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Stefano De Marchi Lectures on multivariate polynomial approximation

These lecture notes are a collections of arguments that brie�y present the problem
of multivariate polynomial interpolation (and approximation) starting from the univariate
setting. The notes have then been used during a short teaching-visit of the author to the
University of Göttingen, for the Erasmus Teaching Sta� Mobility and also for a part of the
course Approximation Theory and its Applications given at the University of Padova, for
master's students in Mathematics.

People interested on the topic, can refer to the wide literature available that, especially
in the last two decades, has grown very fast. If in the univariate polynomial interpolation
almost all problems are well settled and solved, in the multivariate setting many things are
still unknown. These few pages represent a short introduction to the topic and to some open
problems.

The lectures are intended for students with a basic knowledge of numerical methods and
advanced preparation on mathematical analysis.

Every lecture provides also a set of exercises solvable by using Matlab. This choice has
been done with the aim of making the discussion more interesting from both the numerical
and geometrical point of view. Hope the students will be able to solve the proposed excercises
for better understanding the topic.

I do hope that after this brief introduction, interested students will be encouraged and
also interested in getting into this fascinating world.

Stefano De Marchi
June 2017.
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Lecture 1

Learning from the univariate case

We start our lectures recalling the fundamental problem of the univariate interpolation with
emphasis to some not commonly known facts.

1.1 Univariate polynomial interpolation

Let pn(x) =

n∑
i=0

aix
i be a polynomial of degree n written using the monomial basis M =

{1, x, . . . , xn}. i.e. an element of the space Pn(R).

The interpolation problem consists in �nding the unique polynomial pn ∈ Pn such that

pn(xi) = yi, i = 0, . . . , n (1.1)

are ful�lled for any set of n+ 1 distinct points xi and values yi ∈ R (or yi = f(xi) for some
function f of real values). This is equivalent to the solution of the linear system V a = y,
with V the Vandermonde matrix of order n+ 1.

Because we have chosen xi distinct, then V is invertible. Indeed,

det(V ) =
n∏

i,j=0,i>j

(xi − xj) 6= 0 . (1.2)

Exercise 1. Prove by induction formula (1.2).

The best situation is when V = I, so that the solution of the system is immediate, giving
ai = yi, i = 0, ..., n. This happens when instead of the monomial basis M we consider
the so called Lagrange basis, L = {l0, . . . , ln} such that li(xj) = δi,j . The elementary (or
fundamental) Lagrange polynomials of degree n are given by

li(x) :=
∏
i 6=j

x− xj
xi − xj

, i, j = 0, . . . , n. (1.3)
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From the de�nition above, it follows that

pn(x) =
n∑

i=0

i(x)yi .

Two consequences

1.
n∑

i=0

li(x) = 1. In fact, the interpolation process is exact on constants.

2. From the property li(xj) = δi,j , it comes easy to show that

li(x) = det(V (x0, ..., xi−1, x, xi+1, ..., xn))/det(V (x0, ..., xn)) , ∀i , (1.4)

where V (x0, . . . , xn) is the Vandermonde matrix at the points x0, . . . , xn. (Hint:
consider the case n = 2)

The way to show formula (1.4) is this. First, we observe that the elementary Lagrange
polynomials at a point x can be written in terms of the monomial basis, that is

lj(x) =
n∑

i=0

lj,ix
i, j = 0, . . . , n . (1.5)

It is easy to see that by asking that lj(xk) = δj,k, the coe�cients of the Lagrange
polynomials in (1.5) are the columns of the inverse of the Vandermonde matrix (see next
Example)

V −1 =


l0,0 l0,1 · · · l0,n
l1,0 l1,1 · · · l1,n
...

...
. . .

...
ln,0 ln,1 · · · ln,n

 .

Example 1. Consider the case n = 1 we have x0, x1 and

V =

(
1 1
x0 x1

)
,

then

V −1 =
1

x1 − x0

(
x1 −1
−x0 1

)
.

The two columns are indeed the coe�cients of the elementary Lagrange polynomials. For
instance l0(x) =

1
x1−x0

(x1 · 1− 1 · x) which gives l0(x0) = 1, l0(x1) = 0.

Therefore, letting m(x) = (1, x, x2, . . . , xn)T the monomial basis and l(x) the Lagrange
basis, formula (1.5) shows that V −1m(x) = V l(x). By using the Cramer's rule, we get
lj(x), j = 0, . . . , n, which is formula (1.4).
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Observation 1. This way to de�ne the elementary Lagrange polynomials, is particu-
larly useful in the univariate case (to derive coe�cients estimates for polynomials, see [36])
and in higher dimensions. In fact, if Φ = {φi, i = 1, ..., N} is a polynomial basis for the poly-
nomial space Pn(Rd) (polynomials of degree ≤ n in Rd), then we can de�ne VΦ(x0, ..., xN )
(the Vandermonde matrix that uses the basis Φ collecated at the d-dimensional point set
x0, ..., xN ) and consequentely the corresponding elementary Lagrange polynomials.

1.1.1 Barycentric form of the interpolant

Let ωn(x) = (x− x0) · · · (x− xn), then

li(x) =
ωn(x)

(x− xi)ω′(xi)
= ωn(x)

wi

x− xi
,

with wi = 1/ω′
n(xi). This is usually re�ered as the �rst barycentric form.

Moreover, the interpolating polynomial becomes

pn(x) = ωn(x)

n∑
i=0

(
wi

x− xi

)
yi . (1.6)

Formula (1.6) shows the advantage of the barycentric formulation. In fact, if the wi ∀i
are pre-computed (i.e. once for all), then the evaluation at x of the new basis element,
ωn(x)wi/(x − xi), requires O(n) �ops (for evaluating ωn(x) and wj/(x − xj)) instead of
O(n2) for the evaluation of each li(x). This will result in a total O(n2) operations instead
of O(n3) required by the Lagrange basis.

Another advantage is that if we add another interpolation point, xn+1, we have

w∗
i =

wi

(xi − xn+1)
, i = 0, ..., n

wn+1 =

n∏
i=0

1

xn+1 − xi
.

Finally, if g(x) ≡ 1, then g(x) = ωn(x)
∑n

j=0
wj

x−xj
. Hence, we get the second barycentric

form

pn(x) =
n∑

i=0

(
wi

x−xi

)
yi∑n

i=0

(
wi

x−xi

) . (1.7)

where the new elementary basis elements are

bj(x) =

wi
x−xi∑n
i=0

wi
x−xi

, j = 0, ..., n .

Remark. The barycentric form of the interpolant has the advantage of providing a numer-
ically stable algorithm to evaluate univariate polynomials (see [37, 32], and [47] Chapter
5).
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1.1.2 Interpolation error

The main theorem says that the interpolation error depends on the choice of the interpolation
points and on the smothness of the function to be interpolated.

Theorem 1. Letting f ∈ C[a, b] and Xn = {x0, . . . , xn} the set of interpolation nodes.
Then

‖f − pn‖∞ ≤ (1 + Λn(Xn))‖f − p∗n‖∞, n ≥ 0 (1.8)

where p∗n is the best interpolating polynomial and Λn(Xn) = max
x∈[a,b]

n∑
i=0

|li(x)| the Lebesgue

constant.

The existence of p∗n is ensured by the following result.

Theorem 2. (cf. [39])

If V is a normed linear space and W a �nite dimensional subspace of V . Then, given v ∈ V
there exist w∗ ∈W s.t.

‖v − w∗‖ ≤ ‖v − w‖ , ∀w ∈W . (1.9)

Proof. Let v �xed in V and w ∈ W an arbitrary element. The �point� we are looking
for is in the set

{h : h ∈W, ‖v − h‖ ≤ ‖v − w‖ , ∀ w ∈W} .

But this set is compact in a �nite dimensional space so it has a minimum h∗. The conclusion
follows. �.

Example 2. Take V = C[a, b] equipped with ‖f‖ = maxx∈[a,b] |f(x)| (uniform or Chebyshev
norm), W = span{1, x, ..., xn} := Pn(R). Then by the previous Theorem 2, for all f ∈ V
there exists a best approximation in W , say p∗n s.t.

‖f − p∗n‖ ≤ ‖f − pn‖ , ∀pn ∈ Pn(R) . (1.10)

��

Remark. Another way to express (1.10) is

min
p∈Pn

max
x∈[a,b]

|f(x)− pn(x)| = max
x∈[a,b]

|f(x)− p∗n(x)| , (1.11)

introducing in such a way the name of min-max approximation.

Question 1. Letting E∗
n(f) = ‖f −p∗n‖∞. What is the behavior of E∗

n? In other words,
for every f ∈ C(R), limn→∞E∗

n(f) = 0?

A �rst step for the answer is given by the first Weierstrass theorem.
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Theorem 3. (W1) Given f ∈ C[a, b] and ε > 0, there exists a pn ∈ Pn s.t.

‖f − pn‖ ≤ ε (1.12)

Remark. Notice that we are talking about ��rst� Weierstrass theorem, since there
exists a second version that applies to f ∈ C[−π, π], s.t. f(−π) = f(π) and t ∈ Πn, where
Πn the set of trigonometric polynomials. In fact, just using the transformation x = cos(t)
we can consider f(t) = g(x(t)) with g ∈ C[−1.1] and apply the �rst Weierstrass W1. We
point out that the multivariate version of the Theorem ?? is the Stone-Weierstrass theorem
(see Appendix A).

Example 3. In the case [a, b] = [0, 1] the Bernstein polynomial is a constructive solution
of the Weierstrass claim.

Bn(f ;x) =

n∑
k=0

f

(
k

n

) (
n

k

)
xk(1− x)n−k︸ ︷︷ ︸

Bernstein polynomial basis

. (1.13)

The following theorem shows that the Bernstein polynomial converges at any point of
continuity of f .

Theorem 4. If f(x) is bounded in [0, 1], on every point of continuity we have

lim
n→∞

Bn(f ;x) = f(x) .

Moreover, if f ∈ C[0, 1] then the limit is uniform.

Question 2. How good is the approximation by elements of Pn(R)?

In practise we need a bound for the error

max
x∈[0,1]

|f(x)−Bn(f ;x)| = ‖f −Bn(f)‖∞ .

This can be done by the use of modulus of continuity (MoC).

De�nition 1. Let f be de�ned on [a, b]. The MoC of f on [a, b], is de�ned for all δ > 0

ω(δ) := sup
x1, x2 ∈ [a, b]
|x1 − x2| ≤ δ

|f(x1)− f(x2)| . (1.14)

Remark. As is clear from the de�nition, the MoC, depends on δ, f and [a, b], that is
ω(δ) = ω(δ, f, [a, b]).

These are the main properties of the MoC (cf. e.g. [39, Ch. 1]

(a) Let 0 < δ1 ≤ δ2, ω(δ1) ≤ ω(δ2). That is the MoC is an increasing function of δ.
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(b) A function f(x) is uniformly continuous in [a,b] if and only if limδ→0 ω(δ) = 0.

(c) If λ > 0, ω(λδ) ≤ (1 + λ)ω(δ).

Concerning the property (c). Let n ∈ N s.t. n ≤ λ < n + 1. By property (a) we know
ω(n) ≤ ω(n+1). Now suppose |x1−x2| ≤ (n+1)δ and x1 < x2. Subdivide [x1, x2] in n+1
equal parts of length h = (x2 − x1)/(n+ 1) by the n+ 2 points

zj = x1 + jh, j = 0, ..., n+ 1 .

Then

|f(x1)− f(x2)| =

∣∣∣∣∣∣
n∑

j=0

(f(zj+1)− f(zj))

∣∣∣∣∣∣ ≤
n∑

j=0

|f(zj+1)− f(zj)| ≤ (n+ 1)ω(δ) .

Thus, ω((n+ 1)δ) ≤ (n+ 1)ω(δ). But n+ 1 ≤ λ+ 1 and the conclusion follows. �

Theorem 5. If f is bounded on [0, 1] then

‖f −Bn(f)‖∞ ≤
3

2
ω

(
1√
n

)
.

Proof. Observe that for f = 1, Bn(1;x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k = (x+ (1− x))n = 1.

Then,

|f(x)−Bn(f ;x)| ≤
n∑

k=0

|f(x)− f(
k

n
)|
(
n

k

)
xk(1− x)n−k

≤
n∑

k=0

ω(|x− k/n|)
(
n

k

)
xk(1− x)n−k .

By property (c) of the MoC,

ω

(∣∣∣∣x− k

n

∣∣∣∣) = ω

√n
∣∣∣∣x− k

n

∣∣∣∣︸ ︷︷ ︸
λ

1√
n︸︷︷︸
δ

 ≤
(
1 +
√
n

∣∣∣∣x− k

n

∣∣∣∣)ω

(
1√
n

)
︸ ︷︷ ︸

(∗)

so that

|f(x)−Bn(f ;x)| ≤
n∑

k=0

(∗)
(
n

k

)
xk(1−x)n−k ≤ ω

(
1√
n

)[
1 +
√
n

n∑
k=0

∣∣∣∣x− k

n

∣∣∣∣ (nk
)
xk(1− x)n−k

]
14
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and by Cauchy-Schwarz's inequality (
∑

aibi)
2 ≤ (

∑
a2i )(

∑
b2i )

n∑
k=0

∣∣∣∣x− k

n

∣∣∣∣ (nk
)
xk(1− x)n−k =

n∑
k=0

(∣∣∣∣x− k

n

∣∣∣∣
√(

n

k

)
xk(1− x)n−k

)√(
n

k

)
xk(1− x)n−k

≤

[
n∑

k=0

((
x− k

n

)2
√(

n

k

)
xk(1− x)n−k

)]1/2
√√√√

n∑
k=0

(
n

k

)
xk(1− x)n−k

≤

√√√√
n∑

k=0

(
x− k

n

)2(n
k

)
xk(1− x)n−k

and since
n∑

k=0

(
x− k

n

)2(n
k

)
xk(1− x)n−k

(∗)︷︸︸︷
=

x(1− x)

n
≤ 1

4n

we �nally get

|f(x)−Bn(f ;x)| ≤ ω(1/
√
n)

(
1 +
√
n

1

2
√
n

)
,

that concludes the proof. �.

Remarks

(i) In the previous theorem we have used in (*) the fact that

n∑
k=0

(
x− k

n

)2(n
k

)
xk(1− x)n−k =

x(1− x)

n

which can be proved by using the facts that

n∑
k=0

(
n

k

)
xk(1− x)n−k = 1

n∑
k=0

k

(
n

k

)
xk(1− x)n−k = nx

n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−k = nx

n∑
k=0

k(k − 1)

(
n

k

)
xk(1− x)n−k = n(n− 1)x2

n−2∑
k=0

(
n− 2

k

)
xk(1− x)n−2−k = n(n− 1)x2 .

(ii) if f ∈ C[0, 1], for property (b), ω(1/
√
n)→ 0, getting another proof of the Weierstrass's

theorem.
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(iii) f ∈ LipK α (or simply Lipα if K is unimportant) i.e. |f(x1) − f(x2)| ≤ K|x1 −
x2|α, α > 0 if and only if

ω(δ) ≤ Kδα .

This is also known as Hölder condition of order α.

It follows that

‖f −Bn(f)‖ ≤
3

2
Kn−α/2 , f ∈ LipKα, K = [0, 1] .

Notice that, for α = 0 the inqueality implies that the function are bounded; when
α = 1 we get the classical Lipschitz condition and for α > 1, the functions in Lipα
are constants (i.e. with f ′ = 0). In fact, letting α = 1+ ε, for a �xed x1 ∈ I it follows
that

lim
x2→x1

|f(x2)− f(x1)|
|x2 − x1|

≤ K|x2 − x1|α−1 = 0

and the ration is ≥ 0. Hence the limit, which is f ′, exists and has value 0, showing
that f is constant.

Therefore the property (ii) is interesting for 0 < α ≤ 1.

(iv) Suppose f(x) = |x− 1
2 | (which is Lip1 1). Then, by (ii) ‖f −Bn(f)‖ ≤ 3

2n
−1/2. Take

the point x = 1/2. Since Bn(f ;x)− |x− 1/2| =
(
1
2

)n∑n
k=0

∣∣ k
n −

1
2

∣∣ (n
k

)
. If n is even,

we get
n∑

k=0

∣∣∣∣kn − 1

2

∣∣∣∣ (nk
)

= 2

n/2∑
k=0

(
1

2
− k

n

)(
n

k

)
=

1

2

(
n

n/2

)
hence

|Bn(f ;
1

2
)− 0| =

(
n

n/2

)
2n+1

>
1

2

1√
n

the last inequality coming from the so-called Stirling's formula

√
2πk kk e−k < k! <

√
2πk kk e−k

(
1 +

1

4k

)
.

��

The last step for the correct asymptotic behaviour of E∗
n(f) is given by the Jackson's

theorem.

Theorem 6. (Jackson's theorem)
If f ∈ C[−1, 1], then

E∗
n(f ; [−1, 1]) ≤ 6ω

(
1

n

)
. (1.15)

16
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Remark. We do not prove the Theorem. The proof is essentially based on Jackson's
theorem for functions f ∈ C0([−π, π]), i.e. by using trigonometric polynomials. Hence, in
[−1, 1] by using the substituion x = cos(t) we return to the trigonometric case.

The following Corollaries are easy consequences of the Jackson's theorem and the pre-
vious properties.

Corollary 1.

E∗
n(f ; [a, b]) ≤ 6ω

(
b− a

2n

)
. (1.16)

Corollary 2. If f ∈ LipK α[−1, 1]

E∗
n(f ; [−1, 1]) ≤ 6K n−α . (1.17)

Corollary 3. If |f ′(x)| ≤M for x ∈ [−1, 1] then

E∗
n(f ; [−1, 1]) ≤ 6M n−1 . (1.18)

Corollary 4. If f ∈ C1[−1, 1] then

E∗
n(f ; [−1, 1]) ≤

6

n
E∗

n−1(f
′; [−1, 1]) .

Proof. Suppose ‖f ′ − p∗n−1‖ = E∗
n−1(f

′, [−1, 1]). Let pn(x) =
∫ x
0 p∗n−1(x)dx. Then

E∗
n(f ; [−1, 1]) = E∗

n−1(f − pn; [−1, 1]) ≤ 6E∗
n−1(f

′; [−1, 1]) n−1

where we have used Corollary 3 and the fact that p′n = p∗n−1. �

Theorem 7. (no proof)
Let f ∈ Ck[−1, 1], then for n > k

E∗
n(f ; [−1, 1]) ≤

ck
nk

ωk

(
1

n− k

)
. (1.19)

where ωk is the MoC if f (k) and ck =
6k+1ek

k + 1
.

This last theorem simply gives information on how well a function (with known prop-
erties) can be approximated by polynomials. It does not provide any tool for �nding p∗n.

17
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1.1.3 Characterizations of the polynomial of best approximation

We make some simple notations. Let e(x) = f(x)− p∗n(x) (the best polynomial approxima-
tion error at the point x) and ‖e‖ = E∗

n(f ; [a, b]).

Theorem 8. There exist (at least) two distinct points, x1, x2 ∈ [a, b] s.t.

|e(x1)| = |e(x2)| = E∗
n(f ; [a, b]) ,

and e(x1) = −e(x2).

Proof. We observe that the curve y = e(x) is constrained to lie between the constants
(lines) y = ±E∗

n(f), x ∈ [a, b], touching at least one of them. We show that e(x) touches
both.

If it does not, then there should exist a better approximation of f than p∗n. Assume that
e(x) > −E∗

n(f) in [a, b].

Figure 1.1: Error e(x) and e(x)− c

Then,

min
x∈[a,b]

e(x) = m > −E∗
n(f) and c =

E∗
n(f) +m

2
> 0 .

Since qn = p∗n + c ∈ Pn(R), f(x)− qn(x) = e(x)− c and −(E∗
n(f)− c) = m− c ≤ e(x)− c ≤

E∗
n(f)− c, we have

‖f − qn‖ = E∗
n(f)− c ,

contradicting the de�nition of E∗
n(f). Thus there must exist a point, say x1 ∈ [a, b], such

that e(x1) = −E∗
n(f). Similarly we can say that there exists x2 ∈ [a, b] s.t. e(x2) = E∗

n(f).
This concludes the proof. �

As a consequence we have

18
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Corollary 5. The best approximating constant to f(x) is

p∗0(x) =
1

2

{
max
x∈[a,b]

f(x) + min
x∈[a,b]

f(x)

}
with error

E∗
0(f) =

1

2

{
max
x∈[a,b]

f(x)− min
x∈[a,b]

f(x)

}
.

Proof. Again by absurdum. Suppose d is any other constant, then e(x) = f(x)−d can
not satisfy the Theorem 8. In fact

e(x1) = f(x1)− d

e(x2) = f(x2)− d

showing that e(x1) 6= −e(x2), in contradiction with the property stated in Theorem 8. �

We need the following definition.

De�nition 2. A set of k + 1 distinct points a ≤ x0 < x1 < · · · < xk ≤ b is called an
alternating set for the error function e = f − pn if

|e(xj)| = |f(xj)− pn(xj)| = ‖f − pn‖∞, j = 0, ..., k

and

f(xj)− pn(xj) = −[f(xj+1)− pn(xj+1)], j = 0, ..., k − 1.

We can �nally characterize the best polynomial approximation in the following way

Theorem 9. Suppose f ∈ C[a, b]. The polynomial p∗n ∈ Pn(R) is a best uniform approximation

on [a, b] to f , if and only if there exists an alternating set for e = f − p∗n consisting of n+2
distinct points.

Remark. The Theorem does not say that the alternating set is unique. Moreover it
does not say that the error f − p∗n could alternate on more than n+ 2 points.

Instead of provinding the proof of Theorem 9, that can be found in [39, pp. 26-27], we
give an explicative example.

Example 4. Consider the function sin(4x) ∈ [−π, π] whose plot is displayed in Figure 1.2,
together with the best constant approximation (the constant y = 0). The error e = f − p∗0
has 8 di�erent alternating sets consisting of 2 points. Indeed, the Theorem 9 says that
p∗0 = p∗1 = · · · = p∗5 = p∗6 = 0 are best approximations of the indicated degree on [−π, π]
since max | sin(4x)| = 1 and "alternates" 8 times in the interval [−π, π]. But p7 = 0 is not
a best approximation.
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Figure 1.2: The function sin(4x) ∈ [−π, π]

The Theorem 9 enables to settle the property of uniqueness of the Best Polynomial
Approximation (BPA).

Theorem 10. If p∗n is the BPA, then it is unique. That is, if p is another BPA and p 6= p∗n
then

‖f − p‖ > ‖f − p∗n‖ .

Proof. Assume ‖f − p‖ = ‖f − p∗n‖ = En(f) . Then q = p+p∗n
2 is also a BPA, for the

convexity property of linear spaces. Now, let x0, . . . , xn+1 be an alternating set for f − q, so
that for some integer l

f(xj)− p(xj)

2
+

f(xj)− p∗n(xj)

2
= (−1)l+jE∗

n(f), j = 0, ..., n+ 1 . (1.20)

Since
|f(xj)− p(xj)|

2
≤ E∗

n(f)

2
, and

|f(xj)− p∗n(xj)|
2

≤ E∗
n(f)

2
,

then, the identity (1.20) holds only if

f(xj)− p(xj) = f(xj)− p∗n(xj) = (−1)l+jE∗
n(f), j = 0, ..., n+ 1 ,

that implies p(xj) = p∗n(xj), j = 0, . . . , n+ 1, that is p ≡ p∗n �

There are very few functions f for which a BPA can be found explicitly.

Example 5. This example is indeed a Theorem.
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Theorem 11. The function f(x) = xn+1 has BPA p∗n on [−1, 1] s.t.

xn+1 − p∗n =
1

2n
Tn+1(x), E∗

n(x
n+1; [−1, 1]) = 1

2n

where Tk(x) = cos(k arccos(x)), k = 0, . . . , n (Chebyshev polynomial of �rst kind)

In Figure1.3 we provide the plot of the �rst four Chebyshev polynomials T0, . . . , T3.

Figure 1.3: Plot of the �rst Chebyshev polynomials

Hence the above problem is equivalent to �nd the monic polynomial of degree n+ 1 which
deviates least from zero in absolute values on [−1, 1].

The answer to the Theorem 11 is given by this other Theorem.

Theorem 12. The BPA to xn+1 is

T̃n(x) =
1

2n−1
Tn(x) ,

i.e. the normalized Chebyshev polynomial of degree n.
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The previous example shows one of the very important properties of the orthogonal
Chebyshev polynomials. Here we simply summarize some others for completeness.

1. The Chebyshev polynomial satisfy the recurrence

T0(x) = 1, T1(x) = x, (1.21)

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1 .

2. The zeros of Chebyshev polynomials are real, distinct and inside [−1, 1].

3. Chebyshev polynomials form a (stable) basis for Pn(R) (we can express the monomial
xk by a combination of Chebyshev polynomials).

1.1.4 How to �nd the BPA to a function?

This is not always possible! The general procedure works as follows. Consider the
function f to be approximated and a set X of n+2 points x1, . . . , xn+2 (for example equally
spaced or Chebyshev points). Then

(a) Solve the linear system

b0 + b1xi + . . .+ bnx
n
i + (−1)iE = f(xi), i = 1, 2, . . . , n+ 2 ,

for the unknowns bi, i = 1, ..., n+ 1 and E.

Use then the values bi to form the polynomial pn

(b) Find the set Y consisting of local maximum error |pn(x)− f(x)|.

(c) If the errors at every y ∈ Y are equal in magnitude and alternate in sign, then pn = p∗n.
Otherwise, replace X with Y and repeat the steps above.

The success of this procedure depends on two factors.

1. The possibility of �nding a BA on a �nite point set

2. The BA on a �nite point set should provide the BA on the interval as the number of
points increases.

All these things are solved by the so-called Exchange Method (cf. [39, �1.4]), implemented
in the Remez (or Remes) algorithm [38]. An interesting implementation can be found in
the package chebfun, www.chebfun.org [19] and presented in the paper [35]. Chebfun is
an open-source package for computing with functions to 15-digit accuracy. Most Chebfun
commands are overloads of familiar MATLAB commands, for example sum(f) computes an
integral, roots(f) �nds zeros, and u = L f solves a di�erential equation.
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Here the code of the Remez algorithm (as presented in [35]) in the chebfun system

(slightly but only slightly simpli�ed). The input arguments are a chebfun f and the degree
n of the polynomial to be computed and the output arguments are a chebfun p of the best
polynomial approximation to f and the error err.
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%-------------------------------------------------------------------------------------------

function [p,err] = remez(f,n); % compute deg n BA to chebfun f

iter = 1; delta = 1; deltamin = delta;

[a,b] = domain(f);

xk = chebpts(n+2); xo = xk; % initial reference

sigma = (-1).^[0:n+1]'; % alternating signs

normf = norm(f);

while (delta/normf > 1e-14) & iter <= 20

fk = feval(f,xk); % function values

w = bary_weights(xk); % compute barycentric weights

h = (w'*fk)/(w'*sigma); % levelled reference error

if h==0, h = 1e-19; end % perturb error if necessary

pk = fk - h*sigma; % polynomial vals in the

p=chebfun(@(x)bary(x,pk,xk,w),n+1); % reference chebfun of trial

e = f - p; % polynomial chebfun of the

[xk,err] = exchange(xk,e,h,2); % error replace reference

if err/normf > 1e5 % if overshoot, recompute with

[xk,err] = exchange(xo,e,h,1);% one-point exchange

end

xo = xk;

delta = err - abs(h); % stopping value

if delta < deltamin, % store poly with minimal norm

deltamin = delta;

pmin = p; errmin = err;

end

iter = iter + 1;

end

p = pmin; err = errmin;

%----------------------------------------------------------------------------------

We also suggest to look at the documentation at the Chebfun web site

http://www.chebfun.org/examples/approx/BestApprox.html
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Lecture 2

Lebesgue constant

The interpolation error, as stated in Theorem 1, is composed of two parts: the best polyno-
mial approximation error, already discussed in Chapter 1 and the Lebesgue constant. This
second error-part is the content of the present chapter.

2.1 Lebesgue constant

Firstly some notations. Let Xn = {xk = xk,n, k = 0, ..., n , n = 1, 2, ...} a triangular array
of nodes s.t. a ≤ x0 < x1 < · · · < xn ≤ b. We consider the Banach space of continuous
functions in [a, b], C[a, b], equipped with the sup-norm

‖f‖∞ = max
x∈[a,b]

|f(x)| .

Let pn(f ;Xn;x) = pn(f ;x) =
∑n

k=0 lk(x)f(xk) the interpolating polynomial, in Lagrange
form, of f in [a, b] at the point x. Moreover, we consider

λn(x) =

n∑
k=0

|lk(x)| , (2.1)

which is the Lebesgue function, whose maximum value in [a, b] gives the Lebesgue constant,
that we'll indicate by

Λn := max
x∈[a,b]

λn(x) . (2.2)

Remarks.

(i) Consider the operator Ln : C[a, b] −→ Pn(R). This operator is indeed a projection

and Ln(q) = q, ∀q ∈ Pn(R). Then

Λn := sup
g∈C[a,b],g 6=0

‖Ln(g)‖∞
‖g‖∞
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that is, the Lebesgue constant is the sup-norm of Ln.

(ii) A second interpretation of Λn is as stability constant. In fact, let fi = f(xi) and the
corresponding perturbated points f̃i = fi + δi. Letting pn and p̃n the corresponding
interpolating polynomials (at the same interpolation points!). Since

|pn(x)− p̃n(x)| =

∣∣∣∣∣
n∑

k=0

(fi − f̃i)li(x)

∣∣∣∣∣
we get

‖pn − p̃n‖∞ ≤ Λn‖f − f̃‖∞

from which follows a lower bound for the Lebesgue constant

Λn ≥
‖pn − p̃n‖∞
‖f − f̃‖∞

.

��

The importance of the Lebesgue constant is given by the following Theorem

Theorem 13. Let f ∈ C[a, b] and pn ∈ Pn(R) the interpolating polynomial of degree n on
x0, . . . , xn. Then

‖f − pn‖∞ ≤ (1 + Λn) ‖f − p∗n‖∞︸ ︷︷ ︸
E∗

n(f)

. (2.3)

Proof. For all qn ∈ Pn

f − pn = (f − qn)− (pn − qn)︸ ︷︷ ︸
∈Pn

= (f − pn)− Ln(f − qn)

Hence

‖f−pn‖∞ ≤ ‖f−qn‖∞+‖Ln(f−qn)‖∞ ≤ ‖f−qn‖∞+‖Ln‖∞‖f−qn‖∞ ≤ (1+Λn)‖f−qn‖∞ .

To conclude, just take p∗n instead of qn. �

Formula (2.3) shows again that the interpolation error depends on two elements: (a)
the Lebesgue constant Λn, that depends only on the point set Xn and (b) the BPA error,
E∗

n(f), which depends only on f .

In the next subsection we want to understand more about the growth of the Lebesgue
constant for di�erent choices of the points set.
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2.1.1 Properties of the Lebesgue function λn(x)

Here we enumerate some of the most important properties of the Lebesgue function. To
better understand them, we have plotted in Figure 2.1 the Lebesgue functions for two set
of points, equispaced and Chebyshev-Lobatto. The computation have been done with the
following two Matlab functions that we enclose here for completeness.

Given the set x of nodes in the given interval, we then provide a set of target points,
say t, where to evaluate λn. We construct the matrix L = (l0(t), ...., ln(t))

T (this means
that every row is the i-th Lagrange polynomial evaluated at all target points). Then λn =
sum(abs(L), 1), while Λn = norm(L, 1).

function [leb,funLeb]=CostLebesgue(x)

%------------------------------------------------------------

% Input:

% x = ordered vector of interpolation nodes

% Output:

% leb= the value of the Lebesgue constant

% funLeb=Lebesgue function, vector of dimension M

% as the target points

%------------------------------------------------------------

a=x(1); b=x(end); M=1000;

t=linspace(a,b,M)'; % "target" points (column vector)

N=length(x);

for s=1:N

L(s,:)=lagrai_target(x,t,s);

end

leb=norm(L,1);

funLeb=sum(abs(L),1);

end

function l = lagrai_target(z,x,i)

%----------------------------------------------------

% Compute the i-th elem Lagrange polynomial

% on a vector of target points

%----------------------------------------------------

% inputs

% z = interpolation nodes

% x = vector (column!)of targets on which evaluate l_i

% i = index

%

% output

% l = vector of the values of l_i at the targets

%------------------------------------------------

n = length(z); m = length(x);

l = prod(repmat(x,1,n-1)-repmat(z([1:i-1,i+1:n]),m,1),2)/...

prod(z(i)-z([1:i-1,i+1:n]));

return
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Figure 2.1: Plot of the Lebesgue functions for n ≤ 10 for equispaced (left) and Chebyshev-
Lobatto (right) points

From the above graphs now we understand these properties (presented and discussed in
the paper [14]).

(i) for n ≥ 2, λn(x) is a piecewise polynomial s.t. λn ≥ 1 (with λn(xi) = 1). This is a
consequence of the de�nition of λn.

(ii) λn has precisely one local maximum on (xk−1, xk), k = 1, ..., n (denoted by µk)

(iii) λn is monotone: decreasing and convex in (a, x0) and increasing on (xn, b)

(iv) λn(x) = λn(−x), x ∈ [a, b] if and only if xn−k = −xk, k = 0, ..., n.

(v) Let Z = {zk}nk=0 and Y = {yk}nk=0 two set of points such that yk = αzk + β, then
λn(Z; z) = λn(Y ;αz + β).

2.1.2 The Lebesgue constant for speci�c set of points

Following the paper [14], we illustrate a brief history of the bounds of the Lebegsue constant
on di�erent set of points of the interval [a, b].

(A) We start with the set

E = {xk = a+ k
(b− a)

n
, k = 0, ..., n}

of equidistant nodes. In the below Figure 2.4 (left), we show the growth of the
Lebesgue constant for n ≤ 10 equispaced points on [0, 1].
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Runge (1901) observed that the set E is a bad choice for Lagrange interpolation.

Tietze (1917). T. Rivlin in 1994, noticed that the study of the maxima µk(E) of
λn, was already presented in the work by Heinrich and Tietze 1917. In particular they
noticed that Mn(E) = maxk µk(E) := Λn(E). Moreover, Landau in 1913, already
showed that the minimum of these maxima, i.e. mn(E) := mink µk(E), behaves like

Gn ≈ mn(E) ∼ 1

π
log(n) n→∞ .

where Gn is known as Landau constant.

Turetskii (1940) found the following asymototic behavior for the largest maximum

Λn(E) ∼ 2n+1

e n log n
, n→∞ .

Schoenhage (1961) proved

Λn ∼
2n+1

e n (log n+ γ)
, n→∞ (2.4)

with γ = 0.577... corresponding to the Euler constant. Moreover he showed

mn(x) <
2

π
(log(n+ 2) + log(2) + γ) .

Trefethen & Weideman (1991) provided upper and lower bounds for Λn(E)

2n−2

n2
< Λn(E) <

2n+3

n
, n ≥ 1 . (2.5)

Exercise 2. Using the Matlab code above, show the validity of the previous results
by Schoenage (2.4) and the inequalities (2.5).

�

(B) The second set of points we consider is the set

T =

{
xk = − cos

(
(2k − 1)π

2n

)
, k = 1, . . . , n

}
(2.6)

of Chebyshev nodes (which belong to [−1, 1]) which are the roots of Chebyshev poly-
nomials of �rst kind (see their de�nition in (1.21)).

In fact, letting Tn(x) = cos(n arccos(x)), |x| ≤ 1 and the fact that cos
(
(2k + 1)π2

)
= 0

then we get xk = cos
(
(2k − 1)

π

2n

)
.

In the set T we have chosen the − cos in order to get the nodes ordered in ascending
way.
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The Chebsyhev points (of �rst kind) can also be seen as the projection of the equis-
paced points on the half circle, along the diameter, as shown in Figure 2.2.

Remark. In many books, the Chebyshev points (of �rst kind) are indicated as the
points xk = cos

(
kπ
n

)
, k = 0, . . . , n. These are not the Chebyshev points, even if their

behavior, in terms of stability and convergence of polynomial interpolation is the same
of the Chebyshev points. These points are called Chebyshev-Lobatto points which are
related to the Gauss quadrature and correspond to the Chebsyhev extrema (see below).

Figure 2.2: The set T of Chebyshev points for n = 9

In Figure 2.4 (right), we show the growth of the Lebesgue constant for n ≤ 10 Cheb-
syhev points on [−1, 1].
Bernstein (1918) proved that

Λn(T ) ∼
2

π
log(n+ 1), n→∞ .

Natanson (1965) in his monograph, show that for all �nite n

Λn(T ) < 8 +
4

π
log(n+ 1) .

Berman (1963) improved the results by Natanason showing that

Λn(T ) < 4
√
2 +

2

π
log(n+ 1) .

Ivanov & Zadiraka (1966) made a further improvement

Λn(T ) < 2 +
2

π
log(n+ 1) .

Luttmann & Rivlin (1965) provided computational results (after the advent of
computers)

Λn(T ) = λn(T ; 1) ,
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using the fact that λn(T ; 1) =
1

n+ 1

n∑
k=0

cotan

(
2k + 1

4(n+ 1)
π

)
. They then proved

lim
n→∞

[λn(T ; 1)−
2

π
log(n+ 1)] =

2

π
(γ + log

8

π
) := a0 = 0.9625...

Ehlich & Zeller (1966), gave the bounds

a0 +
2

π
log(n+ 1) < Λn(T ) < 1 +

2

π
log(n+ 1), n = 0, 1, ... . (2.7)

Remark. It is worth noticing that the bounds provided in (2.7) hold for the n + 1
Chebyshev points given as

T =

{
xk = − cos

(
(2k + 1)π

2n+ 2

)
, k = 0, 1, . . . , n

}
.

Since we have used the points (2.6) for Matlab reasons, the above bounds hold with n
instead of n+ 1.

(C) The third set of interpolation points are the so-called Extended Chebyshev points de-
�ned as

T̂ =

{
xk =

x
(C)
k

cos( π
2n)

, k = 1, . . . , n

}
(2.8)

where the x
(C)
k are the Chebyshev points set T . They are stretched Chebsyhev points,

so that they include the endpoints of [−1, 1] (cf. Figure 2.3).

Figure 2.3: Chebsyhev and Extended Chebyshev points

It was proved by Brutman [14]

Λn(T̂ ) < Λn(T ) . (2.9)
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In particular

Λn(T̂ ) < 0.7219 +
2

π
log(n+ 1)

establishing
δn(T̂ ) = Mn(T̂ )−mn(T̂ ) < 0.201...∀n = 1, 2, ...

improved as δn(T̂ ) ≤ 0.0196, n ≥ 70 and asymptotically

lim
n→∞

δn(T̂ ) =
2

π
log 2− 3

4π
= 0.01686...

(D) Another set useful for univariate polynomial interpolation on the interval [−1, 1] is the
set of the Chebyshev extrema which correspond to the Chebyshev points in many books
and software. For example, chebfun (cf. [19]), de�ne the Chebyshev points in this
manner.

U = {xk = − cos(kπ/n), k = 0, ..., n} , (2.10)

which provides the following bounds for the Lebesgue constant

Λn(U) =


Λn−1(T ) , for n odd

Λn−1(T )− αn, 0 ≤ αn < 1
n2 , for n even

(2.11)

Figure 2.4: Plot of the Lebesgue constants for n ≤ 9 for equispaced on [-1,1] (left) and
n ≤ 10 for the Chebyshev extrema points U (right)

(E) Other important sets are

(a) The set J of the roots of the Jacobi polynomials of indexes α, β > −1 and
γ = max{α, β}. Asymptotically holds

Λn(J) =


O(nγ+1/2) , γ > −1/2

O(log n) , γ ≤ −1/2
(2.12)
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For instance, the Chebyshev polynomials are Jacobi polynomials with α = β =
−1/2. From (2.12) we see once again that the Lebegsue constant of the Chebyshev
points grows asymptotically as log n.

(b) Fekete points: F. On the interval [−1, 1] they are the roots of (1−x2)P ′
n−1(x)

where Pn is the Legendre polynomial of degree n. Actually they correspond to the
Chebyshev-Lobatto points (or Chebyshev extrema) of the interval (cf. [12, 10]).

Among all the properties of these points, we highlight the most important. Fé-
jer in 1932 [14] proved that the Fekete points are the solution of the following
optimization problem.

Find the nodes X that minimize Φn(X) = max
−1≤x≤1

n∑
k=0

(lk(X;x))2 .

He proved that this set is the set F such that Φn(F ) = 1 so that Λn(F ) ≤
√
n+ 1

(using Schwarz's inequality).

Another way to see the Fekete points, is as the set the maximize the modulus
of the Vandermonde determinant, |V DM(X)|, among all set X of n+ 1 distinct
points of [−1, 1].
Luttmann and Rivlin numerically proved that

i. Λn(F ) < Λn(T ), 3 ≤ n ≤ 40.

ii. the maxima of λn(F ;x) on subinterval between nodes, decrease in [0, 1] and
therefore λn(F ;x) attains its maximum on [−1, 1] at x = 0 for n even and
"near" x = 0 for n odd.

Remark. Both the previous properties are still open problems!

Exercise 3. Write a Matlab code that compute the Fekete points and the Cheby-
shev points, then check the previous two properties of Luttmann and Rivlin.

↪→ Sündermann in 1983, proved that Λn(F ) = O(log n) (that is, they behave
asymptotically like the Chebyshev points on the interval). ←↩

��

(c) Leja sequences

De�nition 3. On [a, b] take the point x1. The point xs ∈ [a, b], s = 2, 3, ..., N
is s.t.

s−1∏
k=1

|xs − xk| = max
x∈[a,b]

s−1∏
k=1

|x− xk| . (2.13)

This set is called a Leja sequence for [a, b].

We will call LN this set.

Remark. Consider the set FN = {f1, ..., fN} of Fekete points. The set FN solve
globally the multimensional optimization problem

max
XN∈[a,b]

|V DM(XN )| .
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Since V DM(XN ) = V DM(XN−1)

N−1∏
i=1

(XN−xi), then to determine the k-th Leja

point, once we have computed x1, ..., xk−1, we have to solve the one dimensional
problem maxx∈[a,b]

∏k−1
i=1 |x− xi|.

Both FN and LN minimize ΛN (X) reducing the size of the Lagrange polynomials.

As a �nal note, we observe that Baglama, Calvetti, Reichel introduced the so-called
Fast Leja Points (cf. [2]). Fast Leja points are obtained by maximization over adaptive
discretization of the interval [a, b]. This method allows to compute m Leja points with
a complexity of roughly 1

2m
2 �ops.

2.1.3 Optimal interpolation points

Consider again the linear operator Ln : C[a, b]→ Pn(R). We have seen that

‖f − Ln(f ;x)‖∞ ≤ (1 + Λn(X))dist(f,Pn(R)) . (2.14)

Question. Is there a set of node X∗
n = X∗ s.t. min

X
Λn(X) = Λn(X

∗) = Λ∗
n ?

We will call X∗ optimal set of nodes or extremal points set.

How to characterize the set X∗ (and Λ∗
n) is one of the most intringuing problem of

(univariate) interpolation.

In 1931, Bernstein conjectured (cf. [14]): "it seems plausible that the greatest of the relative

maxima of λn(X;x) will be minimized if all these maxima will be equal. But he was not able to
prove it.

In other words, if
µ1(X

∗) = µ2(X
∗) = · · · = µn(X

∗) ,

then X∗ is an optimal set of nodes.

Erdos in 1947 proved that there exists a unique canonical X∗ for which holds (canonical
means a = x0 ≤ x1 ≤ · · · ≤ xn = b)

mn(X
∗) = min

i
µi(X) ≤ Λn(X

∗) ≤ max
i

µi(X) = Mn(X) .

This conjecture was proved only in 1978 by Kilgore and by de Boor and Pinkus.

Remark. The set X∗ and the optimal Λn(X
∗) are not known (except for n = 2 and for

n = 3, see http://www.math.u-szeged.hu/∼vajda/Leb/). Brutman in 1978 proved that
the set T̂ (the set of extended Chebyshev points) provides a very good approximation to
X∗, showing

1

2
+

2

π
log(n+ 1) < mn(T̂ ) < Λn(X

∗) < Mn(T̂ ) <
3

4
+

2

π
log(n+ 1) . (2.15)
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That is, the set T̂ is as useful as the optimal nodes.
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Lecture 3

The multivariate case

In the multivariate case the situation is quite complicated and often not clear.

3.1 The Haar-Mairhuber-Curtis theorem

We start our discussion of interpolation on the multivariate setting by polynomials, we need
to introduce the space Pn(Rd), which is the vector space of d-variate polynomials of degree

≤ n, which has dimension N :=

(
n+ d

n

)
.

The Haar-Mairhubert-Curtis theorem, gives its name to three mathematicians that in-
dependently discovered it: Haar in 1901, Mairhuber in 1956 and Curtis in 1959 (cf. [22, Th.
2.4.1] and [29]). We need �rstly a de�nition

De�nition 4. (Haar space)

Let B ⊂ C(Ω) be a �nite dimensional subspace with basis {b1, . . . , bN}. Then, B is a
Haar space on Ω ⊆ Rd if

det(bk(xj)) 6= 0 ,

for any set of distinct points x1, . . . , xN of Ω.

Remarks.

1. The existence of Haar spaces guarantees the invertibility of the matrix A := (bk(xj)).

2. Univariate polynomials of degree ≤ n form a (n+ 1)-dimensional Haar space for data
given at x1, . . . , xn+1.

Theorem 14. (cf. [22, Th. 2.4.1] and [?, Th. 2.3]) Suppose that Ω ⊆ Rd, d ≥ 2
contains an interior point. There exists no Haar space on Ω for dimension d ≥ 2.
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Proof. Suppose d ≥ 2 and B ⊆ Ω is a Haar space with basis {b1, . . . , bN}, N ≥ 2. We show
that this leads to a contradiction. Let x1, . . . , xN be a set of distinct points in Ω ⊆ Rd and A
the matrix as de�ned above. Since B is a Haar space, then det(A) 6= 0. Consider the closed
path between x1 and x2 (as displayed in Figure 3.1). The path exists since the closness of
Ω. If we exchange x1 with x2 (without interfering other points), the corresponding rows in

Figure 3.1: A closed path between two points

A will change and det(A) will change sign. But det :M −→ R is a continuous function.
Then, there exists a point such that det(A) = 0 contradicting the fact that det(A) 6= 0. �

Exercise 4. Write a Matlab program that gives evidence of the HMC Theorem.

3.1.1 Unisolvent set of functions and point sets

We start by the de�nition of unisolvency (for functions) in the univariate case, since in
higher dimension, due to Theorem 14, it is not easy to �nd unisolvent sets.

De�nition 5. A system of N functions, φ1, . . . , φN de�ned on a set S ⊆ R is called
unisolvent on S, if

det(φi(xj)) 6= 0

holds for every selection of N distinct points lying in S.

A unisolvent set of functions is also known as a Chebyshev system.

Another way to see the previous de�nition is that the matrix A = (φi(xj))
n
i,j=1 has

linearly independent columns.

Notice, that the pointwise interpolation can always carry out uniquely with a unisolvent

system. In other words, the set {φ1, . . . , φN} is unisolvent in S if and only if
N∑
i=1

αiφi(x) =

g(x) ≡ 0.

Example 6. These examples are taken from [22, Ch. 2.4].

1. {1, x2} is unisolvent in [0, 1] not in [−1, 1].
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2. {1, x, x2, . . . , xn} is unisolvent over any interval [a, b].

3. Suppose w(x) does not vanish on [a, b]. Then the set {w(x), w(x)x,w(x)x2, . . . , w(x)xn}
is unisolvent in [a, b].

4. {1, sinx, cosx, . . . , sinnx, cosnx} is unisolvent in [−π, π].

5. Let ai distinct on [a, b], then {
1

x+ a1
, . . . ,

1

x+ an

}
is unisolvent in [a, b]. In fact, its determinat known as Cauchy determinant, is

det

(
1

xi + aj

)
=

∏
j<i(xi − xj)(ai − aj)∏n

i,j=1(xi + aj)

We introduce now the de�nition of unisolvent point sets, which is mostly used in higher
dimensions.

De�nition 6. (in Rd)

The set X ⊂ Rd is unisolvent for a space W , if any w ∈W is completely determined by
its values on X.

For example, X is unisolvent for Pd
m (the polynomials of degree ≤ m in Rd), if there

exists a unique polinomial in Pd
m of lowest possibile degree that interpolates the data X.

To better understand we give an example

Example 7. Take N = 7 points in R2. We can not interpolate these points uniquely.
In fact, the polynomials of degree 2 has dimension M2 =

(
2+2
2

)
= 6 (providing an over-

determined system) and the polynomials of degree 3 has dimension M3 =
(
2+3
2

)
= 10

(under-determined system).

A su�cient condition for unisolvence in R2 is the following theorem

Theorem 15. (Chung and Yao 1977 [20])

Suppose {L0, · · · , Lm} are m + 1 distinct lines on R2 and U = {u1, . . . , uN} a set
of distinct points, with N =

(
2+m
2

)
equal to the dimension of the polynomials of degree

m in R2, such that u1 ∈ L0, u2, u3 ∈ L1\L0 and uN−m, . . . , uN ∈ Lm\{L0, . . . , Lm−1}.
Then, there exists a unique polynomial of degree ≤ m that interpolates on U . Moreover, if
X = {x1, ..., xM} and U ⊂ X, then X is m-unisolvent on R2.

Example 8. Here we provide two simple examples.

• 3 collinear points on R2 are not 1-unisolvent.
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Figure 3.2: The Chung-Yao construction for unisolvency in R2 for m = 2 and N = 6.

• m = 2 and N = 6: see Figure 3.2.

From these results and examples, we have understood that also in the multidimensional
setting, the choice of interpolation points is key issue. We want now to present some solutions
to the problem given recently by the CAA-research group between the Universities of Padova
and Verona (to which I belong to) http://www.math.unipd.it/∼marcov/CAA.html.

In the next section we present a �rst solution in the bivariate setting and on the square,
that allowed to introduce the most important set of points known as Padua points, that
we will introduce in the next chapter.

Parts of the next section, are taken from [16].

3.2 Optimal and near-optimal interpolation points

Let Ω ⊂ Rd be compact. We call optimal polynomial interpolation points a set X∗
N ⊂ Ω of

cardinality N , such that the Lebesgue constant

Λn(XN ) = max
x∈Ω

λn(x;XN ), λn(x;XN ) :=
N∑
i=1

|`i(x;XN )| , (3.1)

de�ned for all setsXN = {x1, . . . ,xN} ⊂ Ω which are unisolvent for polynomial interpolation
of degree n, attains its minimum on XN = X∗

N . Here, λn(x;XN ) is the Lebesgue function of
XN , the `i are the fundamental Lagrange polynomials of degree n, and N is the dimension of
the corresponding polynomial space, i.e. N =

(
n+d
d

)
, or N = (n+1)d for the tensor-product
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case (cf. e.g. [4, 12]). To be more precise, the fundamental Lagrange polynomials are de�ned
as the ratio

`i(x;XN ) =
V DM(X

(i)
N )

V DM(XN )
, (3.2)

where V DM denotes the Vandermonde determinants with respect to any given basis of the

corresponding polynomial space, and where X
(i)
N represents the set XN in which x replaces

xi. It comes easy to see that tensor-product Lagrange polynomials are simply the product
of univariate Lagrange polynomials.

As well-known optimal points are not known explicitly, therefore in applications peo-
ple consider near-optimal points, i.e. roughly speaking, points whose Lebesgue constant
increases asymptotically like the optimal one. Moreover, letting En(XN ) = ‖f − Pn‖∞,Ω,
where Pn is the interpolating polynomial of degree ≤ n on XN of a given continuous function
f , and E∗

n = ‖f − P ∗
n‖∞,Ω the best uniform approximation error, then

En(XN ) ≤ (1 + Λn(XN ))E∗
n ,

which represents an estimate for the interpolation error. Thus, near-optimal nodes minimize
also (asymptotically) the interpolation error.

In the one-dimensional case, as well-known, Chebyshev, Fekete, Leja as well as the ze-
ros of Jacobi orthogonal polynomials are near-optimal points for polynomial interpolation,
and their Lebesgue constants increase logarithmically in the dimension N of the correspond-
ing polynomial space (cf. [14, 33]). All these points have asymptotically the arc-cosine
distribution, that is they are asymptotically equidistributed w.r.t. the arc-cosine metric.

Here we will present di�erent set of points that are near-optimal in the sense we have
just clarify.

3.2.1 Tensor-product Chebyshev-Lobatto and Leja points

Here we consider two sets of tensor-product nodes in the square [a, b]× [a, b], i.e. the tensor-
product Chebyshev-Lobatto and tensor-product Leja points, which have the same asymptotic
distribution of the tensor-product Fekete points. Tensor-product Leja points are generated
by using the so-called Fast Leja Points, introduced by Baglama, Calvetti, Reichel in [2].
Fast Leja points are obtained by maximization over adaptive discretization of the interval
[a, b]. This method allows to compute m Leja points with a complexity of roughly 1

2m
2 �ops.

In Fig. 3.3 we compare the growth of Lebesgue constants for tensor-product Chebyshev-
Lobatto points (shortly TPC) and tensor-product fast Leja points (shortly TPL) with the
theoretical bound (1 + 2/π log(n))2 for near-optimal points (tensor-product Chebyshev
points) (cf. [14]). In fact, it is immediate to see that the Lebesgue constant for tensor-
product interpolation points is the square of the univariate constant. In practice, we have
estimated the Lebesgue constants by maximizing the Lebesgue function (cf. (3.1)) on a grid
of 101× 101 equally spaced points on the reference square. In Tables 3.1-3.3 we then show
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the errors of tensor-product interpolation with degrees n = 24, 34, 44, 54, corresponding to
three test functions with di�erent degree of regularity: the well-known Franke function

f1(x1, x2) =
3

4
e−

1
4
((9x1−2)2+(9x2−2)2) +

3

4
e−

1
49

(9x1−2)2− 1
10

(9x2−2)2)

+
1

2
e−

1
4
((9x1−7)2+(9x2−3)2) − 1

5
e−((9x1−4)2+(9x2−7)2)

considered as usual on [0, 1]2, f2(x1, x2) = (x21 + x22)
5/2 and f3(x1, x2) = (x21 + x22)

1/2.
Observe that f2 and f3 are not regular at the origin, in particular f2 is C4 with lipschitzian
fourth partial derivatives and �fth partial derivatives discontinuous at the origin, while f3
is lipschitzian with �rst partial derivatives discontinuous at the origin.

Even if the behavior of TPL Lebesgue constant is worse than that of TPC (see again
Fig. 3.3), in the numerical tests the TPL approximation errors turn out to be closer to TPC
errors than predicted by the ratio of Lebegsue constants (the errors have been computed on
the same uniform control grid used to estimate the Lebesgue constant). Moreover, one can
notice that the approximation performs better when the singularity is located at a corner of
the square, since both TPC and TPL cluster by construction at the sides and especially at
the corners.

Figure 3.3: Lebesgue constants for tensor-product Chebyshev-Lobatto (TPC) and Leja
(TPL) points up to degree 60, compared with the theoretical bound for TPC and with
a least-square �tting for TPL.

N 252 352 452 552

TPC 1.2 10−3 2.3 10−6 1.5 10−9 1.9 10−13

TPL 2.5 10−3 6.4 10−6 8.9 10−9 1.4 10−12

Table 3.1: Tensor-product interpolation errors for the Franke function.
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N 252 352 452 552

TPC on [−1, 1]2 6.0 10−5 8.2 10−6 1.8 10−6 5.4 10−7

TPC on [0, 2]2 8.5 10−9 1.7 10−10 1.4 10−11 1.1 10−11

TPL on [−1, 1]2 8.4 10−5 1.6 10−5 9.4 10−6 8.3 10−7

TPL on [0, 2]2 2.3 10−8 6.3 10−10 1.4 10−11 1.8 10−11

Table 3.2: Tensor-product interpolation errors for the function f2(x1, x2) = (x21 + x22)
5/2.

N 252 352 452 552

TPC on [−1, 1]2 2.1 10−1 1.1 10−1 6.8 10−2 4.6 10−2

TPC on [0, 2]2 2.8 10−3 5.8 10−4 1.1 10−4 8.9 10−5

TPL on [−1, 1]2 5.7 10−1 5.6 10−1 6.2 10−1 1.1 10−1

TPL on [0, 2]2 3.9 10−3 1.2 10−3 5.8 10−5 2.8 10−5

Table 3.3: Tensor-product interpolation errors for the function f3(x1, x2) = (x21 + x22)
1/2.

3.2.2 Dubiner metric and near-optimal interpolation points on [−1, 1]2

Generalized arc-cosine metric

In [27], M. Dubiner proposed a metric which encapsulates the local properties of polyno-
mial spaces on a given multivariate compact set, and in one dimension coincides with the
arc-cosine metric:

µ[−1,1](x, y) := | cos−1(x)− cos−1(y)|, ∀x, y ∈ [−1, 1] .

As an ingredient we need the van der Corput-Schaake inequality [40], valid for a trigono-
metric polynomial T (θ) of degree ≤ m with |T (θ)| ≤ 1

|T ′(θ)| ≤ m
√
1− T 2(θ) (3.3)

from which follows ∣∣∣∣∣ T ′(θ)√
1− T 2(θ)

∣∣∣∣∣ ≤ m (3.4)∣∣∣∣ ddθ cos−1(T (θ))

∣∣∣∣ ≤ m (3.5)

Following [27], it can be proven by means of this inequality that

Proposition 1.

µ[−1,1](x, y) = sup
‖P‖∞,[−1,1]≤1

(degP )−1| cos−1(P (x))− cos−1(P (y))| , (3.6)
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where P varies in P([−1, 1]).

Proof. Let T (θ) = P (cos(θ)) and a = cos(θa), b = cos(θb). Then

| cos−1(T (θa))− cos−1(T (θb))| =
∣∣∣∣∫ θb

θa

d

dθ
cos−1(T (θ))dθ

∣∣∣∣ ≤︸︷︷︸
(3.5)

degP

∫ θb

θa

dθ

But cos−1 a = θa and cos−1 b = θb. Hence, we get

| cos−1(T (θa))− cos−1(T (θb))| ≤ degP | cos−1 a− cos−1 b|

from which follows the claim. �.

By generalizing, we de�ne

µΩ(x,y) = sup
‖P‖∞,Ω≤1

(degP )−1| cos−1(P (x))− cos−1(P (y))| , x,y ∈ Ω ⊂ Rd , (3.7)

where P varies in P(Ω), which is the Dubiner metric on the compact Ω.

In view of the properties of such a metric (cf. [27]), one may state [5] the following

↪→ conjecture: nearly-optimal interpolation points on a compact Ω are asymptotically
equidistributed with respect to the Dubiner metric on Ω. ←↩

This suggests a general way to produce candidates to be good interpolation points, once
we know the Dubiner metric for the compact set Ω. Unfortunately the Dubiner metric is
explicitly known only in very few cases, for d = 2 namely the square and the circle

• Ω = [−1, 1]2, x = (x1, x2), y = (y1, y2):

µΩ(x,y) = max{| cos−1(x1)− cos−1(y1)|, | cos−1(x2)− cos−1(y2)|} .

• Ω = {x : |x| ≤ 1}, x = (x1, x2), y = (y1, y2):

µΩ(x,y) =

∣∣∣∣cos−1

(
x1x2 + y1y2 +

√
1− x21 − y21

√
1− x22 − y22

)∣∣∣∣ .
Quasi-uniform points in the Dubiner metric

We tested the conjecture above on four sets of points on the square which are (asymp-
totically) equidistributed with respect to the Dubiner metric. The �rst one is obtained
numerically using a reasonable de�nition of asymptotic equidistribution in a given metric.
The other three are given by explicit formulas and are exactly equidistributed in the Dubiner
metric.
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Following [25] we can construct a sequence of points which are asymptotically equidis-
tributed in a compact Ω with respect to a given metric ν, by means of the following geometric
greedy algorithm:

• Let Ω be a compact set in Rd, and consider X0 = {x0} where x0 ∈ ∂Ω.

• If Xj ⊂ Ω is �nite and consisting of j points, choose xj+1 ∈ Ω\Xj so that its distance
to Xj is maximal; then, form Xj+1 := Xj ∪ {xj+1}.

In Fig. 3.4 we show the distribution of N = 496 (which correspond to polynomial degree
30) quasi-uniform Dubiner (shortly quD) points on the square, computed by the geometric
greedy algorithm starting from a su�ciently dense random discretization of the square. We
chose a discretization with N3 random points. Why N3? This will become more evident
when we will introduce the so-called WAM (see last Chapter of these lecture notes).

Notice. As distances we used the Dubiner on the square, getting the DUB from the
RND points, or the Euclidean distance, getting the EUC points.

Figure 3.4: Left: 496 (i.e. degree 30) quasi-uniform Dubiner (DUB) points for the square;
Right: Lebesgue constants for DUB points, quasi-uniform Euclidean (EUC) points and
random (RND) points.

The comparison of the Lebesgue constants in Fig. 3.4 shows that the quasi-uniform Du-
biner points are much better for polynomial interpolation than the quasi-uniform Euclidean
(shortly EUC) and the random ones (shortly RND), since the growth of their Lebesgue
constant is polynomial instead of exponential in the degree. However, they are not still
satisfactory since the growth is of order N3/2, which is bigger than the theoretical bound of
the Fekete points, i.e. Λn(FN ) ≤ N .

45



Stefano De Marchi Lectures on multivariate polynomial approximation

The Morrow-Patterson (MP) points

C. R. Morrow and T. N. L. Patterson (cf. [34]), proposed for cubature purposes the following
set of nodes on the square. For n, a positive even integer, consider the points XMP

N =
{(xm, yk)} ⊂ [−1, 1]2 given by

xm = cos

(
mπ

n+ 2

)
, yk =

 cos
(

2kπ
n+3

)
m odd

cos
(
(2k−1)π
n+3

)
m even

(3.8)

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n
2 + 1. It is easily seen that these points are exactly equally

spaced w.r.t. the Dubiner metric, i.e. they have a constant pointwise separation distance,
cf. Section 3.1. This set consists of N =

(
n+2
2

)
points, which is equal to dim(Pn(R2)), and

is unisolvent for polynomial interpolation on the square.

↪→ As for the growth of the Lebesgue constant, in [24] we proved that ΛMP
n = O(n3),

improving a signi�cally the bound ΛMP
n = O(n6) in [5]. From our experiments we obtained

ΛMP
n = O(n2) as can be seen in Fig. 3.6. In particular we found that ΛMP

n can be
least-square �tted with the quadratic polynomial (0.7n + 1)2, which is smaller than N ,
i.e. than the theoretical bound for Fekete points.

Extended Morrow-Patterson (EMP) points

In analogy with the one-dimensional setting [14], we tried to improve the Lebesgue constant
by considering the extended Morrow-Patterson points, which correspond to using extended
Chebyshev nodes in (3.8), i.e. XEMP

N = {(xm, yk)} ⊂ [−1, 1]2 given by

xm =
1

αn
cos

(
mπ

n+ 2

)
, yk =


1
βn

cos
(

2kπ
n+3

)
m odd

1
βn

cos
(
(2k−1)π
n+3

)
m even

(3.9)

1 ≤ m ≤ n+1, 1 ≤ k ≤ n
2 +1, where the dilation coe�cients 1/αn and 1/βn correspond to

αn = cos(π/(n+ 2)) , βn = cos(π/(n+ 3)).

↪→ As the Morrow-Patterson points, the EMP points are exactly equally spaced w.r.t. the
Dubiner metric and are again insolvent for polynomial interpolation of degree n. Indeed,
the Vandermonde matrix of XEMP

N w.r.t. the canonical basis of Pn(R2), is given by the
Vandermonde matrix of the Morrow-Patterson points, where each column is scaled by a
suitable constant. In particular, the column corresponding to the monomial xiyj is mul-
tiplied by α−i

n β−j
n : hence, |V DM(XEMP

N )| is strictly greater than |V DM(XMP
N )|, i.e. it

cannot vanish. Moreover, as clear from Figure 3.6, Λn(X
EMP
N ) < Λn(X

MP
N ).
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Modi�ed Morrow-Patterson points or Padua (PD) points

Here we recall how the Padua points were discovered.

For n a positive even integer consider the points (xm, yk) ∈ [−1, 1]2 given by

xm = cos

(
(m− 1)π

n

)
, yk =

 cos
(
(2k−2)π
n+1

)
m odd

cos
(
(2k−1)π
n+1

)
m even

(3.10)

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n
2 + 1. These are modi�ed Morrow-Patterson points that were

�rstly discussed in Padua by the authors with L. Bos and S. Waldron in 2003, and so we have
decided to call them Padua points (shortly PD points); again, they are exactly equispaced
w.r.t. the Dubiner metric on the square. For a sketch of the distribution of PD points and
for a comparison with MP and EMP at small degree, see Fig. 3.5.

The Padua points were, to our knowledge, the best known nodes for polynomial in-
terpolation on the square. In fact, from our experiments, ΛPD

n = O(log2 n) (see Fig. 3.6
below).

Figure 3.5: Left: Morrow-Patterson (MP), Extended Morrow-Patterson (EMP) and Padua
(PD) points, for degree n = 8. Right: Padua points for degree n = 30.

As a �nal result, in Table 3.4�3.6, we show the interpolation errors (in the sup-norm)
for the three test functions considered. We note that the errors have been computed on the
same uniform control grid used to estimate the Lebesgue constants.

Exercise 5. Write a Matlab toolbox that performs the following tasks

• Determine all families of near-optimal interpolation points on the square presented in
this chapter.

• Determine the corresponding Lebesgue constants

• Compute the interpolation errors
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Figure 3.6: The behaviour of the Lebesgue constants for Morrow-Patterson (MP), Extended
Morrow-Patterson (EMP), Padua (PD) points up to degree 60, and their least-squares �tting
curves.

n = 34 Λ34 n = 48 Λ48 n = 62 Λ62 n = 76 Λ76

MP 1.3 10−3 649 2.6 10−6 1264 1.1 10−9 2082 2.0 10−13 3102
EMP 6.3 10−4 237 1.3 10−6 456 5.0 10−10 746 5.4 10−14 1106
PD 4.3 10−5 11 3.3 10−8 13 5.4 10−12 14 1.9 10−14 15

Table 3.4: Interpolation errors for the Franke function.

n 34 48 62 76

MP on [−1, 1]2 1.8 10−4 5.1 10−5 1.9 10−5 8.8 10−6

MP on [0, 2]2 1.0 10−8 3.8 10−10 3.7 10−11 2.3 10−11

EMP on [−1, 1]2 6.5 10−5 1.8 10−5 6.7 10−6 3.0 10−6

EMP on [0, 2]2 7.2 10−9 2.6 10−10 2.4 10−11 8.6 10−12

PD on [−1, 1]2 3.6 10−6 6.5 10−7 1.8 10−7 6.5 10−8

PD on [0, 2]2 2.8 10−9 9.3 10−11 9.4 10−12 6.4 10−12

Table 3.5: Interpolation errors for the function f2(x1, x2) = (x21 + x22)
5/2.
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n 34 48 62 76

MP on [−1, 1]2 4.4 10−1 4.4 10−1 4.4 10−1 4.4 10−1

MP on [0, 2]2 8.8 10−4 2.8 10−4 2.6 10−4 1.7 10−5

EMP on [−1, 1]2 1.4 10−1 1.4 10−1 1.4 10−1 1.4 10−1

EMP on [0, 2]2 8.3 10−4 2.6 10−4 2.1 10−4 2.1 10−5

PD on [−1, 1]2 3.7 10−2 2.7 10−2 2.1 10−2 1.7 10−2

PD on [0, 2]2 7.3 10−4 3.7 10−4 7.0 10−6 4.6 10−6

Table 3.6: Interpolation errors for the function f3(x1, x2) = (x21 + x22)
1/2.

49



Stefano De Marchi Lectures on multivariate polynomial approximation

50



Lecture 4

The Padua points

It is impossible to discuss all the aspects and discoverings done on the Padua points. For
completeness, the interested readers, can refer to the link

http://www.math.unipd.it/∼marcov/CAApadua.html

which contains an up-to-date bibliography (papers, preprints, presentations and software),
concerning this important family of interpolation points.

The points are also indexed in Wikipedia

https://en.wikipedia.org/wiki/Padua_points.

4.1 The generating curve of the Padua points

We provide here a slightly di�erent de�nition of Padua points.

Let start by taking the n+ 1 Chebyshev�Lobatto points on [−1, 1]

Cn+1 :=

{
znj = cos

(
(j − 1)π

n

)
, j = 1, . . . , n+ 1

}
.

We then consider two subsets of points with odd and even indices

Co
n+1 :=

{
znj , j = 1, . . . , n+ 1, j odd

}
Ce
n+1 :=

{
znj , j = 1, . . . , n+ 1, j even

}
Then, the Padua points (of the �rst family) are the set

Padn :=
(
Co
n+1 × Co

n+2

)
∪
(
Ce
n+1 × Ce

n+2

)
⊂ Cn+1 × Cn+2 . (4.1)

These points have cardinality of the space of bivariate polynomials of degree ≤ n, i.e.
N = (n+ 1)(n+ 2)/2.
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For a given n ≥ 1, consider the parametric curve

γn(t) = (cosnt, cos(n+ 1)t), 0 ≤ t ≤ π . (4.2)

This curve is obviously all contained in the square [−1, 1]2 (the curve is made by cosines).
The curve is also an algebraic curve given by Tn+1(x) = Tn(y) where Tn denotes the Cheby-
shev polynomial of the �rst kind of degree n. In Figure 4.1 we plot the Padua points and
the corresponding parametric curve. It is also a Lissajous curve. Indeed, all Lissajous
curves are algebraic curves and implicit equations of Lissajous curves can be expressed by
Chebyshev polynomials. On the other hand, Chebyshev polynomials are Lissajous curves.
In fact a parametrization of y = Tn(x), |x| ≤ 1 is{

x = cos t
y = − sin

(
nt− π

2

)
0 ≤ t ≤ π

Figure 4.1: Padua points and their generating curve for n = 4. The grids of odd and even
indices are indicated with di�erent colours and style.

On γn(t) we consider the equally spaced points

An =

{
γn

(
k

n(n+ 1)
π

)
: k = 0, 1, . . . , n(n+ 1)

}
.

Remark. As an example, consider A5. It has 30 + 1 = 31 points, but only 21 =
dim(P5(R

2)) are different points.

Notice that each of the interior points lies on a self-intersection point of the curve.
Indeed, it is easy to see that

γn

(
jn+m(n+ 1)

n(n+ 1)
π

)
= γn

(
jn−m(n+ 1)

n(n+ 1)
π

)
for any integers j,m. Hence we may naturally describe the set of distinct points An as

An =

{
Ajm := γn

(
jn+m(n+ 1)

n(n+ 1)
π

)
: j,m ≥ 0 and j +m ≤ n

}
. (4.3)
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More speci�cally, we may classify the points of An by

Interior Points:

Ajm = γn

(
jn+m(n+ 1)

n(n+ 1)
π

)
=

(
(−1)m cos

(
jn

n+ 1
π

)
, (−1)j cos

(
m(n+ 1)

n
π

))
,

j,m > 0 and j +m ≤ n.

Vertex Points: A00 = (1, 1) and A0,n = ((−1)n, (−1)(n+1)).

Vertical Edge Points: A0m =

(
(−1)m, cos

(
m(n+ 1)

n
π

))
, m = 1, 2, · · · , n.

Horizontal Edge Points: Aj0 =

(
cos

(
jn

n+ 1
π

)
, (−1)j

)
, j = 1, 2, · · · , n.

It follows then that the number of distinct points in An is indeed

(
n+ 2

2

)
and An =

Padn.

4.1.1 Reproducing kernel in Hilbert spaces

We provide here the basic tools on RKHS used to prove some results in many multivariate
interpolation problems, polynomial or not. We have used these concepts also for proving
some results for Padua points.

De�nition 7. Let H be a real Hilbert space with inner product (·, ·)H. A function K :
Ω×Ω −→ R, Ω ⊆ Rd, is called a reproducing kernel for H if the following two properties
hold:

(i) K(·, x) ∈ H, ∀x ∈ Ω

(ii) f(x) = (f,K(·, x))H, ∀ f ∈ H and all x ∈ Ω

Remark: property (ii) is known as the reproduction property.

The existence of a RK is equivalent to the fact that the point evaluation functionals δx
on Ω are bounded. That is, there exists a positive constant M = Mx s.t.

|δxf | = |f(x)| ≤M‖f‖H, ∀f ∈ H, x ∈ Ω ,

where the inequality is due to the Riesz representation in Hilbert spaces.

Moreover, a reproduction kernel, if exists, is unique.

The main properties of a RKHS are
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1. K(x, y) = (K(·, y),K(·, x))H, ∀x, y ∈ Ω.

2. K(x, y) = K(y, x), ∀x, y ∈ Ω.

3. Convergence in Hilbert space norm implies pointwise convergence, i.e. if ‖f−fn‖H → 0
then |f(x)− fn(x)| → 0 for all x ∈ Ω.

4. A RKHS is positive de�nite.

Proof.

1. By (i) of the De�nition 7,K(·, y) ∈ H, ∀y ∈ Ω. Then (ii) givesK(x, y) = (K(·, y),K(·, x))H, ∀x, y ∈
Ω.

2. Follows from 1. by the symmetry of the inner product.

3. Using the reproduction property of K and the Cauchy-Schwarz inequality

|f(x)− fn(x)| = |(f − fn,K(·, x))H| ≤ ‖f − fn‖H‖K(·, x)‖H .

4. In fact, for given {x1, ...,xN} points of Rd and a non-zero vector c ∈ RN , we have

N∑
j=1

N∑
k=1

cjckK(xj ,xk) =

N∑
j=1

N∑
k=1

cjck(K(·,xj),K(·,xk))H

=

∑
j

cjK(·,xj),
∑
k

ckK(·,xk)


H

=

∥∥∥∥∥∥
∑
j

cjK(·,xj)

∥∥∥∥∥∥
2

H

≥ 0 .

4.2 The basic Lagrange polynomials and Lebesgue constant

Going back to the Padua points. The next step is a closed form for the basic Lagrange
polynomials with the aim to �nd an upper bound for the Lebesgue constant. The results in
this section can be found in [9].

Consider the weighted integral

I(f) :=
1

π2

∫
[−1,1]2

f(x, y)
1√

1− x2
1√

1− y2
dxdy

and the associated inner product

(f, g) :=
1

π2

∫
[−1,1]2

f(x, y)g(x, y)
1√

1− x2
1√

1− y2
dxdy. (4.4)
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Note that the polynomials {Tj(x)Tm(y) : j + m ≤ n} form an orthogonal basis for
Pn(R2) with respect to this inner product. Further, the �nite dimensional space Pn(R2)
has a reproducing kernel with respect to this inner product, which we denote by Kn(·; ·).
Speci�cally, for each A,B ∈ [−1, 1]2, Kn(A; ·) ∈ Pn(R2), Kn(·;B) ∈ Pn(R2) and

(p,Kn(A; ·)) = p(A)

for all p ∈ Pn(R2).

We will show that there is a remarkable quadrature formula for I(f) based on the Padua
points (Theorem 16 below).

Lemma 1. For all p ∈ P2n(R2) we have

1

π2

∫
[−1,1]2

p(x, y)
1√

1− x2
1√

1− y2
dxdy =

1

π

∫ π

0
p(γn(t))dt.

Proof. We need only show that this holds for

p(x, y) = Tj(x)Tm(y), j +m ≤ 2n.

But, when j = m = 0, p(x, y) = 1, and clearly both sides are equal to 1. Otherwise, if
(j,m) 6= (0, 0), the left side equals 0 while the right side equals

1

π

∫ π

0
Tj(cos(nt))Tm(cos((n+ 1)t))dt =

1

π

∫ π

0
cos(jnt) cos(m(n+ 1)t)dt

= 0

provided jn 6= m(n+ 1). But since n and n+ 1 are relatively prime, jn = m(n+ 1) implies
that j = α(n+1) andm = αn for some positive integer α. Hence j+m = α(n+(n+1)) > 2n.
�

Theorem 16. Consider the following weights associated to the Padua points A ∈ An:

wA :=
1

n(n+ 1)


1/2 if A ∈ An is a vertex point
1 if A ∈ An is an edge point
2 if A ∈ An is an interior point

.

Then, if p(x, y) ∈ P2n(R2) is such that (p(x, y), T2n(y)) = 0, we have

1

π2

∫
[−1,1]2

p(x, y)
1√

1− x2
1√

1− y2
dxdy =

∑
A∈An

wAp(A).

In particular, since T2n(y) = 2(Tn(y))
2 − 1, this quadrature formula holds for p = fg with

f, g ∈ Pn(R2) and either (f(x, y), Tn(y)) = 0 or (g(x, y), Tn(y)) = 0.

For A ∈ An we will let yA denote the y-coordinate of A.
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Theorem 17. (The basic Lagrange polynomials)

For B ∈ An, set

LB(x, y) := wB[Kn(B; (x, y))− Tn(y)Tn(yB)], B ∈ An. (4.5)

Then we have the interpolation formula∑
B∈An

LB(A)p(B) = p(A), ∀p ∈ Πn(R2), ∀A ∈ An. (4.6)

The proof is again in [9].

The polynomials LB are indeed the fundamental Lagrange polynomials, i.e., they satisfy

LB(A) = δA,B, A,B ∈ An. (4.7)

This can be easily veri�ed using the following compact formula for the reproducing kernel
Kn proved in [49].

Lemma 2. (cf. [9])

For A,B ∈ [−1, 1]2 write A = (cos(θ1), cos(θ2)), B = (cos(φ1), cos(φ2)). Then

Kn(A;B) = Dn(θ1 + φ1, θ2 + φ2) +Dn(θ1 + φ1, θ2 − φ2)

+ Dn(θ1 − φ1, θ2 + φ2) +Dn(θ1 − φ1, θ2 − φ2)

where

Dn(α, β) =
1

2

cos((n+ 1/2)α) cos(α/2)− cos((n+ 1/2)β) cos(β/2)

cos(α)− cos(β)
. (4.8)

Remark. Notice that the computation of Dn in (4.8) is very unstable when cosα ≈
cosβ being like a �rst divided di�erence, and thus has to be stabilized. A stable formula to
compute Dn can be obtained by simple trigonometric manipulations leading to a formula
in terms of Chebyshev polynomials of second kind, as done in [6, �2] for interpolation at Xu
points.

Finally we have the required bound

Theorem 18. (cf. [9])

There is a constant C > 0 such that the Lebesgue function is bounded,

Λn(x, y) ≤ C(log n)2, n ≥ 2, (x, y) ∈ [−1, 1]2.

The proof of this Theorem has been omitted.
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4.3 Fast interpolation and cubature at the Padua points

In this section we show fast algorithms to compute and evaluate the interpolant and the
evaluation of integrals at the Padua points. The implementation of these tasks has been
done in Matlab/Octave. The software Padua2DM is available at the CAA-research group web
page http://www.math.unipd.it/∼marcov/CAAsoft.html.

The results of this section are mainly taken from the paper [18].

4.3.1 Interpolation

In what follows, x = (x1, x2) ∈ [−1, 1]2 is a target point and ξ = (ξ1, ξ2) ∈ Padn ⊂ [−1, 1]2
is an element of the set of the Padua points of order n.

The polynomial interpolation formula can be written in the bivariate Chebyshev or-
thonormal basis as

Lnf(x) =
∑

ξ∈Padn

f(ξ)wξ

(
Kn(ξ,x)−

1

2
T̂n(ξ1)T̂n(x1)

)

=

n∑
k=0

k∑
j=0

cj,k−j T̂j(x1)T̂k−j(x2)−
1

2

∑
ξ∈Padn

f(ξ)wξT̂n(ξ1)T̂0(ξ2)T̂n(x1)T̂0(x2)

=

n∑
k=0

k∑
j=0

cj,k−j T̂j(x1)T̂k−j(x2)−
cn,0
2

T̂n(x1)T̂0(x2) (4.9)

where the coe�cients are de�ned as

cj,k−j =
∑

ξ∈Padn

f(ξ)wξT̂j(ξ1)T̂k−j(ξ2), 0 ≤ j ≤ k ≤ n (4.10)

and can be computed once and for all.

The MM algorithm

We can de�ne the (n+ 1)× (n+ 2) matrix computed corresponding to the Chebyshev-like
grid Cn+1 × Cn+2 with entries

G(f) = (gr,s) =

{
wξf(ξ) if ξ = (znr , z

n+1
s ) ∈ Padn

0 if ξ = (znr , z
n+1
s ) ∈ (Cn+1 × Cn+2) \ Padn

In [17] we have computed the coe�cients (4.10) by a double matrix-matrix product involving
the matrix G(f). The construction was as follows.
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Given a vector S = (s1, . . . , sm) ∈ [−1, 1]m, �rst we de�ne the rectangular Chebyshev
matrix

T(S) =

T̂0(s1) · · · T̂0(sm)
... · · ·

...

T̂n(s1) · · · T̂n(sm)

 ∈ R(n+1)×m (4.11)

Then it is easy to check that the coe�cients cj,l, 0 ≤ j ≤ n, 0 ≤ l ≤ n− j are the entries of
the upper-left triangular part of the matrix

C(f) = T(Cn+1)G(f) (T(Cn+2))
t (4.12)

where, with a little abuse of notation, Cn+1 = (zn1 , . . . , z
n
n+1) is the vector of the Chebyshev�

Gauss�Lobatto points, too.

↪→ A slightly more re�ned algorithm can be obtained, by exploiting the fact that the
Padua points are union of two Chebyshev subgrids.

Indeed, de�ning the two matrices

G1(f) =
(
wξf(ξ) , ξ = (znr , z

n+1
s ) ∈ CE

n+1 × CO
n+2

)
G2(f) =

(
wξf(ξ) , ξ = (znr , z

n+1
s ) ∈ CO

n+1 × CE
n+2

)
then we can compute the coe�cient matrix as

C(f) = T(CE
n+1)G1(f) (T(CO

n+2))
t + T(CO

n+1)G2(f) (T(CE
n+2))

t (4.13)

by multiplying matrices of smaller dimension than those in (4.12). In fact, in (4.13), the T
matrices have dimensions n× n

2 and the matrices G1, G2 about n
2 ×

n
2 .

We term this approach MM (Matrix Multiplication) in the numerical tests.

The FFT-based algorithm

The spectral structure of the Padua points allows to use a FFT-approach. Indeed, the
coe�cients cj,l can be rewritten as

cj,l =
∑

ξ∈Padn

f(ξ)wξT̂j(ξ1)T̂l(ξ2) =
n∑

r=0

n+1∑
s=0

gr,sT̂j(z
n
r )T̂l(z

n+1
s )

= βj,l

n∑
r=0

n+1∑
s=0

gr,s cos
jrπ

n
cos

lsπ

n+ 1
= βj,l

M−1∑
s=0

(
N−1∑
r=0

g0r,s cos
2jrπ

N

)
cos

2lsπ

M

where N = 2n, M = 2(n+ 1) and

βj,l =


1 j = l = 0

2 j 6= 0, l 6= 0
√
2 otherwise

g0r,s =

{
gr,s 0 ≤ r ≤ n and 0 ≤ s ≤ n+ 1

0 r > n or s > n+ 1
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Input: Gf↔ G(f)

Gfhat = real(fft(Gf,2*n));

Gfhat = Gfhat(1:n+1,:);

Gfhathat = real(fft(Gfhat,2*(n+1),2));

C0f = Gfhathat(:,1:n+1);

C0f = 2*C0f;

C0f(1,:) = C0f(1,:)/sqrt(2);

C0f(:,1) = C0f(:,1)/sqrt(2);

C0f = fliplr(triu(fliplr(C0f)));

C0f(n+1,1) = C0f(n+1,1)/2;

Output: C0f↔ C0(f)

Table 4.1: Matlab code for the fast computation of the coe�cient matrix.

Then, it is possible to recover the coe�cients cj,l by a double Discrete Fourier Transform,
namely

ĝj,s = REAL

(
N−1∑
r=0

g0r,se
−2πijr/N

)
, 0 ≤ j ≤ n, 0 ≤ s ≤M − 1

cj,l
βj,l

= ˆ̂gj,l = REAL

(
M−1∑
s=0

ĝj,se
−2πils/M

)
, 0 ≤ j ≤ n, 0 ≤ l ≤ n− j

(4.14)

we call C0(f) the interpolation coe�cients matrix

C0(f) = (c′j,l) =


c0,0 c0,1 · · · · · · c0,n
c1,0 c1,1 · · · c1,n−1 0
...

...
...

cn−1,0 cn−1,1 0 · · · 0
cn,0
2

0 · · · 0 0

 ∈ R(n+1)×(n+1) (4.15)

which is essentially the upper-left triangular part of the matrix C(f) in (4.12), but the
modi�cation on the last element of the �rst column. The Matlab code for the computation
of the coe�cient matrix by a double Fast Fourier Transform is reported in Table 4.1. We
just notice that all the indexes starting from 0 are shifted by 1 (as required in Matlab).

Remark. The complexity c(n) of the presented methods are as follows: c(n) ∼ 2n3 for
the MM-algorithm, c(n) ∼ O(n2 log n) for the FFT-algorithm.

Evaluation of the interpolant

As we have seen, we �rstly compute C0(f) once and for all, then the interpolant of a
function f , at every point x = (x1, x2) ∈ [−1, 1]2 can be evaluated by the matrix product

Lnf(x) = (T(x1))t C0(f) T(x2) .
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It is also possible to evaluate the polynomial interpolation formula on a set X of target
points, at the same time. Given the vector X1 of the �rst components of a set of target
points and the vector X2 of the corresponding second components, then

Lnf(X) = diag
(
(T(X1))

tC0(f)T(X2)
)

(4.16)

The result Lnf(X) is a (column) vector containing the evaluation of the interpolation poly-
nomial at the corresponding target points.

If the target points are a Cartesian grid X = X1 × X2, then it is possible to evaluate
the polynomial interpolation in a more compact form

Lnf(X) =
(
(T(X1))

tC0(f)T(X2)
)t

(4.17)

The result Lnf(X) is a matrix whose i-th row and j-th column contains the evaluation of
the interpolation polynomial at the point with �rst component the j-th element in X1 and
second component the i-th element in X2.

4.3.2 Cubature

The cubature at the PD points is a nontensorial Clenshaw-Curtis (CC) cubature formula.
In order to understand, we recall what is the one-dimensional CC cubature formula.

∫ 1

−1
f(x)dx =︸︷︷︸

x=cos θ

∫ π

0
f(cos θ) sin θdθ ,

and this can be performed if we compute the cosine series

f(cos θ) =
a0
2

+
∞∑
k=1

ak cos(kθ)

with

ak =
2

π

∫ π

0
f(cos θ) cos(kθ)dθ . (4.18)

Then, ∫ π

0
f(cos θ) sin(θ)dθ = a0 +

∞∑
k=1

2a2k
1− (2k)2

instead of (4.18) we use the Discrete Cosine Transform

ak ≈
2

N

(
f(1)

2
+

f(−1)
2

(−1)k +
N−1∑
k=1

f

(
cos

kπ

N

)
cos

(
ksπ

N

))
, s = 0, ..., N .
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Input: C0f↔ C0(f)

k = [0:2:n];

mom = 2*sqrt(2)./(1-k.^2);

mom(1) = 2;

[M1,M2] = meshgrid(mom);

M = M1.*M2;

C0fM = C0f(1:2:n+1,1:2:n+1).*M;

Int = sum(sum(C0fM));

Output: Int↔ In(f)

Table 4.2: Matlab code for the evaluation of the cubature formula by moments.

Formula for the moments

We then can write∫
[−1,1]2

f(x)dx ≈ In(f) =

∫
[−1,1]2

Lnf(x)dx =
n∑

k=0

k∑
j=0

c′j,k−j mj,k−j

=

n∑
j=0

n∑
l=0

c′j,l mj,l =

n∑
j even

n∑
l even

c′j,l mj,l (4.19)

where the moments mj,l are

mj,l =

(∫ 1

−1
T̂j(t)dt

) (∫ 1

−1
T̂l(t)dt

)
We have ∫ 1

−1
T̂j(t)dt =


2 j = 0

0 j odd

2
√
2

1− j2
j even

and then, the cubature formula (4.19) can be evaluated by the Matlab code reported in
Table 4.2, where we have used the fact that only the (even,even) pairs of indexes are active
in the summation process.

Formula for the weights

On the other hand, it is often desiderable to have a cubature formula that involves only
the function values at the nodes and the corresponding cubature weights. Again, a simple
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matrix formulation is available, using the fact that the Padua points are the union of two
subgrids of product Chebyshev points. First, observe that

In(f) =
n∑

j even

n∑
l even

c′j,l mj,l =
n∑

j even

n∑
l even

cj,l m
′
j,l

with

M0 = (m′
j,l) =


m0,0 m0,2 · · · · · · m0,pn

m2,0 m2,2 · · · m2,pn−2 0
...

...
...

mpn−2,0 mpn−2,2 0 · · · 0
m′

pn,0 0 · · · 0 0

 ∈ R([n
2
]+1)×([n

2
]+1)

where pn = n and m′
pn,0 = mpn,0/2 for n even, pn = n− 1 and m′

pn,0 = mpn,0 for n odd.

Now, using the formula for the coe�cients (4.10) we can write

In(f) =
∑

ξ∈Padn

λξ f(ξ)

=
∑

ξ∈CE
n+1×CO

n+2

λξ f(ξ) +
∑

ξ∈CO
n+1×CE

n+2

λξ f(ξ)

where

λξ = wξ

n∑
j even

n∑
l even

m′
j,l T̂j(ξ1)T̂l(ξ2) (4.20)

De�ning the Chebyshev matrix corresponding to even degrees (cf. (4.11))

TE(S) =


T̂0(s1) · · · T̂0(sm)

T̂2(s1) · · · T̂2(sm)
... · · ·

...

T̂pn(s1) · · · T̂pn(sm)

 ∈ R([n
2
]+1)×m

and the matrices of interpolation weights on the subgrids of Padua points,

W1 =
(
wξ, ξ ∈ CE

n+1 × CO
n+2

)t
,

W2 =
(
wξ, ξ ∈ CO

n+1 × CE
n+2

)t
,

it is then easy to show that the cubature weights {λξ} can be computed in the matrix form

L1 =
(
λξ, ξ ∈ CE

n+1 × CO
n+2

)t
= W1.

(
TE(CE

n+1))
tM0TE(CO

n+2)
)t
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Input: W1↔
(
wξ, ξ ∈ CE

n+1 × CO
n+2

)t
, W2↔

(
wξ, ξ ∈ CO

n+1 × CE
n+2

)t
argn1 = linspace(0,pi,n+1);

argn2 = linspace(0,pi,n+2);

k = [0:2:n]';

l = (n-mod(n,2))/2+1;

TE1 = cos(k*argn1(1:2:n+1));

TE1(2:l,:) = TE1(2:l,:)*sqrt(2);

TO1 = cos(k*argn1(2:2:n+1));

TO1(2:l,:) = TO1(2:l,:)*sqrt(2);

TE2 = cos(k*argn2(1:2:n+2));

TE2(2:l,:) = TE2(2:l,:)*sqrt(2);

TO2 = cos(k*argn2(2:2:n+2));

TO2(2:l,:) = TO2(2:l,:)*sqrt(2);

mom = 2*sqrt(2)./(1-k.^2);

mom(1) = 2;

[M1,M2] = meshgrid(mom);

M = M1.*M2;

M0 = fliplr(triu(fliplr(M)));

if (mod(n,2) == 0)

M0(n/2+1,1) = M0(n/2+1,1)/2;

end

L1 = W1.*(TE1'*M0*TO2)';

L2 = W2.*(TO1'*M0*TE2)';

Output: L1↔
(
λξ, ξ ∈ CE

n+1 × CO
n+2

)t
, L2↔

(
λξ, ξ ∈ CO

n+1 × CE
n+2

)t
Table 4.3: Matlab code for the computation of the cubature weights.

L2 =
(
λξ, ξ ∈ CO

n+1 × CE
n+2

)t
= W2.

(
TE(CO

n+1))
tM0TE(CE

n+2)
)t

where the dot means that the �nal product is made componentwise. The corresponding
Matlab code is reported in Table 4.3. The de�nition of the weights matrices Li, i = 1, 2,
makes use of transposes in order to be compatible with the Matlab meshgrid-like structure
of the matrices Wi (see also (4.17)).

Remark. We can use a FFT-based implementation in analogy with the univariate
CC-quadrature.

It is worth recalling that the cubature weights are not all positive, but the negative ones
are few and of small size. Indeed, the cubature formula is stable and convergent for every
continuous integrand, since

lim
n→∞

∑
ξ∈Padn

|λξ| = 4

as it has been proved in [44].
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4.3.3 Some numerical experiments

Here we present the CPU times for the computation of the interpolation coe�cients and
the cubature weights. We did these experiments on a Laptop with Intel Core2 Duo 2.2GHz
processor. The code we have run is the Matlab implementation. We note that using Octave
3.2.3 (the available version at that time, we obtained similar results.

n 20 40 60 80 100 300 500 1000

FFT 0.001 0.001 0.001 0.002 0.003 0.034 0.115 0.387
MM 0.002 0.003 0.003 0.003 0.008 0.101 0.298 1.353

Table 4.4: CPU time (in seconds) for the computation of the interpolation coe�cients at a
sequence of degrees (average of 10 runs).

n 20 40 60 80 100 300 500 1000

FFT 0.001 0.001 0.002 0.002 0.004 0.028 0.111 0.389
MM 0.001 0.001 0.001 0.002 0.003 0.027 0.092 0.554

Table 4.5: CPU time (in seconds) for the computation of the cubature weights at a sequence
of degrees (average of 10 runs).

Exercise 6. We invite the readers to write a code that implement the interpolant and the
cubature at the Padua points. Then, try to reproduce similar CPU results as obtained in
Tables 4.4 and 4.5, as well as the relative cubature errors displayed in Figure 4.2.
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Figure 4.2: Relative cubature errors versus the number of cubature points (CC = Clenshaw-
Curtis, GLL = Gauss-Legendre-Lobatto, OS = Omelyan-Solovyan) for the Gaussian f(x) =
exp (−|x|2) (above) and the C2 function f(x) = |x|3 (below); the integration domain is
[−1, 1]2, the integrals up to machine precision are, respectively: 2.230985141404135 and
2.508723139534059.
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Lecture 5

Weakly Admissible Meshes

In this last lecture we discuss another very important problem connected to polynomial
interpolation on subsets K ⊆ Rd, d > 1.

We start by recalling some properties of Fekete points that will be one of the reason
why we are interested to the construction of suitable discretizations of K. Fekete points
have been studied so far mainly in the univariate (complex) case. The only instance where
they are analytically known are the following ones-

• On the interval [−1, 1] they are the n + 1 Gauss-Lobatto points (indeed they are
the zeros of (1 − x2)P ′

n(x) with Pn the Legendre polynomial of degree n). Moreover,
Λn = O(log n)

• On the complex circle they are 2n+ 1 equispaced points and Λn = O(log n).

• On the cube [−1, 1]d they coincide with the tensor product of Gauss-Lobatto points
with Λn = O(logd n).

In general, as we already observed in �1.1.6, the computation of Fekete points becomes
rapidly a very large scale problem namely a nonlinear optimization problem inN×d variables
(N = dim(Pd

n(K)). From the computational point of view, recently there were done some
hard computation obtaining true Fekete points for small n. Two important examples are

• the triangle where they have been compututed for n ≤ 19 (cf. [46]);

• the sphere where they have been computed for n ≤ 191 (cf. [45]).

From these examples, it comes clear that we can eventually solve the problem by a
suitable discretiziation of the domain (on which we want to solve the optimization problem).

The question to which we try to answer is this chapter is
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Which is the "best" discretization of K from which we can extract good interpolation
points?

5.1 Weakly Admissible Meshes

This section is partially taken from [10].

Given a polynomial determining compact set K ⊂ Rd or K ⊂ Cd (i.e., polynomials
vanishing there are identically zero), a Weakly Admissible Mesh (WAM) is de�ned in [15]
to be a sequence of discrete subsets An ⊂ K such that

‖p‖K ≤ C(An)‖p‖An , ∀p ∈ Pd
n(K) (5.1)

where both card(An) ≥ N and C(An) grow at most polynomially with n. When C(An)
is bounded we speak of an Admissible Mesh (AM). Here and below, we use the notation
‖f‖X = supx∈X |f(x)|, where f is a bounded function on the compact X.

We sketch below the main features of WAMs in terms of ten properties (cf. [7, 15]):

P1: C(An) is invariant under a�ne mapping
P2: any sequence of unisolvent interpolation sets whose Lebesgue constant grows at most
polynomially with n is a WAM, C(An) being the Lebesgue constant itself
P3: any sequence of supersets of a WAM whose cardinalities grow polynomially with n is a
WAM with the same constant C(An)
P4: a �nite union of WAMs is a WAM for the corresponding union of compacts, C(An)
being the maximum of the corresponding constants
P5: a �nite cartesian product of WAMs is a WAM for the corresponding product of com-
pacts, C(An) being the product of the corresponding constants
P6: in Cd a WAM of the boundary ∂K is a WAM of K (by the maximum principle)
P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM for πs(K) with
constants C(Ans) (cf. [7, Prop.2])
P8: any K satisfying a Markov polynomial inequality like ‖∇p‖K ≤Mnr‖p‖K has an AM
with O(nrd) points (cf. [15, Thm.5])
P9: least-squares polynomial approximation of f ∈ C(K): the least-squares polynomial
LAnf on a WAM is such that

‖f − LAnf‖K / C(An)
√
card(An) min {‖f − p‖K , p ∈ Pd

n(K)}

(cf. [15, Thm.1])
P10: Fekete points: the Lebesgue constant of Fekete points extracted from a WAM can
be bounded like Λn ≤ NC(An) (that is the elementary classical bound of the continuum
Fekete points times a factor C(An)); moreover, their asymptotic distibution is the same
of the continuum Fekete points, in the sense that the corresponding discrete probability
measures converge weak-∗ to the pluripotential equilibrium measure of K (cf. [7, Thm.1])
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The properties above give the basic tools for the construction of WAMs.

We focus to the bivariate case.

Property P8, applied for example to convex compacts where a Markov inequality
with exponent r = 2 always holds, says that it is possible to obtain an Admissible Mesh

with O(n4) points, which is too big for practical uses!

In order to avoid such a large cardinality, we uses WAMs, which can have cardinality
typically of O(n2) points.

Example 9. On [−1, 1]2 there are known WAMs with O(n2) points. These are the Padua
points with cardinality O(n2/2), Xu points with cardinality O(n2/2) and tensor-product
points with cardinality O(n2).

In [7] a WAM on the disk with approximately 2n2 points and C(An) = O(log2 n)
has been constructed with standard polar coordinates, using essentially property P2 for
univariate Chebyshev and trigonometric interpolation. Moreover, using property P2 and
P7, WAMs for the triangle and for linear trapezoids, again with approximately 2n2 points
and C(An) = O(log2 n), have been obtained simply by mapping the so-called Padua points
of degree 2n from the square with standard quadratic transformations (the �rst known
optimal points for bivariate polynomial interpolation, with a Lebesgue constant growing
like log-squared of the degree, cf. [9]).

In [13] these results have been improved, showing that there are WAMs for the disk and
the triangle with approximately n2 points and still the same growth of the relevant constants.
In particular, a symmetric polar WAM of the unit disk is made by equally spaced angles
and Chebyshev-Lobatto points on the corresponding diameters

An = {(rj cos θk, rj sin θk)}

{(rj , θk)}j,k =

{
cos

jπ

n
, 0 ≤ j ≤ n

}
×
{
kπ

m
, 0 ≤ k ≤ m− 1

}
where m = n+ 2 for even n even and m = n+ 1 for odd n (see Figure 5.1).

Exercise 7. Construct for various n the WAMs displayed in Figures 5.1 and the transformed
ones in the quadrant and simplex as in Figures 5.2.

5.2 Approximate Fekete Points and Discrete Leja Points

We need a few notations. Given a compact set K ⊂ Rd (or Cd), a �nite-dimensional
space of linearly independent continuous functions, SN = span(pj)1≤j≤N , and a �nite set
{ξ1, . . . , ξN} ⊂ K, ordering in some manner the points and the basis we can construct
the Vandermonde-like matrix V (ξ;p) = [pj(ξi)], 1 ≤ i, j ≤ N . If detV (ξ;p) 6= 0 the set
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Figure 5.1: Symmetric polar WAMs of the disk for degree n = 10 (left) and n = 11 (right).

Figure 5.2: A WAM of the quadrant for even polynomials of degree n = 16 (left), and the
corresponding WAM of the simplex for degree n = 8 (right).

{ξ1, . . . , ξN} is unisolvent for interpolation in SN , and

`j(x) =
detV (ξ1, . . . , ξj−1, x, ξj+1, . . . , ξN ;p)

detV (ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξN ;p)
, j = 1, . . . , N , (5.2)

is a cardinal basis, i.e. `j(ξk) = δjk and LSN
f(x) =

∑N
j=1 f(ξj) `j(x) interpolates any

function f at {ξ1, . . . , ξN}. In matrix terms, the cardinal basis ` = (`1, . . . , `N )t is obtained
from the original basis p = (p1, . . . , pN )t as ` = Lp, L := (V (ξ;p))−t.

A reasonable approach for the computation of Fekete points is to use a discretization of
the domain.

Property P10 gives a �rst guideline on the fact that WAMs are good candidates as
starting meshes.
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Since the rows of the Vandermonde matrix V = V (a;p), correspond to the mesh
points and the columns to the basis elements, then

computing the Fekete points of a WAM amounts to selecting N rows of V such that the
absolute value of the determinant of the resulting N × N submatrix (its volume!), is
maximum.

An approximate solution can be given by one of the following two greedy algorithms,
given as pseudo-codes in a Matlab-like notation, which compute what we call �Discrete
Extremal Sets�; cf. [7].

algorithm greedy 1 (Approximate Fekete Points):

• V = V (a,p); ind = [ ];

• for k = 1 : N �select ik: volV ([ind, ik] , 1 : N) is maximum�; ind = [ind, ik]; end

• ξ = a(i1, . . . , iN )

algorithm greedy 2 (Discrete Leja Points):

• V = V (a,p); ind = [ ];

• for k = 1 : N �select ik: |detV ([ind, ik] , 1 : k)| is maximum�; ind = [ind, ik]; end

• ξ = a(i1, . . . , iN )

These algorithms are genuinely di�erent. In both, the selected points (as opposed to
for the continuum Fekete points) depend on the choice of the polynomial basis. But in the
second algorithm, which is based on the notion of determinant, the selected points depend
also on the ordering of the basis. In the univariate case with the standard monomial basis,
it is not di�cult to recognize that the selected points are indeed the Leja points extracted
from the mesh.

The two greedy algorithms above correspond to basic procedures of numerical lin-
ear algebra. Indeed, in algorithm 1 the core �select ik: volV ([ind, ik] , 1 : N) is

maximum� can be implemented as �select the largest norm row rowik(V ) and remove

from every row of V its orthogonal projection onto rowik �, since the correspond-
ing orthogonalization process does not a�ect volumes (as can be understood geometrically
applying the method to a collection of 3-dimensional vectors and thinking in terms of paral-
lelograms and parallelepipeds). Working for convenience with the transposed Vandermonde
matrix, this process is equivalent to the QR factorization with column pivoting imple-
mented in Matlab by the standard �backslash� operator (cf. [8] for a full discussion of the
equivalence).

71



Stefano De Marchi Lectures on multivariate polynomial approximation

On the other hand, it is clear that in algorithm 2 the core �select ik: |detV ([ind, ik] , 1 :
k)| is maximum� can be implemented by one column elimination step of the Gaussian

elimination process with standard row pivoting, since such process automatically seeks
the maximum keeping invariant the absolute value of the relevant subdeterminants.

This is summarized in the following Matlab-like scripts:

algorithm AFP (Approximate Fekete Points):

• W = (V (a,p))t; b = (1, . . . , 1)t ∈ CN ; w = W\b ; ind = �nd(w 6= 0); ξ = a(ind)

algorithm DLP (Discrete Leja Points):

• V = V (a,p); [L,U, σ] = LU(V, �vector�); ind = σ(1, . . . , N); ξ = a(ind)

where σ is the permutation vector.

Example 10. Hexagon. To give an example of computation of Discrete Extremal Sets,
we consider the nonregular convex hexagon in Figure 5.3, with the WAMs generated by two
di�erent triangulations, and the Chebyshev product basis of the minimal including rectangle.
In Figure 5.3 on the left the hexagon is spit by using the so-called barycenter splitting, which
has k sides and k triangles. On the right we used the so-called ear-clipping splitting that gives
k sides and k − 2 triangles. From Table 5.1 we see that, concerning Lebesgue constants,
DLP are of lower quality than AFP: this is not surprising, since the same phenomenon
is well-known concerning continuous Fekete and Leja points. Nevertheless, both provide
reasonably good interpolation points, as it is seen from the interpolation errors on two test
functions of di�erent regularity in Table 5.2.

Figure 5.3: N = 45 Approximate Fekete Points (circles) and Discrete Leja Points (asterisks)
for degree n = 8 extracted from two WAMs of a nonregular convex hexagon (dots).

Example 11. Circular sector. We consider the 3/4 of the unit disk, that is

K =
{
(ρ, θ) : 0 ≤ ρ ≤ 1, −π

2
≤ θ ≤ π

}
.
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mesh points n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
WAM1 AFP 6.5 18.9 20.4 40.8 73.3 73.0

DLP 7.1 19.6 49.8 58.3 108.0 167.0

WAM2 AFP 6.8 12.3 34.2 52.3 49.0 80.4

DLP 10.7 48.4 62.0 91.6 86.6 203.0

Table 5.1: Lebesgue constants for AFP and DLP extracted from two WAMs of a nonregular
convex hexagon (WAM1: barycentric triangulation, WAM2: minimal triangulation; see Fig.
5.3).

function points n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
f1 AFP 6E-06 5E-13 3E-15 3E-15 3E-15 4E-15

DLP 8E-06 2E-12 2E-15 4E-15 3E-15 4E-15

f2 AFP 3E-03 2E-04 1E-04 4E-05 2E-05 1E-05

DLP 3E-03 3E-04 1E-04 3E-05 2E-05 5E-06

Table 5.2: Max-norm of the interpolation errors with AFP and DLP extracted from WAM2
for two test functions: f1 = cos (x1 + x2); f2 = ((x1 − 0.5)2 + (x2 − 0.5)2)3/2.

For this compact set we wish to construct an admissible mesh, AM, for extracting AFP and
DLP. By property P4, the set K is the union of 3 quadrants, which are convex components.
Therefore the problem is:

How to construct an AM on a convex compact K ⊂ R2?

Two facts.

1. A well-known fact is that every convex compact of R2 admits the Markov inequality
of order 2

max
x∈K
‖∇p(x)‖2 ≤M n2‖p‖K , M =

α(K)

w(K)
, ∀p ∈ P2

n(K) , (5.3)

where α(K) ≤ 4 and w(K) is the minimal distance between two parallel support lines
for K (see [11]).

2. Take the cartesian grid {(ih, jh), i, j ∈ Z} (h stepsize). Then follows these steps

• On every small square of the grid with nonempty intersection with K take a point
on this intersection

• Let An the mesh formed by these points

• For all x ∈ K, let a ∈ An the point closest to x (that by construction both belong
to the same square)
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• Using the mean-value theorem, Cauchy-Schwarz inequality and Markov inequality

(5.3) we get

|p(x)− p(a)| ≤ ‖∇p(y)‖2︸ ︷︷ ︸
≤(5.3)

‖x− a‖︸ ︷︷ ︸
≤
√
2h

≤M
√
2hn2‖p‖K

because y belongs to the open segment connecting x and a, lying on K.

Since

|p(x)| ≤ |p(x)− p(a)|+ |p(a)| ≤M
√
2hn2‖p‖K + |p(a)|

then

‖p‖K ≤
1

1− µ
‖p‖An

provided h = hn s.t.

M
√
2hnn

2 ≤ µ < 1 . (5.4)

Hence, An is an AM with constant C = 1/(1− µ).

In the case of the �rst quadrant, w(K) = 1 and we take the upper bound for convex
compact α(K) = 4 (since sharper bounds do not seem to exist). Hence by (5.3) and (5.4),
an AM exists as soon as we consider {(ihn, jhn), i, j ∈ Z} with

4
√
2hnn

2 < 5.66n2hn ≤ µ < 1

for some �xed µ. For example, taking hn = 1/(6n2) we get µ = 5.66/6 < 1 and C ≈ 17.65.
Since we can partition the set of grid squares into subsets of four adjacent squares and, apart
from a neighborhood of the boundary of the quadrant, take as mesh point their common
vertex, then the cardinality of the mesh is roughly estimated as 1/4 of the number of grid
points in the unit square times the area of the quadrant. Then the cardinality of An in the
�rst quadrant is

card(An) ≈
(6n2)2π

4

4
≈ 7n4

and therefore for the whole sector (3/4 of the disk) card(An) ≈ 21n4.

As a remark, we notice that for computing the Vandermonde matrix, we have used the
Koornwinder orthogonal basis of the unit disk called also ball polynomials (cf. [30]) associated
to the weight function of two variables ω(α)(x, y) = (1 − x2 − y2)α, α > −1 on the ball,
de�ned as

P
(α)
n−k,k(x, y) = P

(α+k+ 1
2
,α+k+ 1

2
)

n−k (x, y)(1− x2)
k
2Pα,α

k

(
y√

1− x2

)
, n ≥ k 6= 0 , (5.5)

where as usual Pα,β
k (x) indicates the Jacobi polynomials.
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Figure 5.4: N = 28 AFP (Approximate Fekete Points, circles) and DLP (Discrete Leja
Points, asterisks) for degree n = 6 extracted from an AM (Admissible Mesh) of a circular
sector.

Polygons. The recent paper [13] gives a construction of a WAM for the two-dimensional
unit simplex, and thus for any triangle by a�ne mapping (Property P1 of WAMs). This
WAM, say An, has n

2 + n + 1 points for degree n, and constant C(An) = O(log2 n). The
mesh points lie on a grid of intersecting straight lines, namely a pencil from one vertex
(image of the point (0, 0) of the simplex) cut by a pencil parallel to the opposite side (image
of the hypothenuse of the simplex). The points on each segment of the pencils, and in
particular the points on each side, are the corresponding Chebyshev-Lobatto points.

Property P4 allows then to obtain WAMs for any triangulated polygon. The constant
of any such WAM can be bounded by the maximum of the constants corresponding to
the triangular elements, and thus is O(log2 n), irrespectively of the number of sides of the
polygon, or of the fact that it is convex or concave. Notice that a rough triangulation is
better in the present framework, to keep the cardinality of the mesh low (which will be of
the order of n2 times the number of triangles).

Example 12. As a �rst example, we have already seen a nonregular convex hexagon (cf.
Figure 5.3), either trivially triangulated by the barycenter, or by the so-called �ear-clipping�
algorithm. The latter constructs a minimal triangulation of any simple polygon with k
vertices, obtaining k − 2 triangles. Referring to Figure 5.3, in the �rst mesh the point
(0, 0) of the simplex is mapped to the barycenter for each triangle. The cardinality of the
barycentric-based mesh is 6(n2 + n+1)− 6(n+1)− 5 = 6n2 − 5, whereas that of the other
mesh is 4(n2 + n+ 1)− 3(n+ 1)− 2 = 4n2 + n− 1 (one has to subtract the repetitions of
points along the contact sides).

Example 13. In order to emphasize the �exibility of the Algorithms AFP and DLP, as
another example we show the points computed for a polygon in a shape of a hand, with
39 sides (obtained from the screen sampled hand of one of the authors, by piecewise linear
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interpolation); see Figure 5.5. In this example we have used the ear-clipping triangulation
which gives 37 triangles and a WAM with approximately 37n2 points for degree n.

Figure 5.5: N = 136 AFP (circles) and DLP (asterisks) for degree n = 15 in a hand-shape
polygon.

5.2.1 Extensions and some applications.

We have already constructed WAM on three dimensional domains, like pyramids, cones and
solid of rotations in [26].

Polynomial interpolation and approximation are at the core of many important numer-
ical techniques, and we are of the opinion that Weakly Admissible Meshes and Discrete
Extremal Sets could give new useful tools in several applications. We mention here three of
them.

As a �rst natural application, we can consider numerical cubature. In fact, if in algorithm
AFP we take as right-hand side b = m =

∫
K p(x) dµ (the moments of the polynomials basis

with respect to a given measure), the vector w(ind) gives directly the weights of an algebraic
cubature formula at the corresponding Approximate Fekete Points. The same can clearly be
done with Discrete Leja Points, solving the system V (ξ;p)w = m by the LU factorization,
with the additional feature that we get a nested family of cubature formulas (Leja points
being a sequence). This approach has recently applied to the approximation of integrals in
the quasi Monte Carlo method (cf. [3] ) .

The possibility of locating good points for polynomial approximation on polygonal re-
gions/elements, could also be useful in the numerical solution of PDEs by spectral and
high-order methods, for example in the emerging �eld of discontinuous Galerkin methods
(see, e.g., [31])
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Appendix A

The Stone-Weierstrass theorem

This short appendix provides the extension of the Weierstrass theorem (valid for functions
of one real variable).

Let K ⊂ Rd be compact and C(K) be the set of continuous functions on K equipped
with the sup-norm ‖f‖K = supx∈K |f(x)|. Take A ⊂ K. When is A dense in C(K)? In
other words, when Ā = C(K)?

The Stone-Weierstrass theorem provides su�cient conditions for A to be dense in C(K).

Theorem 19. A is dense in C(K) (i.e. Ā = C(K)) if the following conditions holds

1. A is an algebra. That is for any u, v ∈ A and any a, b ∈ R, au+ bv ∈ A and u v ∈ A
(A is close by linear combinations and multiplication).

2. The function c = 1 belongs to A.

3. A separates points. That is for any couple of distincts points x, y ∈ K there exists
f ∈ A s.t. f(x) 6= f(y).

The multivariate equivalent to the polynomials ¶m(R) is the set ¶m(Rd), i.e. the set
of polynomials of total degree less and equal to m in d variables. This multivariate set is
generated by the monomials span{xk, x ∈ Rd, k = (k1, . . . , kd), kj ∈ N, |k| = k1 + k2 +
· · ·+ kd = m}.

We want to underline some facts about the su�cient conditions of the previous theorem.

• About condition 2. Take K = [0, 1] and the space P0 = span{x, x2, . . . , xn}. It is clear
that for all p ∈ P0, p(0) = 0. Therefore if f ∈ C[0, 1] is such that f(0) 6= 0, then it can
not be recovered by elements of P = 0. This shows also that condition 1. is necessary.

• About condition 3. It is also necessary. In fact consider the set of trigonometric
polynomials Tn, it is an algebra that do not separate the points −π and π.
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• We want to show that condition 1. is not necessary. If fact there exist sets of polyno-
mials that are not an algebra.

1. Lacunary polynomials. It is the set M = span{xnk , n0 = 0 < n1 < n2 <
· · · , limk→∞ nk = ∞}. The set M satis�es properties 2. and 3. but it is not
closed by multiplication. In order to be dense, it has to satisfy the Muntz's
theorem (cf. e.g. [1]) that is

∑∞
k=0

1
nk

=∞.

2. Incomplete polynomials. The set M∗ = {
∑

n≤k≤2n ckx
k,∀n}

⊕
1 is not dense in

C[0, 1]. The algebra property of closeness by multiplication is satis�ed, but not
that of addition since M∗ is not a linear space. But it has been proved that
M̄∗ = C[14 , 1].
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