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Summary

� For univariate functions with steep
gradients, the rational polynomial in-
terpolation is particularly suitable.

� Its extension to high dimensions is still
a challenging problem. Moreover, be-
cause of the dependence on meshes, it
is not easy to implement for complex
domains (refer e.g. to [Hu et al.]).

� We perform a local computation via
the Partition of Unity (PU) method of
rational Radial Basis Function (RBF)
interpolants.

� The resulting scheme, implemented
by means of the DACG (De�ation-
Accelerated Conjugate Gradient)
method [Bergamaschi et al.],
enables us to deal with huge data sets.

� Furthermore, thanks to the use
of Variably Scaled Kernels (VSKs)
[Bozzini et al.; De Marchi et al.],
it turns out to be stable.

Framework

� Let XN = {xi, i = 1, . . . , N} ⊆ Ω be
a set of distinct data, FN = {fi =
f(xi), i = 1, . . . , N} a set of data val-
ues and Φ : Ω× Ω→ R a strictly pos-
itive de�nite and symmetric kernel.

� Letting Xm = {xi, i = k, . . . , k + m −
1} ⊆ XN and Xn = {xi, i = j, . . . , j +
n−1} ⊆ XN , we de�ne a rational RBF
expansion as

R(x) =
R(1)(x)

R(2)(x)
=

∑
i1∈Xm

αi1Φ(x,xi1)∑
i2∈Xn

βi2Φ(x,xi2)
,

provided R(2)(x) 6= 0, x ∈ Ω.

� This problem leads to a homogeneous
system Bξ = 0, where ξ = (α,β)T ,
0 ∈ RN and the entries of B are deter-
mined by the interpolation conditions.

Example. N = 26, Ω = [0, 1], f(x1) = 1.
Let us �x Xm = {xi, i = 1, . . .m} ≡ Xn,
with m = n = 13. The matrix B is singular.
A possible way, illustrated in Fig.1 (left),
consists in computing

min
ξ∈RN ,||ξ||2=1

||Bξ||2. (1)

Note that the method described by equation
(1) can be used to obtain a non-trivial least
square approximate solution when the ma-
trix is non-singular, see Fig.1 (right).
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Figure 1. The black dots represent the set
of scattered data, the red solid line and the
blue dotted one are the curves reconstructed
via the rational and classical RBF approxi-
mation.

Method

To deal with well-posed problems, we impose extra constraints and we take Xm ≡ Xn ≡ XN .
If we assume to know the function values of R(1) and R(2), namely p and q, to compute the
rational interpolant, we need to solve Aα = p and Aβ = q, where A is the standard kernel
matrix.

According to [Jakobsson et al.], this is equivalent to �nd the eigenvector q associated to
the smallest eigenvalue in absolute value of the following generalized eigenvalue problem

Λq = λΘq, with Λ = 1/||f ||22DTA−1D +A−1 and Θ = 1/||f ||22DTD + IN ,

where IN is the N × N identity matrix. Then, the only vector p such that R(1)(xk) =
fkR(2)(xk), k = 1, . . . , N , is given by p = Dq, where D = diag(f1, . . . , fN ).

We de�ne the rational PU interpolant which makes use of VSKs (RVSK-PU) as [Wendland]

Iψ (x) =

d∑
j=1

Rψj (x)Wj (x) , Rψj (x) =

∑Nj

i=1 α
j
iK((x, ψj(x)), (xji , ψj(x

j
i )))∑Nj

k=1 β
j
kK((x, ψj(x)), (xjk, ψj(x

j
k)))

,

where K is a VSK, ψj : Ωj 7→ R is a scale function and Wj are the Shepard's weights.

Since for VSKs the analysis of the error on RM coincides with the analysis of a �xed-scale
problem on a submanifold in RM+1, in the following proposition we consider a rational PU
interpolant I computed with a kernel Φ : Ω× Ω→ R.

Proposition. Suppose Φ ∈ Cνk (RM ) is strictly positive de�nite. Let {Ωj}dj=1 be a regular

covering for (Ω,XN ) and let {Wj}dj=1 be 0-stable for {Ωj}dj=1. Then, there exists an index
t ∈ {1, . . . , d} and a constant C (independent of the �ll distance hXN

) such that for all x ∈ Ω:

|f (x)− I (x) | ≤ 1/|R(2)
t (x)|Ch(k+ν)/2

XN
(|f(x)|||qt||NΦ(Ωt) + ||pt||NΦ(Ωt)).

Proof sketch. Use [Wendland, Th. 10.47, p. 170] to the local setting and observe that

f|Ωj
(x)−Rj(x) = [(R(2)

j (x)f(x)− qj(x)f(x)) + (qj(x)f(x)−R(1)
j (x))]/R(2)

j (x).

Results

The results of using RVSK-PU and standard PU (SRBF-PU) with the Gaussian C∞ kernel
as local approximant are shown in Tab.1 and Fig.2.

N h Method ε RMSE MCN λ CPU

4225 2.91E− 02 SRBF-PU 3 5.48E− 04 2.41E + 21 14.3 1.33
RVSK-PU � 6.04E− 06 7.61E + 21 10.4 1.39

16641 1.03E− 02 SRBF-PU 4 3.46E− 05 2.75E + 23 2.65 2.08
RVSK-PU � 6.97E− 07 4.67E + 21 2.07 2.85

66049 4.93E− 03 SRBF-PU 5 1.22E− 06 5.60E + 22 4.53 9.31
RVSK-PU � 2.76E− 07 3.09E + 22 1.25 11.0

Table 1. Fill distances (h), Root Mean Square Errors (RMSEs), Maximum Condition Num-
bers (MCNs), convergence rates (λ) and CPU times computed on Halton points. Results are
obtained using f1(x1, x2) = tan[9(x2 − x1) + 1]/(tan 9 + 1).

Figure 2. The approximate surface
f2(x1, x2) = (x1 + x2 − 1)7 obtained with the
SRBF-PU (left) and RVSK-PU (right) meth-
ods with N = 1089 Non-Conformal points.
The experiments have been carried out with
the Matlab software.
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