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Summary

� Machine learning [Cristianini &
Shawe-Taylor, Fasshauer & Mc-
Court] is a widely used tool for
predicting, within a certain tolerance,
the evolution of time series, i.e. the
dynamics of the considered quantities.

� Focusing on Support Vector Regres-
sion (SVR), the main drawback is that
measurements are usually a�ected by
noise/errors and might have gaps.

� Since in those cases the learning and
prediction steps for capturing the trend
of time series become very hard, we
�rst construct a reduced kernel-based
approximant [Wirtz et al.].

Framework

� Let Ω ⊆ Rd, f : Ω 7→ R and K be a
symmetric and radial kernel. It satis�es
the reproducing property, namely

〈K(x, ·), f〉HK(Ω) = f(x),

where HK(Ω) denotes the reproducing
kernel Hilbert space ofK and 〈·, ·〉HK(Ω)

is the inner product.

� Let us introduce the operator T :
L2(Ω) −→ L2(Ω),

T [f ](x) =

∫
Ω

K(x,y)f(y)dy.

By virtue of the Mercer's Theorem we
know that the operator T has a count-
able set of eigenfunctions {ϕk}k≥0 (or-
thonormal in L2(Ω)) and eigenvalues
{λk}k≥0 so that for x,y ∈ Ω,

K(x,y) =
∑
k≥0

λkϕk(x)ϕk(y), or

K(x,y) = 〈Φ(x),Φ(y)〉l2 , with

Φ(·) =
(√

λ1ϕ1(·),
√
λ2ϕ2(·), . . .

)
.

� This decomposes K into a feature that
depends only on x and another one that
only depends on y. Such expansion is
known as the kernel trick (see Fig. 1).
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Figure 1. The kernel trick.

� To train the kernel machine in what
follows we use a reduced basis method
[Wirtz et al.]. This leads to a re-
duced training phase.

Method

Given XN = {xi, i = 1, . . . , N} ⊂ Ω, a set of distinct data, Ω ⊆ Rd, with an associated set
FN = {fi = f(xi), i = 1, . . . , N} of data values, the linear SVR regression model is

R(x) = xᵀw + b =
N∑
i=1

(α∗
i − αi)x

ᵀxi + b; w, b, so that min
w,b,ξ,ξ∗

[
1

2
wᵀw + C

N∑
i=1

(ξi + ξ∗i )

]
,

s.t. R(xi) − fi ≤ ε + ξi, fi − R(xi) ≤ ε + ξ∗i , i = 1, . . . , N, and ξiξ
∗
i ≥ 0, where C is the

regularization parameter and ξi, i = 1, . . . , N , are the slack variables (Fig. 2).

Then, for the non-linear regression we use the kernel trick and thus we only need to replace
the dot product with the kernel evaluation and the measurements xi with the feature map
Φ(xi), i = 1, . . . , N . We point out that another drawback of SVR is that it works with �xed
length input vectors. Thinking of time series, the model is trained using the very next data point.

Thus, at a certain time step tk, k ∈ N, k > 0, we are able to predict only tk+1. To address this
problem we introduce a sliding window strategy to create the training instances. We refer to
this method as Multi SVR (MSVR) scheme which is trained via smoother points, constructed
only taking a reduced number of bases, namely M .
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Figure 2. SVR ε-tube (left) and MSVR scheme (right).

Results

We plot the considered data sets in Fig. 3; available at http://voss.dmsa.unipd.it/ and
http://www.behranoil.com/, respectively.
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Figure 3. The �rst data set we consider has been created
for an experimental study of the organic soil compaction
and prediction of the land subsidence related to climate
changes in the South-Eastern area of the Venice Lagoon
catchment (VOSS - Venice Organic Soil Subsidence). Here
we take the temperature in Celsius (◦C) sampled one meter
below the soil each hour.

The second one belongs to Tehran Securities Exchange
Technology Management Co. It reports the volume of daily
trades of a stock named Behran Oil, with short name Shab-
harn. Values are reported in Rial, the o�cial currency used
in Iran.

The Python software is available at https://github.com/makgyver/vlabtestrepo/.

Reduced Training Classical Training

Data N M ∆t k RMSE RRMSE % RMSE RRMSE %

VOSS 14637 393 12 48 0.019 0.034 0.021 0.036

Shabharn 3369 1471 10 30 315.03 0.839 642.05 1.711

Table 1. Results of MSVR approach for environmental and �nancial data.
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