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Rational stable RBF-PU interpolation via VSKs
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Dipartimento di Matematica “Tullio Levi-Civita”’, Universita di Padova, Italia

Summary

For univariate functions with steep
gradients, the rational polynomial in-
terpolation is particularly suitable.

Its extension to high dimensions is still
a challenging problem. Moreover, be-
cause of the dependence on meshes, it
i1s not easy to implement for complex
domains (refer e.g. to |[Hu et al.]).

We perform a local computation via
the Partition of Unity (PU) method of

rational Radial Basis Function (RBF)
interpolants.

The resulting scheme, implemented
by means of the DACG (Deflation-
Accelerated  Conjugate  Gradient)
method |Bergamaschi et al.],
enables us to deal with huge data sets.

Furthermore, thanks to the use

of Variably Scaled Kernels (VSKs)
|Bozzini et al.; De Marchi et al.],
1t turns out to be stable.
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Framework

¢ Let Xy ={x;,i =1,...,N} C Q be
a set of distinct data, Fny = {f; =
f(x;),2=1,..., N} a set of data val-
ues and @ : (2 x ) — R a strictly pos-
itive definite and symmetric kernel.

Letting &X,, = {x;,i =k,...,k+m —
1V C Xy and X, = {6 =3,....j +
n—1} C Xy, we define a rational RBF
expansion as

R ()

KH(x) = R® () —

provided R(?) (x) £ 0, = € Q.

e This problem leads to a homogeneous
system BE = 0, where € = (a,3)?,
0 € RY and the entries of B are deter-
mined by the interpolation conditions.

Example. N = 26, Q = [0,1], f(z1) = 1.
Let us fix X, = {x;,i = 1,...m} = X,
with m = n = 13. The matrix B is singular.
A possible way, illustrated in Fig.1 (left),

P consists In computing
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| BE||2- (1)

min
EERY,|I€]]2=1
Note that the method described by equation
(1) can be used to obtain a non-trivial least
square approximate solution when the ma-
trix is non-singular, see Fig.1 (right).
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.- | Figure 1. The black dots represent the set
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of scattered data, the red solid line and the

! blue dotted one are the curves reconstructed

/i
j"r
]

Method

To deal with well-posed problems, we impose extra constraints and we take X, =

nEXN.

If we assume to know the function values of R and R(®), namely p and q, to compute the
rational interpolant, we need to solve Aa = p and A3 = q, where A is the standard kernel

matrix.

According to [Jakobsson et al.|, this is equivalent to find the eigenvector g associated to
the smallest eigenvalue in absolute value of the following generalized eigenvalue problem

Ag = A\Ogq,

with A=1/||f|3D'A'D+ A~!

and © = 1/||f|l5D* D + Iy,

where Iy is the N x N identity matrix. Then, the only vector p such that R (x)) =

R (), k=1,...,

N, is given by p = Dq, where D = diag(f1,...

, f).

We define the rational PU interpolant which makes use of VSKs (RVSK-PU) as [Wendland]

i (),

d
— Z%j () W
j=1

where IC is a VSK, v,

Ry, () =

S QK (2, (@), (@, 9 (a

D)

Sty B (@, v(@)), (@, 15 (}.)))

)

: ); — R is a scale function and W, are the Shepard’s weights.

Since for VSKs the analysis of the error on RM coincides with the analysis of a fixed-scale
il problem on a submanifold in RM+1 " in the following proposition we consider a rational PU

tedl,...

f ()

| interpolant Z computed with a kernel @ : Q x Q — R.

, be O-stable for {€2; };-l:

i Proposition. Suppose ® € Cy(RM) is strictly positive definite. Let {Qj}?z
o] covering for (2, X ) and let {Wj}?:

, be a

2 k4+v)/2
~Z(2)| < 1/|RP @)|ChET 2 (1 £ (@) ge] | a 0) + 1Pt v (20

regular

.. Then, there exists an index
,d} and a constant C' (independent of the fill distance hy, ) such that for all x € Q:

| Proof sketch. Use [Wendland, Th. 10.47, p. 170] to the local setting and observe that

(R (@) f(x) — g; (@) f(@)) + (;(2) f ()
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via the rational and classical RBF approxi- i

mation.

A4

& #
- t.i. p F 1'..

flo, () — Z;(x) =

Results

~ R (@) /R ().

The results of using RVSK-PU and standard PU (SRBF-PU) with the Gaussian C* kernel
as local approximant are shown in Tab.1 and Fig.2.

N h Method

RMSE

MCN

A

CPU

SRBF-PU
RVSK-PU
SRBF-PU
RVSK-PU
SRBF-PU
RVSK-PU

4225  2.91E — 02
16641 1.03E — 02

66049 4.93E — 03

5.48kK — 04
6.04E — 06
3.46F — 05
6.97E — 07
1.22F — 06
2.76E — 07

2.41FK -
(.01E -
2.75k
4.67E -
5.60Lk

= 2
= 2
- 23
= 2
= A%

3.09E

= %

14.3
10.4
2.69
2.07
4.53
1.25

1.33
1.39
2.08
2.89
9.31
11.0

Table 1. Fill distances (h), Root Mean Square Errors (RMSEs), Maximum Condition Num-
bers (MCNs), convergence rates (A) and CPU times computed on Halton points. Results are

obtained using fi(x1,z2) = tan|9(xy — x1) + 1]/(tan9 + 1).
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