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In this file, we collect all examples we ran in order to illustrate the results proved in [1].
Hence, we invite interested readers to refer to the paper [1] for better understanding the content
of this note.

Figure 1 shows the values ΛX of the Lebesgue constants for the Sobolev/Matern kernel
(r/c)νKν(r/c) for ν = 1.5 at scale c = 20. In this and other examples for kernels with
finite smoothness, one can see that our bounds on the Lebesgue constants are valid, but the
experimental Lebesgue constants seem to be uniformly bounded. In all cases, the maximum
of the Lebesgue function is attained in the interior of the domain.

Things are different for infinitely smooth kernels. Figure 2 shows the behavior for the
Gaussian. The maximum of the Lebesgue function is attained near the corners for large scales,
while the behavior in the interior is as stable as for kernels with limited smoothness. The
Lebesgue constants do not seem to be uniformly bounded.

A second series of examples was run on 225 regular points in [−1, 1]2 for different kernels
at different scales using a parameter c as Φc(x) = Φ(x/c).

Figures 3 to 5 show how the scaling of the Gaussian kernel influences the shape of the
associated Lagrange basis functions. The limit for large scales is called the flat limit [3] which
is a Lagrange basis function of the de Boor/Ron polynomial interpolation [4]. It cannot be
expected that such Lagrange basis functions are uniformly bounded.

In contrast to this, Figure 6 shows the corresponding Lagrange basis function for the
Sobolev/Matern kernel at scale 320. The scales were such that the conditions of the kernel
matrices were unfeasible for the double scale. Figure 7 shows the Lebesgue function in the
situation of Figure 5, while Figure 8 shows the Sobolev/Matern case in the situation of Figure
6.

Figures 9 and 10 show how the same Sobolev kernel behaves on scattered data given in
Figure 11. The encircled point is where the Lagrange function is taken for Figure 9. Note that
the situation does not change dramatically when scattered data are used.

We also checked if the large errors in the corners of the domain in Figure 7 disappeared for

1



0 500 1000 1500 2000

10
0.28

10
0.3

10
0.32

10
0.34

10
0.36

Lebesgue against n

Interior
Corner

Figure 1: Lebesgue constants for the Sobolev/Matern kernel
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Figure 2: Lebesgue constants for the Gauss kernel
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Figure 3: Lagrange basis function on 225 data points, Gaussian kernel with scale 0.1

Figure 4: Lagrange basis function on 225 data points, Gaussian kernel with scale 0.2
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Figure 5: Lagrange basis function on 225 data points, Gaussian kernel with scale 0.4

Figure 6: Lagrange basis function on 225 data points, Sobolev/Matern kernel with scale 320

4



Figure 7: Lebesgue function on 225 regular data points, Gaussian kernel with scale 0.4

Figure 8: Lebesgue function on 225 regular data points, Sobolev/Matern kernel with scale 320
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Figure 9: Lagrange basis function on 225 scattered data points, Sobolev/Matern kernel with
scale 320

Figure 10: Lebesgue function on 225 scattered data points, Sobolev/Matern kernel with scale
320
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Figure 11: Data points for Figures 9 and 10

domains without corners. Figures 12 and 13 show how the same Gaussian behaves on scattered
data on the circle given by Figure 14. It turns out that the boundary behavior is even more
dramatic here, since there are no data points on the boundary.

Using Gaussians, with other dilations, did not improve the situation. New results of a
forthcoming Ph.D. thesis by Christian Rieger of the University of Göttingen, suggest that
an O(h2) oversampling in a strip close to the boundary should have a positive effect. To
check this indirectly, we used the greedy method of [2] to determine good interpolation points
by iteratively adding maxima of the power function. Figures 15 and 16 show the dramatic
improvement, while the points are now distributed as in Figure 17. One could also choose new
data points via the maximum of the Lebesgue function, but this strategy turned out to be
inferior.

We also ran some other examples on a cardioidal domain with an incoming cusp, but the
results were not much different.

The improvement by oversampling on the boundary seems to be connected to analytic
kernels, since the corresponding examples for non–smooth kernels showed a much weaker effect.
We add figures for the C2 Wendland function, but we remark that Matern/Sobolev kernels
behave similarly. Note that all functions are chopped at the boundary of the cardioid.
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Figure 12: Lagrange basis function for 168 scattered data points on the circle, Gaussian kernel
with scale 0.4

Figure 13: Lebesgue function for 168 scattered data points on the circle, Gaussian kernel with
scale 0.4
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Figure 14: Data points for Figures 12 and 13

Figure 15: Lagrange basis function for 168 optimized data points on the circle, Gaussian kernel
with scale 0.4
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Figure 16: Lebesgue function for 168 optimized data points on the circle, Gaussian kernel with
scale 0.4
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Figure 17: Data points for Figures 15 and 16
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Figure 18: Lagrange basis function for 104 scattered data points on the cardioid, Wendland
C2 kernel with scale 30

Figure 19: Lebesgue function for 104 scattered data points on the cardioid, Wendland C2

kernel with scale 30
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Figure 20: Data points for Figures 18 and 19

Figure 21: Lagrange basis function for 104 optimized data points on the cardioid, Wendland
C2 kernel with scale 30
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Figure 22: Lebesgue function for 104 optimized data points on the cardioid, Wendland C2

kernel with scale 30
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Figure 23: Data points for Figures 21 and 22
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