda

Dionysus: it is a computational topology package focused on persistent
homology. It is written in C++, with Python bindings. It may compute
filtration, PH, and distances among PD and plot the results into PDs.

https://github.com/nonabelian/tda_dionysus

DIPHA: It stands for (a Distributed Persistent Homology Algorithm). This
C++ software package computes persistent homology. Besides supporting
parallel execution on a single machine, DIPHA may also be run on a
cluster of several machines using MPI.

https://github.com/DIPHA/dipha
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Code example

from gudhi.datasets.generators import points

import ripser

import matplotlib.pyplot as plt

import numpy as np

from mpl_toolkits import mplot3d

# Create 300 random points of a sphere with radius 1

sphere_points = points.sphere(n_samples = 300, ambient_dim = 3,

radius = 1, sample = "random")

# Compute persistent features using ripser library

ripsobj = ripser.Rips(maxdim=2)

dgms = ripsobj.fit_transform(sphere_points)

# plot the points on the sphere

a=np.array(sphere_points)

x = a[0:299,0]; y = a[0:299,1]; z = a[0:299,2]

fig = plt.figure(figsize = (10,10))

ax = plt.axes(projection=’3d’); ax.grid()

ax.scatter(x, y, z, color = ’blue’, marker=’o’)

ax.set_title(’3D Scattered points on the sphere’)

# Set axes label

ax.set_xlabel(’x’, labelpad=20); ax.set_ylabel(’y’, labelpad=20); ax.set_zlabel(’z’, labelpad=20)

plt.show()

# Plot the corresponding PD

ripsobj.plot(dgms)

plt.show()
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Figures

Figure: Points sampled from the sphere (left) and an example of PD (right)
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Preamble

Classification is a relevant task (big data to store, make accessible, analyzed) in
fields like medicine, economics, psychology, image analysis/processing,etc...

Example: e-mail SPAM

For instance, one wants to provide an algorithm able to filter out if an incoming
e-mail is SPAM or not. During the so called Training Phase, the algorithm
analyzes a group of e-mails labeled as SPAMs and a group of regular ones in
order to find out patterns and features that can make it able to distinguish
them. This set of examples is known as Training Set. After that, the algorithm
can predict, hopefully in a satisfactory manner, if a new incoming e-mail is
SPAM or not. This is the case of the supervised classification problem.
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Classification: history and (most) used tools

This task takes its origin some time ago with the K -Nearest Neighbors
(KNN) algorithm, developed in 1951 by Fix and Hodges.

Fix, Evelyn; Hodges, Joseph L. (1951). Discriminatory Analysis.
Nonparametric Discrimination: Consistency Properties (PDF)
(Report). USAF School of Aviation Medicine, Randolph Field, Texas.
Archived (PDF) from the original on September 26, 2020.

During the years, a lot of different methods and variants have been
developed: the most famous are: K-th Nearest Neighbors (KNN), Support
Vector Machine (SVM), Decision Tree (DT), and Random Forest, only to
name a few.

We focus mainly on KNN and SVM.
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Useful notation

Let Ω ⊂ Rd and consider two subsets, Xl = {x1, ..., xm}, of labeled points
and Xu ⊂ Ω be set of unlabelled ones.

Let Yl = {y1, . . . , ym} be the set of corresponding labels of Xl where
yi ∈ L = {l1, . . . , ls}, the set of labels or classes.

The set of couples {(xi , yi )}1≤i≤m is the training set while Xu is called the
test set.

We denote their union as Xlu = Xl ∪ Xu.

If L = {−1, 1}, it is called binary problem.
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KNN with PH approach
Some numerical results

KNN idea

”Similar points are closer to each other.”

To determine the belonging class of a new point, the only thing to do is to
infer such a prediction by analyzing its neighbors.

KNN search

Fix k ∈ N.
Consider x ∈ Xu and the k points in Xl that are closer to it using a
prescribed distance (for ex: Euclidean norm, sup norm, Manhattan
distancea).

Once extracted these k points, it assigns to x the most recurrent label
among them.

aThis is also known as taxicab distance, i.e. the distance between to points in a grid-like path
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KNN with PH approach
Some numerical results

Figure: The idea of similarity of points (left) and how KNN works with k = 3 (right)

The test sample (green dot) should be classified either to blue squares or to red
triangles. If k = 3 (solid line circle) it is assigned to the red triangles because
there are 2 triangles and only 1 square inside the inner circle.
Homework. If k = 5 is it assigned to the blue squares or to the red triangles?
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Variant of KNN: ANN

Approximate Nearest Neighbors (ANN): can be used to speed up the
computation of by reducing the number of pairwise comparisons needed
(for instance: fix a query distance, takes the one(s) that is(are) c-times
this query)

ANN is particularly useful in high-dimensional spaces, which are common
in modern ML-AI applications. In high dimensions, it needs a dimension
reduction pre-prossesing (for instance by PCA).

The algorithms behind the search are, among them, Hashing-based
methods, Tree-based methods, Greedy-search in the proximity graph,...

Notice: K-nearest neighbors (KNN) sits between NN and ANN by giving faster
results while maintaining high accuracy.
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KNN with PH approach
Some numerical results

KNN by Persistent Homology

Kindelan R.; Fŕıas J.; Cerda M.; Hitschfeld N. A topological data analysis
based classifier. Advances in Data Analysis and Classification 2024, Issue
2/2024

developed a new technique that infers labels exploiting the structure of data
given by simplicial complexes.

The authors called the method Link-based label propagation function and the
goal is to define a proper label function that allows to associate the right label
to an unlabeled point.

How to construct the simplicial complexes and then filtrate them?

The authors called selectors the methods for chosing suitable simplicial
complexes.

We refer to this approach as Global TDA.
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developed a new technique that infers labels exploiting the structure of data
given by simplicial complexes.

The authors called the method Link-based label propagation function and the
goal is to define a proper label function that allows to associate the right label
to an unlabeled point.

How to construct the simplicial complexes and then filtrate them?

The authors called selectors the methods for chosing suitable simplicial
complexes.

We refer to this approach as Global TDA.

S. De Marchi (Unipd) Intro to TDA and Applications



Preamble
Classification with KNN

Classification, SVM and Persistence Kernels
Intrinsic Dimension (ID): main definitions and concepts

KNN with PH approach
Some numerical results

Some selectors

Let PK be the set of all persistent features p = (b, d) and pers(p) := d − b the
lifetime of p

AVG:
pavg = (b̄, d̄) := min

p∈PK

|pers(p)− avg|

where avg is the average of all pers(p) within PK .

HAVG:

phavg = (b̄, d̄) := min
p∈PK

|pers(p)− havg|

where havg is the harmonic mean that, for a set of positive numbers

{x1, . . . , xn} is havg(x1, . . . , xn) =
n

1
x1

+ · · ·+ 1
xn

= 1/avg(1/x1 · · · , 1/xn)

MAX:
pmax = (b̄, d̄) := max

p∈PK

pers(p)
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MEDIAN:

pmed = (b̄, d̄) := min
p

|pers(p)−median|

where median is the median of all pers(p) with p ∈ PK (median requires the
ordering of the points and it is assumed at the position (n + 1)/2)

RANDOM: prandom = (b̄, d̄) is chosen uniformly at random among all persistent
features p ∈ PK

After choosing one of the previous options, that is
p ∈ {pmax , prandom, pmed , pavg , phavg}, the selected simplicial complex turns out to be

Ki = f −1((−∞, d̄)).

Association function

Let E = span{e1, . . . , es}. The association function ϕ : Xl → E is defined at a vertex
(or 0-dimensional simplex) v ∈ Xl , as ϕ(v) = es for v ∈ Xl , 0 (∈ Rs) otherwise.
Then, its ”extension to any simplex in σ ∈ K is given by

Φ(σ) =
∑
v∈σ

ϕ(v)
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Extension function

To address the problem of how to assign a label to an unlabeled point is done
by introducing the extension function

Extension function

Ψ : Xu → E defined on a point x ∈ Xu is

Ψ(x) =
∑

σ∈LkKi
({x})

w(x, σ)Φ(σ) =
∑

σ∈StKi
({x})

w(x, σ \ {x})Φ(σ \ {x}) =
s∑

j=1

ajej

with proper definition of weight function w , where Lk denotes the Link and St
the Star (see cited the paper)

Finally: the label lj corresponding to the highest coefficient aj in the previous
sum is the label of the point x .
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Remarks

As for KNN, the label of x ∈ Xu is directly influenced by those of its
neighbors. The method is a generalization of the KNN idea to the
structure of simplicial complexes, where the concept of neighborhood is
replaced by that of Lk (Link).

To run the algorithm is essential to define the weight function w : points
closer to the point x ∈ Xu influence more the prediction of its label. Here
closer means w.r.t a distance or that along the filtration they live in some
simplices born earlier.
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The proposed weight is

w(x , σ) =

1
f (σ∪{x})2∑

µ∈StKi
({x})

1
f (µ)2

After some calculations (see the cited paper), we get the final expression for Ψ:

Ψ(x) =
∑

σ∈LkKi
({x})

Φ(σ)

f (σ ∪ {x})2
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Local TDA

To be able to use Global TDA with all datasets, we had to reduce the
number of simplices or better take only the simplices with dimensions up
to a certain value max dim

To determine the label of x ∈ Xu we suggest to consider only a cluster of
K points centered on x and then apply Global TDA only to this small
dataset, local dataset

As for KNN, the local TDA depends on a particular parameter κ, that
allows to make a zoom of the dataset restricting the number of points to
consider for computations (in KNN, the k denotes the number of points
that one decides to consider as significant and more influential for
determining the final label).
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Machine-learning pipeline

Data are commonly divided into three groups:: Training, Validation, and
Test Sets.
The standard procedure consists of splitting the whole dataset into ratios
(depending on some factors). Generally, a standard split is 60-80% for
Training data, 10-20% for Validation data, and 10− 20% for Test data

Figure: Example of Machine Learning WorkflowS. De Marchi (Unipd) Intro to TDA and Applications
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Class imbalance

Class imbalance occurs when the number of samples in different classes is
significantly unequal
In classification from real-world scenarios, which usually has only two
classes. Examples are: fraud, claim, spam detection, disease diagnosis that
bring severe imbalance/biased datasets.
In the binary case, once defined and set the model, one ends up with the
confusion matrix that collects all information about the classification
performances of the model itself, where Actual is the correct and real
labels while Predicted collects values assigned by the model.

Figure: Confusion Matrix
S. De Marchi (Unipd) Intro to TDA and Applications
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Imbalance Ratio

In application, the 4 possible groups are denoted by the initials: TP, TN, FN,
FP.

A dataset is balanced if it has equal samples per class. A measure of
prediction its quality is Accuracy,

Accuracy :=
TP + TN

TP + FP + TN + FN

A dataset is imbalanced when there is significant, or in some cases extreme
disproportion among the number of examples of each class of the problem.
The class or classes with abundant examples are called major or majority
class, whereas the class with few examples is called minor or minority class.

IR definition

The Imbalance Ratio (IR) in binary datasets, is defined as the

IR :=
Card(major class)

Card(minor class)
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Other metrics

Binary scenario (2 classes)

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
.

Multiclass scenario (n classes) other metrics are used. For example,
Balanced Accuracy, it considers the number of correct predictions per
class, calledrecall, and then takes the average. More precisely

Recalli =
test samples of class i correctly classified

all test samples of class i

Balanced Accuracy =

∑n
i=1 Recalli

n
.
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Experiment on various datasets

Dataset # samples # classes IR
CIRCLES 50 2 25:25

IRIS 150 3 50:50
WINE 178 3 71:48
MOON 200 2 100:100

SURGERY 470 2 400:70
CANCER 570 2 357:213
LIVER 580 2 413:167

DIAB. RET. 1080 2 540:540
RICE 3260 2 1630:1630

Table: Datasets for classification. In red the imbalanced datasets
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Dataset AVG HAVG MAX MEDIAN RANDOM
CIRCLES 0.504 0.529 0.529 0.488 0.488

IRIS 0.936 0.961 0.936 0.947 0.936
WINE 0.967 0.946 0.946 0.953 0.951
MOON 0.513 0.564 0.516 0.515 0.526

SURGERY 0.479 0.518 0.497 0.489 0.525
CANCER 0.944 0.946 0.952 0.942 0.949
LIVER 0.564 0.598 0.565 0.571 0.579

DIAB. RET. 0.628 0.614 0.607 0.612 0.611
RICE 0.904 0.900 0.915 0.906 0.909

Table: Accuracy or Balanced Accuracy of Local TDA classifier related to different
datasets (best values in bold)

Remark: the choice of the selector does not affect too much the model. The
best selectors are HAVR and MAX
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Comparison with classical data analysis methods

We take into account here the most three famous baseline methods, such as
KNN, DT and SVM.

KNN: the hyperparameter k represents the number of neighbors to
consider at each iteration of the method: n neighbors is taken among
{1, 2, . . . , 50} and as method or algorithm used to compute the nearest
neighbors we consider ball tree, kd tree, brute

DT: for criterion, namely the function to measure the quality of a split,
we take into account gini, entropy, log loss

SVM: we choose kernel among linear, poly, rbf that are equivalent
to the linear kernel, the polynomial kernel of some degree, and Gaussian
RBF with C=1 (the shape parameter), as commonly done.

S. De Marchi (Unipd) Intro to TDA and Applications
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Dataset Global Local KKN DT SVM
CIRCLES 0.529 0.529 0.383 0.396 0.296

IRIS 0.961 0.961 0.95 0.912 0.967
WINE 0.967 0.967 0.976 0.904 0.977
MOON 0.539 0.564 0.531 0.548 0.462

SURGERY 0.504 0.525 0.482 0.498 0.578
CANCER 0.948 0.952 0.959 0.918 0.962
LIVER 0.592 0.598 0.568 0.599 0.701

DIAB. RET. 0.617 0.628 0.664 0.628 0.696
RICE 0.921 0.935 0.929 0.889 0.927

Table: Comparison in terms of Accuracy or Balanced accuracy between methods and
datasets (in bold global best score, in red the best one among topological methods)
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Support Vector Machine (SVM)

In words: the SVM (binary) classification, larger the margin between the
hyperplane and the closest point turns out to be, the higher the classification is
shown by the model
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Binary supervised learning

Let Ω ⊂ Rd and {x1, ..., xm} ⊂ X ⊂ Ω be the set of input data with
d ,m ∈ N. We have a training set, composed of the couples (xi , yi ) with
i = 1, ...,m and yi ∈ Y = {−1, 1}.
The binary supervised learning task consists in finding a function
f : Ω −→ Y, the model, such that it can predict, in a satisfactory way, the
label of an unseen x̃ ∈ Ω \ X .

The Support Vectors Algorithm, is an optimization approach proposed

Scholkopf B.; Smola A.J. Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. The MIT Press
2002, ISBN: 978-026-225-693-3
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The original formulation

The SVM optimization problem is given by

max
α ∈ Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj⟨xi , xj⟩

s. to
m∑
i=1

αiyi = 0

0 ≤ αi ≤
C

m
∀i = 1, . . . ,m

αi > 0 are called Support Vectors.
Remark: if data are NOT linearly separable, it is better to introduce kernels.
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Through the kernel trick

If X is a general set (not a subset of Rd), without any structure, the previous
theory holds with kernels.

Q & A

Q: how an unseen pattern x is ”similar” to one in our training pattern? A: we
introduce a kernel κ

κ : X × X → R

(x , x̄) 7→ k(x , x̄)

that is a function that returns a real number characterizing the similarity
between x and x̄ . A simple case is the dot product,

⟨x , x̄⟩ =
m∑
i=1

xi x̄i .

We need to represent the patterns as vectors in some space H with a dot
product. The map Φ : X → H, x 7→ x where x denotes the vector. The
space H (an Hilbert space) is called the feature space.
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Φ can be a nonlinear map and of the form

Φ(x) = κ(·, x)

with H the RKHS related to kernel κ. Thus H is explicitly equal to the
space of functions RX = {f : X → R} and the relation between this one
and X is given by

Φ : X → RX

x 7→ κ(·, x).

We assume κ is positive definite.

Through Φ we embed patterns into a vector space,feature space, the we
would like to be RKHS

F =

{
f | f =

m∑
i=1

αiκ(·, xi ), m ∈ N, xi ∈ X , αi ∈ R,

}
.
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This space is equipped with an inner product defined as

f (x) =
m∑
i=1

αiκ(x , xi ), g(x) =
m∑
j=1

βiκ(x , x̄j)

⟨f (x), g(x)⟩ :=
m∑
i=1

m∑
j=1

αiβjκ(xi , x̄j)

with f , g ∈ F , x1, . . . , xm and x̄1, . . . , x̄m two sets of patterns chosen in X

Theorem

A function κ defined on X ×X → R is a reproducing kernel if and only if there
exists a Hilbert space H and a mapping Φ : X → H, such that for all x , x̄ ∈ X

κ(x , x̄) = ⟨Φ(x),Φ(x̄)⟩H

This formula states the equivalence between a kernel evaluation and a dot
product of feature maps referred to as Kernel Trick in the machine learning
literature.
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SVM formulation using kernels

Hence, by the feature map, the kernel is defined as κ(x , x̄) := ⟨Φ(x),Φ(x̄)⟩H
and the new SVM problem becomes

New SVM optimization problem

max
α ∈ Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjκ(xi , xj )

s. to
m∑
i=1

αiyi = 0

0 ≤ αi ≤
C

m
∀i = 1, . . . ,m

Remark: if xi are Persistent Diagrams, κ is called a Persistence Kernel
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Section 6

Persistence Kernels
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Persistent Scale Space Kernel (PSSK)

Idea: Compute feature map as the solution of a PDE

The PDE for Persistence Scale Space Kernel

Let Ωad = {x = (x1, x2) ∈ R2 : x2 ⩾ x1} and let δx denote a Dirac delta
centered at x. For a given persistence diagram D, we consider the solution
u : Ωad × R⩾0 → R such that (x, t) 7→ u(x, t) of the heat equation:

∆xu = ∂tu in Ωad × R⩾0

u = 0 on ∂Ωad × R⩾0

u =
∑
y∈D

δy on Ωad × 0
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PSSK

The feature map Φσ : D→ L2(Ωad) at scale σ > 0 of a persistent diagram
D ∈ D is defined as Φσ(D) = u

∣∣
t=σ. This map yields the Persistence Scale

Space Kernel2 (PSSK) Kσ on D as:

Kσ(D,E) = ⟨Φσ(D),Φσ(E)⟩L2(Ωad )
.

Kσ(D,E) =
1

8πσ

∑
y∈D,z∈E

exp(−∥y− z∥2

8σ
)− exp(−∥y− z̄∥2

8σ
)

where z = (a, b), z̄ = (b, a), for any D,E ∈ D.

2J. Reininghaus, S. Huber, U. Bauer, R. Kwitt A Stable Multi-Scale Kernel for Topological
Machine Learning, Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4741-4748 (2015)
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Persistent Weighted Gaussian Kernel (PWGK)

Idea: Replace each PD with a measure

Consider a strictly positive definite Gaussian kernel, e.g.

κG (x , y) = e
− ∥x−y∥2

2σ2 , σ > 0 and its RKHS space HκG

Let Ω ⊂ Rd , Mb(Ω) the space of finite signed Radon measures

Let EκG : Mb(Ω)→ HκG , µ 7→
∫
Ω
κG (·, x)dµ(x)

For any persistence diagram D ∈ D , if µw
D =

∑
x∈D w(x)δx , where w(x) > 0

for all x ∈ D

EκG (µ
w
D) =

∑
x∈D

w(x)κG (·, x).
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PWGK

The Persistence Weight Gaussian Kernel3 (PWGK) is defined as

Kw
G (D,E) = exp

(
− 1

2τ 2
∥EκG (µ

w
D)− EκG (µ

w
E )∥2HκG

)
, τ > 0

for any D,E ∈ D.

3G. Kusano, K. Fukumizu, Y. Hiraoka, Kernel method for persistence diagrams via kernel
embedding and weight factor, The Journal of Machine Learning Research vol. 18(1) (2017), pp.
6947-6987
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Sliced Wasserstein Kernel (SWK)

Let consider µ and ν two nonnegative measures on R such that µ(R) = r = |µ|
and ν(R) = r = |ν|, let consider the 1-Wasserstein distance for nonnegative
measures

W(µ, ν) = inf
P∈Π(µ,ν)

∫ ∫
R×R
|x − y |dP(x , y)

with Π(µ, ν) is the set of measures in R2 with marginals µ and ν

Definiton [Sliced Wasserstein distance]

Given θ ∈ R2 with ∥θ∥2 = 1, let L(θ) denote the line {λθ|λ ∈ R} and let
πθ : R2 → L(θ) be the orthogonal projection onto L(θ). Let D,E ∈ D and let
µθ
D :=

∑
p∈D δπθ(p)

and µθ
D∆ :=

∑
p∈D δπθ◦π∆(p) and similarly for µθ

E and µθ
E∆ where

π∆ is the orthogonal projection onto the diagonal. Then, the Sliced Wasserstein
distance is

SW (D,E) =
1

2π

∫
S1

W(µθ
D + µθ

E∆, µθ
E + µθ

D∆)dθ

with S1 the unit circle
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SWK

Thus, the Sliced Wasserstein Kernel4 (SWK) is defined as

KSW (D,E) := exp

(
− SW (D,E)

2σ2

)
, σ > 0

for any D,E ∈ D.

4M. Carriere, M. Cuturi, S. Oudot, Sliced Wasserstein kernel for persistent diagrams,
International Conference on Machine Learning, PMLR 2017, pp.664-673
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Persisten Fisher Kernel (PFK)

Idea: Replace each PD with a probability distribution
So if D ∈ D

ρD(x) :=
1

Z

∑
u∈D

N(x ; u, σI )

where N is a gaussian function, Z =
∫ ∑

u∈D N(x ; u, σI )dx and I is the identity
matrix.
The probability simplex is P = {ρ|

∫
ρ(x)dx = 1, ρ(x) ≥ 0}.

Definition [Fisher Information Metric for probability distributions]

Given two element in ρi , ρj ∈ P, the Fisher Information Metric is

dP(ρi , ρj) = arccos

(∫ √
ρi (x)ρj(x)dx

)
.
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PFK

Definition [Fisher Information Metric for PD]

Let D,E be two finite and bounded persistence diagrams. The Fisher
Information Metric between D and E , is defined as

dFIM(D,E) := dP(ρD∪E∆ , ρE∪D∆)

where D∆ := {Π∆(u)|u ∈ D} and Π∆ is the projection on the diagonal
∆ = {(a, a)|a ≥ 0}.

The Persistence Fisher Kernel5 (PFK) is then defined as

KF (D,E) := exp(−tdFIM(D,E)), t > 0, for any D,E ∈ D.

5T. Le, M. Yamada, Persistence fisher kernel: A Riemannian manifold kernel for persistence
diagrams, arXiv preprint arXiv:1802.03569 (2018)
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Persistent Image (PI)

If D ∈ D we introduce a change of coordinates, T : R2 → R2 given by
T (x , y) = (x , y − x) and let T (D) be the transformed multiset in
first-persistence coordinates. Let gu be the 2-dimensional Gaussian with mean
u and variance σ2, defined as

gu(x , y) =
1

2πσ2
e−[(x−ux )

2+(y−uy )
2]/2σ2

,

Fix a weight function f : R2 → R, f ≥ 0.
For instance, f (x , y) = wb(y)

wb(t) =


0 if t ≤ 0,
t
b

if 0 < t < b,
1 if t ≥ b.
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cont

Definition [Persistent Surface]

Given D ∈ D, the corresponding persistence surface ρD : R2 → R is the
function

ρD(x , y) =
∑

u∈T (D)

f (u)gu(x , y).

If we divide the plane in a grid with n2 pixels (Pi,j)i,j=1,...,n

Persistent Image

Given D ∈ D, its Persistence Image is the collection of pixels

PI (ρD)i,j =

∫ ∫
Pi,j

ρD(x , y)dxdy .
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PI

Thus, through persistence image, each persistence diagram is turned into a

vector PIV ∈ Rn2 that is PIV (D)i+n(j−1) = PI (D)i,j , then it is possible to
introduce the following Persistent Image Kernel (PI)

KPI (D,E) =< PIV (D),PIV (E) >Rn2 .
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Numerical tests

1 Simplicial complexes and persistence diagrams, by Python libraries: gudhi,
ripser, giotto-tda and persim .

2 SVM by the Scikit library of Python.

3 We performed a random splitting (70%/30%) for training and testing and
applied a 10-fold cross-validation on the training set for the hyperparameters
tuning. Then we averaged the results over 10 runs.

4 For PFK, we precomputed the Gram matrices using a Matlab (Matlab R2023b)
routine because it is faster than the Python one. The values for C belong to
{0.001, 0.01, 0.1, 1, 10, 100}.

PSSK: σ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}
PWGK: τ ∈ {0.001, 0.01, 0.1, 1, 10, 100},
ρ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}, p ∈ {1, 5, 10, 50, 100},
Cw ∈ {0.001, 0.01, 0.1, 1} and we chose the Gaussian one.
SWK: η ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}
PFK: σ ∈ {0.001, 0.01, 0.1, 1, 10} and t ∈ {0.1, 1, 10, 100, 1000}
PI: σ ∈ {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10} and number of
pixel 0.1.

Bandiziol C.; De Marchi S.: Persistence Symmetric Kernels for Classification: A

Comparative Study. Symmetry (2024), 16, 1236
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Results
Data sets: SHREC14 (human models of different body shapes and 20 poses) DYN
SYS (Dynamical System of 2 Odes), MNIST (images of handwritten digits), BZR
(collection of chemical compounds), DISTAL ( ?)

Kernel DYN SYS MNIST BZR DISTAL
PSSK 0.829 0.729 0.557 0.658
PWGK 0.819 0.754 0.655 0.696
SWK 0.841 0.802 0.712 0.723
PFK 0.784 0.734 0.682 0.676
PI 0.777 0.760 0.585 0.662

Table: Accuracy or balanced accuracy related to several datasets

Kernel SHREC14 BZR DISTAL
PSSK 582 11731 49481
PWGK 1841 3751 43152
SWK 209 321 1418
PFK 319 814 11405
PI 266 640 1825

Table: Computational costs (seconds) marked in bold the best values
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Intrinsic Dimension (ID):

main definitions and concepts

References follows the draft

Adams H.; Aminian M.; Farnell E.; Kirby M.; Peterson C.; Mirth J.;
Neville R.; Shipman P.; Shonkwiler C. A Fractal Dimension for Measures
via Persistent Homology. (eds) Topological Data Analysis Abel Symposia
Springer 2020, 15, ISBN: 978-3-030-43407-6
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ID estimators using Persistent Homology

Definitons

Definition of ID

The intrinsic dimension (shortly, ID) is the minimum number of local
coordinates needed to describe the data

Other way

A dataset Ω ⊂ RD is said to have Intrinsic Dimension (ID) equal to d if its
elements lie entirely, without loss of information, within a d - dimensional
manifoldM of RD , where d < D.

Knowing the value of the ID is critical to ensure the reliability
low-dimensional data visualization and the validity of dimensionality
reduction as a data preprocessing step.

In addition, the ID is often a very useful metric per se, allowing the analyst
to capture key information about the geometry of the data compare data
and models and track temporal variations of complexity.
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ID estimators using Persistent Homology

The ID is generally not known a priori: we can get ID estimates directly from
the data.

Classical estimators method

Projective. Example, the PCA (project to the space spanned by the first
significant d eigenvectors of the covariance matrix)

Geometric-statistical. Example: the Correlation Dimension, the number of
point within B(r ; x) scales as Nr ≈ rd , with d the ID.

↪→ Both methods have limitations: large number of points when ID is high or
fail in presence of highly non-uniformly/non-isotropic distributuions ←↩

We look for TOPOLOGICAL approaches for ID estimators

S. De Marchi (Unipd) Intro to TDA and Applications



Preamble
Classification with KNN

Classification, SVM and Persistence Kernels
Intrinsic Dimension (ID): main definitions and concepts

ID estimators using Persistent Homology

The ID is generally not known a priori: we can get ID estimates directly from
the data.

Classical estimators method

Projective. Example, the PCA (project to the space spanned by the first
significant d eigenvectors of the covariance matrix)

Geometric-statistical. Example: the Correlation Dimension, the number of
point within B(r ; x) scales as Nr ≈ rd , with d the ID.

↪→ Both methods have limitations: large number of points when ID is high or
fail in presence of highly non-uniformly/non-isotropic distributuions ←↩

We look for TOPOLOGICAL approaches for ID estimators

S. De Marchi (Unipd) Intro to TDA and Applications



Preamble
Classification with KNN

Classification, SVM and Persistence Kernels
Intrinsic Dimension (ID): main definitions and concepts

ID estimators using Persistent Homology

Most famous fractal-based ID estimators

Main idea

Distances between points lying on a fractal or a low dimensional manifold
follow scaling laws that depend on the ID of the set.

Box-Counting Dimension

Let XN be a subset of RD , considered as a metric space, and let Nϵ (∝ ϵdBC )
denote the infimum of the number of closed balls of radius ϵ required to cover
XN . Then the Box-Counting Dimension of Ω is

dBC := lim
ϵ→0

log(Nϵ)

log(1/ϵ)

provided this limit exists.
If XN is a I.I.D. (Indipendent and Identically Distributed) set of N points from
a regular metric µ of RD then limN→∞ dBC = d .
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ID estimators using Persistent Homology

Correlation dimension

Main idea

It describes how the number of points within a certain distance (or radius)
scales increasing it. Mathematically it is described using the correlation integral
of a probability measure µ, i.e. the mean that the states at different times are
close. Given a threshold ϵ > 0

C(ϵ) := lim
N→∞

1

N2
f (5)

where f is the number of pair (i , j) whose distance ∥xi − xj∥ < ϵ (usually
described by the Heaviside step function H(x) = 0 for x < 0, H(x) = 1 for
x ≥ 0 (see below)).

As ϵ→ 0, the correlation integral scales as

C(ϵ) ≈ ϵdC (6)

with dC also known as the correlation exponent.
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Cont

The correlation dimension can be estimated from finite sets of points,
sufficiently large and evenly distributed, i.e an I. I. D. set,

Let XN be an I.I.D. sample of N points from µ. Let us count the number of
pairs of points within distance ϵ, the (5) can be taken

C̃(N, ϵ) :=
1

N2

∑
xi , xj ∈ XN

xi ̸= xj

H(ϵ− ∥xi − xj∥). (7)

We then have
C(ϵ) = lim

N→∞
C̃(N, ϵ) (8)

Pratical approach

In applications, given a finite (large) set of points χN , the CD can be estimated
as the slope of the log-log plot of C̃(N, ϵ) versus ϵ in the limit of small ϵ.
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ID estimators using PH

We assume to have a metric space X or a ManifoldM embedded in some RD

equipped with a probability measure µ. Let XN denote a set of N points
sampled from X (M) according to µ.

For any α > 0, we define the power-weighted sum

E i
α(Xn) :=

∑
I∈PHi (Xn)

|I |α (9)

where PHi (XN), i = 0, 1, 2, . . . ,D indicate the collections of topological
features of dimensions 0, 1, 2, . . . ,D and |I | denotes the persistence (or
lifetime) of the topological feature I .
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i-dim. Persistent Homology Fractal Dimension (PHFD)

i-dim. PHFD

Let X be a metric space equipped with a probability measure µ, let XN ⊂ X be
a random sample of n points from X distributed according to µ, and let E i

1(XN)
as above. The i-dimensional Persistent Homology Fractal Dimension of µ is
given by

dimi
PH(µ) = inf

d>0
{∃C(i , µ, d) : E i

1(XN) ≤ C N(d−1)/dwith prob. 1 as N → +∞}.

Conjecture: For all 0 ≤ i < d , there is a constant C ≥ 0 (depending on µ, k,
and i) such that

E i
1(XN) = CN(d−1)/d (10)

with probability 1 as N → +∞.

Adams H.; Aminian M. et al. A Fractal Dimension for Measures via Persistent Homology. (eds) Topological Data Analysis Abel

Symposia Springer 2020 (i-dim. PHFD)
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Cont

Assuming the validity of this conjecture, taking the logarithm in (10), we get

log(E i
1(XN)) = log(C) +

d − 1

d
log(N) , (11)

which suggests that we can estimate D as the slope of the regression line as
function of log(N), that is from (d − 1)/d
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Persistent Homology (PH) dimension

Anoher estimator is the PH dimension

PH dimension

Let X be a bounded subset of a metric space and µ a measure defined on X .
For each i ∈ N and α > 0, we define the Persistent Homology dimension (PH
dim) as

dimPHα
i
(µ) =

α

1− β

where

β = lim sup
N→+∞

log(E(E i
α(XN))

log(N)

Jaquette J.; Schweinhart B. Fractal dimension estimation with persistent
homology: A comparative study. Communications in Nonlinear Science
and Numerical Simulation 2020, 84, 105163
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i-dim. α PHFD

Inspired by these two definitions, we have combined them in i-dim. α PHFD

i-dim. α PHFD

Let X be a metric space equipped with a probability measure µ, let XN ⊂ X be
a random sample of n points from X distributed according to µ, and let
E i
α(XN) as above. The i-dimensional α Persistent Homology Fractal Dimension

(i-dim. α PHFD) of µ is given by

dimi,α
PH (µ) = inf

d>0
{∃C(i , µ, d) : E i

α(XN) ≤ CN(d−α)/d with prob. 1 as N→ +∞}.

S. De Marchi (Unipd) Intro to TDA and Applications



Preamble
Classification with KNN

Classification, SVM and Persistence Kernels
Intrinsic Dimension (ID): main definitions and concepts

ID estimators using Persistent Homology

Numerical tests

Tuning the value of α

Figure: Shape Analysis dataset Mist with PH0
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Datasets

Benchmark datasets

Dataset d Description
Helix 2 2-dimensional helix in R3

Swiss 2 Swiss-Roll in R3

Sphere 3 3-dimensional sphere linearly embedded in R4

NonLinear 4 Nonlinear Manifold in R8

Affine3d5d 3 Affine space in R5

Mist 4 Conc. figure, mistakable with a 3-dim. one in R6

CurvedManifold 12 Nonlinear (highly curved) manifold in R72

NonLinear6d36d 6 Nonlinear manifold in R36

Fractals: Sierpiski triangle (4000 points) and Ikeda attractor (500 points)

Neural activity stimulation (see below): Fdgo (25200), Context (10400),
Reactgo filtered (5200) points in R256
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Neural Activity Datasets

Starting from the analysis of activity trajectories of particular recurrent neural
networks (RNNs), the aim is to mirror the brain functionality related to basic
tasks (stimuli-response mapping on primates) using an NN.

Figure: Scheme of the source of data

The figure represents the idea of how to use an RNN. We have considered only 3
stimuli, whose data are stored in .csv file with the name Fdgo, Context, and
Reactgo filtered.
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Results I

Here d denotes the ID to approximate

Dataset d Corr. dim.

Helix 2 1.99
Swiss 2 1.98
Sphere 3 2.98

NonLinear 4 3.87
Affine3d5d 3 3.01

Mist 4 3.54
CurvedManifold 12 11.66
NonLinear6d36d 6 5.82

Sierpinski Triangle 1.585 1.585
Ikeda unk 1.68

Fdgo unk 1.07
Contextdm1 unk 1.14
Reactgo unk 2.15

Table: Correlation Dimension of all datasets
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Results II

Dataset d PH0 PH1

Helix 2 2.01 2.38
Swiss 2 1.93 2.16
Sphere 3 2.90 3.14

NonLinear 4 3.98 6.45
Affine3d5d 3 2.84 2.91

Mist 4 4.01 6.11
CurvedManifold 12 12.73 -
NonLinear6d36d 6 5.96 9.80

Serpinski 1.58 1.61 1.87
Ikeda Attractor 1.71 2.12 2.13

Reactgo unk 2.47 2.54
Fdgo unk 2.14 2.17

Contextdm1 unk 3.07 3.03

Table: α-PHFD for 0, 1-dim. for all datasets with the ”optimal α

Remark

In general, considering PH0, the estimator performs better than on estimating PH1.
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Python implementation

Some information about software details:

we use our code written in python

the persistence diagrams are computed with free library available as ripser,
persim and gudhi

we consider a K-Fold CV averaged over 10 runs (random 70/30
training/testing splits)

Python implementations are available on GitHub repositories by Cinzia
Bandiziol:

https://github.com/cinziabandiziol/TDA classification

https://github.com/cinziabandiziol/persistence kernels

https://github.com/cinziabandiziol/Topological ID Estimator
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