WSVD basis for RBF and Krylov subspaces

Stefano De Marchi^{*}, Gabriele Santin^{*,^{*}} demarchi@math.unipd.it, gsantin@math.unipd.it *Department of Mathematics, [†]Doctoral School in Mathematical Sciences

EIGENBASIS - PROPERTIES

Let K be a continuous, positive definite kernel on a bounded $\Omega \subset \mathbb{R}^s$. Then the operator $\mathcal{T}: \mathcal{N}_{\kappa}(\Omega) \to \mathcal{N}_{\kappa}(\Omega)$,

 $\mathcal{T}[f](x) = (f, K(\cdot, x))_{L_2(\Omega)} \ \forall x \in \Omega$

is bounded, compact and self-adjoint. It has an enumerable set of eigenvalues and eigenvectors $\{\lambda_j, \varphi_j\}_{j>0}$ which are a basis for $\mathcal{N}_{\kappa}(\Omega)$.

Moreover:

PROBLEM AND DEFINITION

- \rightarrow How to obtain a stable basis for RBF approximation?
- \rightarrow How to embed information about the kernel K and the set Ω into it?
- \rightarrow We can approximate the *eigenbasis* of the **native space** $\mathcal{N}_{\kappa}(\Omega)$ of RBF kernel K.

Definition: Given $X = \{x_1, \ldots, x_n\} \subset \Omega$, a weighted-SVD (WSVD) basis $\mathcal{U} = \{u_i\}_{1 \leq i \leq n}$ is a basis for $\mathcal{N}_{\kappa}(X) = \operatorname{span}\{K(\cdot, x_i), 1 \leq i \leq n\}$ obtained by the matrix of change of basis

UNIVERSITÀ DEGLI STUDI DI PADOVA

WSVD BASIS - PROPERTIES

Let K be a continuous, positive definite kernel on a bounded $\Omega \subset \mathbb{R}^s$, and (X, \mathcal{W}) a cub. rule. Then the operator $\mathcal{T}_n : \mathcal{N}_{\kappa}(\Omega) \to \mathcal{N}_{\kappa}(X)$,

 $\mathcal{T}_n[f](x) = (f, K(\cdot, x))_{\ell_2^w(X)} \ \forall x \in \Omega$

has finite rank and is self-adjoint. It has n eigenvalues and eigenvectors $\{\sigma_i^2, u_j\}_{1 \leq j \leq n}$ which are a basis for $\mathcal{N}_{\kappa}(X)$.

-0.5

Moreover:

P1 $\{\varphi_j\}_{j>0}$ is $\mathcal{N}_{K}(\Omega)$ -orthonormal	$C_{i} = \sqrt{W} \cdot Q \cdot \Sigma^{-1}$ $\mathbf{p1} \ \{u_j\}_{1 \leq j \leq n} \text{ is } \mathcal{N}_K(\Omega) \text{-orthonormal}$
P2 $\{\varphi_j\}_{j>0}$ is $L_2(\Omega)$ -orthogonal	where $A_W := \sqrt{W} \cdot A \cdot \sqrt{W} = Q \cdot \Sigma^2 \cdot Q^T$ p2 $\{u_j\}_{1 \leq j \leq n}$ is $\ell_2^w(X)$ -orthogonal
P3 $\ \varphi_j\ _{L_2(\Omega)}^2 = \lambda_j \forall j > 0$	is a SVD of the scaled kernel matrix $A = \begin{bmatrix} \mathbf{p3} & \ u_j\ _{\ell_2^w(X)}^2 = \sigma_j^2, 1 \leq j \leq n \\ (W(x_j)) & \ u_j\ _{\ell_2^w(X)}^2 = \sigma_j^2, 1 \leq j \leq n \end{bmatrix}$
P4 $\lambda_j \xrightarrow{j \to \infty} 0, \ \sum_{j>0} \lambda_j = K(0,0) \ \Omega $	$(K(x_i, x_j))_{1 \leq i,j \leq n}$, and $\mathcal{W} = \{W_{ii}\}_{1 \leq i \leq n}$ are the weights of a cubature rule (X, \mathcal{W}) . $\mathbf{p4} \sum_{j=1}^n \sigma_j^2 = K(0, 0) \Omega $
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
WSVD APPROXIMATION	NUMERICAL EXAMPLE
Interpolant: for all $f \in \mathcal{N}_{\kappa}(\Omega)$, since \mathcal{U} is $\mathcal{N}_{\kappa}(\Omega)$ -o.n., $s(f) = \sum_{j=1}^{n} (f, u_j)_{\mathcal{N}_{\kappa}(\Omega)} u_j.$ Weighted-DLS Approximant: we can define the WDLS approximant $s^m(f)$ of order m as the minimizer of $ f - g _{\ell_2^w(X)}$ between functions $g \in \text{span}\{u_1, \ldots, u_m\}.$ It turns out that, for all $f \in \mathcal{N}_{\kappa}(\Omega)$,	10^{4} 10^{2} 10^{0} 10^{2} 10^{2} 10^{2} 10^{-2} 10^{-4} 10^{-4} 1.5
m	10^{-6} 200 400 600 800 1000 0.5 0 -8

200

$$\mathbf{s^m}(\mathbf{f}) = \sum_{\mathbf{j}=\mathbf{1}}^{\mathbf{m}} (\mathbf{f}, \mathbf{u_j})_{\mathcal{N}_{\mathbf{K}}(\Omega)} \mathbf{u_j},$$

so it is a truncation of the interpolant, using just the first m basis' element.

Since $||u_j||_{\ell_2^w(X)} = \sigma_j^2$, we are using a **low-rank** approximation of the kernel matrix.

TOOLS

- general theory of **Change of basis** for RBF native spaces (introduced in [2]).
- Symmetric Nyström Method to discretize the integral operator (see e.g [1]).
- Cubature rule on Ω (see e.g. [3, 4] for the one used here).

NEW IDEA

We need to compute a full SVD of A_W also if we want to use just a little part of it.

LANCZOS ALGORITHM - SOME TESTS

and m as above (right, false coloured by absolute error).

600

800

1000

Reconstruction of the Franke function on a *lens* with the gaussian kernel with shape parameter $\varepsilon = 2$

and with $n = 1, \ldots, 900$ trigonometric gaussian points. Comparison between the RMSE obtained

using the standard basis (blue line), the WSVD basis (red line) and the WVD basis with truncation

at m s.t. $\sigma_{m+1}^2 < 1e - 17$ (left); approximant obtained by the truncated WSVD basis with n = 900

We plan to use Krylov-subspace methods, in particular the Lanczos algorithm:

 $A_W P_m = P_m H_m + h_{m+1} p_{m+1} e_m^T$

where the columns of P_m are an o.n. basis of the Krylov subspace $\mathcal{K}_m(A_W, f)$, and the SVD of H_m (tridiagonal) gives a good approximation of the first m terms of the one of A_W .

Test in the same setting as above. Decay of the singular values of A_W and of H_m (left) and time needed to compute them (right). From all the test made the approximation of the singular values of A_W by the one of H_m seems good and well controlled by $h_{m+1,m}$. The computational time is also promising.

REFERENCES

[1] K. Atkinson and W. Han, Theoretical numerical analysis: a functional analysis framework, Springer Texts in Applied Mathematics, vol. 39, 2001. M.Pazouki and R.Schaback, Bases for Kernel-Based Spaces, Computational and Applied Mathematics, 236 (2011), 575–588 [2][3] M.Vianello and G.Da Fies, Algebraic cubature on planar lenses and bubbles, Dolomites Res. Notes Approx. DRNA 5 (2012), 7–12 [4] M.Vianello and L.Bos, Subperiodic trigonometric interpolation and quadrature, Appl. Math. Comput., published online 16 May (2012) [5] S.De Marchi and G. Santin, A new stable basis for radial basis function interpolation, J. Comput. Appl. Math., 253 (2013), 1-13