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Data interpolation/approximation
of discontinuous functions

Approaches: optimal choice of interpolation points, rational
approximation, sinc-approx, filtering, extrapolation,....
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Data interpolation in (medical) imaging
CT, MRI, PET, SPECT, MPI, satellite images

Approaches: geometric alignement, registration, reconstruction
(CT, SPECT, MPI, satellite) , ...
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Let’s start

Interpolation by polynomials and rational functions of discontinuous
functions is an historical approach and well-studied. Two
well-known phenomena are the Runge and Gibbs effects [Runge
1901, Gibbs 1899].

Interpolation by kernels, mainly Radial Basis Functions, are suitable
for high-dimensional scattered data problems [Hardy 1971, MJD
Powell 1977, Schaback 1993 and many more], solution of PDES
[e.g. Kansa 1990], machine learning [Samuel 1950,
Fasshauer&McCourt 1995], image registration [e.g. Gómez-Garcia
et al 2008], etc...

Interpolation of discontinuos functions by mapped polynomials and
discontinuous kernels is what we discuss today

1 S. De Marchi, F. Marchetti, E. Perracchione and D. Poggiali: Polynomial interpolation via mapped bases without
resampling, J. Comp. Appl. Math. 2019 (online)

2 S. De Marchi, W. Erb, F. Marchetti, E. Perracchione and M. Rossini: Shape-driven interpolation with discontinuous
kernels: error analysis, edge extraction and applications in MPI. Submitted/reviewed
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PART I

Polynomial interpolation with mapped bases: the
”fake nodes approach”
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Outline PART I

1 Polynomial interpolation with mapped bases: the ”fake nodes
approach”

2 Mapped bases

3 The ”fake” nodes approach

4 Examples
Runge phenomenon
Gibbs phenomenon

5 Extension and higher dimensions
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Inspiring ideas

1 In applications: samples are given. To resample (in 1d at
Chebyshev points, or extract mock Chebyshev or other sets of
good interpolation points that depend on applications ( such
as Padua pts (2005), Approximate Fekete Pts, Discrete Leja
Sequences (2010), Lissajous points (2015), (P or S)-greedy
(2003/05), minimal energy (199?)...)

2 In [Adcock and Platte 2016] a similar idea was investigated for
analytic functions on compact intervals by weighted
least-squares of mapped polynomial basis via [Kosloff,
Tal-Azer 1993] map

mα(x) =
sin(απx/2)

sin(απ/2)
, α ∈ (0, 1]

giving rise to the space

Pαn = {p ◦mα, p ∈ Pn} .
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Some notations

I = [a, b] ⊂ R, Xn ⊂ I (interpolation points), f : I → R and
Fn := {f(Xn)} (f fnct to be reconstructed )

Pn,f : interpolating polynomial, Pn,f ∈ Mn := span{1, x, . . . , xn} or
using Ln := span{l0, l1, . . . , ln} Lagrange basis

Pn,f (x) =
n∑

i=0

li(x)f(xi), x ∈ I

with

li(x) =
Vi(x0, ..., xi−1, x, xi , . . . , xn)

V(x0, . . . , xn)

ratio of two Vandermonde determinants

Lebesgue constant: Λn := max
x∈I

n∑
i=0

|li(x)| which is the stability

constant, norm of the projection on Mn or conditioning of the
interpolation problem.
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Mapping the basis
without resampling

Let S : I → R be the map and Pn,g : S(I)→ R the interpolating
polynomial at the mapped or “fake” nodes S(Xn), that is

Pn,g(x̄) =
n∑

i=0

ci x̄ i , x̄ ∈ S(I)

for some g : S(I)→ R ∈ Cr (I) s.t.

g|S(Xn) = f|Xn .

↪→ i.e. no resampling
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Cont’
without resampling

We are then interested to the function

RS
n,f (x) := Pn,g(S(x)) =

n∑
i=0

ciSi(x) , (1)

RS
n,f is the interpolant at the original nodes Xn and function values Fn

spanned by mapped basis Sn :=
{
Si(·), i = 0, . . . , n

}
.

Equivalence

mapped bases approach on I: interpolate f on the set Xn via Rs
n,f in

the function space Sn.

The “fake” nodes approach on S(I): interpolate g on the set S(Xn)
via Pn,g in the polynomial space Mn.
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Admissible S maps

Definition
S is admissible if the resulting interpolation process has unique solution,
that is the Vandermonde-like VS := V(S(x0), . . . ,S(xn)) , 0

Necessity: S(xi) , S(xj), ∀xi , xj , i.e. S is injective on Xn.

VS = σ(Xn,S) · V(x0, . . . , xn) with

σ(S,Xn) =
∏

0≤i<j≤n

Sj − Si

xj − xi
. (2)

here Sr = S(xr ).
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Admissible S maps: cont’

Proposition [DeM et al. JCAM 2019]

Let li be the classical i-th Lagrange polynomial and let lSi be the
S-Lagrange. Then,

lSi (x) = γi(x)li(x), x ∈ I, (3)

where γi(x) B
det(Vs

i (x))

σ(S,Xn)det(Vi(x))
, with σ(S,Xn) as before.

Actually, γi(x) =
βi(x)

αi
, with

βi(x) :=
∏

0≤j≤n
j,i

S(x) − Sj

x − xj
, αi :=

∏
0≤j≤n

j,i

Si − Sj

xi − xj
.
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Mapped Interpolant

RS
n,f (x) =

n∑
i=0

fi lSi (x), x ∈ I

We can define the S-Lebesgue constant

ΛS
n := max

x∈S(I)

n∑
i=0

|lSi (x)| . (4)

so that
‖f − RS

n,f ‖∞≤ (1 + Λs
n)Es,?

n (f), (5)

13 of 54



Observations

Obs 1
[Gross and Richards 1986] gave a remarkable formula for points in the
unit disk of C for analytic map Sc(z) = (1 − z)−c , c ≥ 1.

Lettting s ∈ [−a, a]n the determinant of the coefficient matrix can be
factored as

detMn(s, s) = cnV(s)V(s)

∫
U(n)
det(I − susu−1)−(c+n−1)du

where U(n) the group of unitary complex matrices (see also
[Bos,DeM,Levenberg 2014] where we discussed Fekete points for ridge
functions).

Obs 2
Generalized Vandermonde determinants give rise to similar factorization
[DeM 2001, 2002]
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Lebesgue bound

Theorem [DeM et al. JCAM 2019]

We have that

ΛS
n ≤

(
L
D

)n

Λn,

where

L = max
j

max
x∈I

∣∣∣∣∣∣S(x) − Sj

x − xj

∣∣∣∣∣∣,
D = min

i
min
j,i

∣∣∣∣∣∣Si − Sj

xi − xj

∣∣∣∣∣∣,

Sketch.We proceed by giving an upper bound for |βi |: |βi (x)| ≤
∏

0≤j≤n
j,i

L j
i , where L j

i B max
x∈I

∣∣∣∣∣∣ S(x) − Sj

x − xj

∣∣∣∣∣∣. Thus,

|βi (x)| ≤ Ln
i , We then give a lower bound for |αi | obtaining |αi | ≥ Dn

i , where Di B minj,i

∣∣∣∣∣ Si−Sj
xi−xj

∣∣∣∣∣. We have that

|`s
i (x)| ≤

(
Li
Di

)n
|`i (x)|.

Therefore, defining L B maxi Li , D B mini Di and considering the sum of the Lagrange polynomials, we obtain

ΛS
n ≤

(
L
D

)n
Λn . �
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The ”fake” nodes approach: summary

Constructing RS
n,f is equivalent to build the polynomial interpolant at

the ”fake” nodes.

If li is the Lagrange polynomial at S(Xn), then at x̄ = S(x) ∈ S(I)

li(x̄) = li(S(x)) =
∏

0≤j≤n
j,i

S(x) − S(xj)

S(xi) − S(xj)
= lSi (x) , x ∈ I.

As a consequence, we obtain ΛS
n (I) = Λn(S(I)) .

↪→ Remark: find a suitable admissible map S. ←↩
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S-Runge
AIM: find a S s.t the resulting set of fake nodes S(Xn) guarantees a
stable interpolation process. The “natural” choice: Chebyshev-Lobatto
(CL) nodes on the interval I

Algorithm (S-Runge)

1 Inputs: Xn (ordered left-right).

2 Main procedure: Let Cn+1 be the CL nodes.

For x ∈ [xi , xi+1], i = 0, . . . , n − 1, define S as the piecewise
linear interpolant

S(x) = β1,i(x − xi) + β2,i ,

where
β1,i =

ci+1 − ci

xi+1 − xi
, β2,i = ci .

3 Outputs: S.
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S-Gibbs
Obs: jump discontinuities set of f is

Dm :=
{
(ξi , di) | ξi ∈ (a, b), ξi < ξi+1, and di B |f(ξ+

i ) − f(ξ−i )|
}
, i = 0, . . . ,m.

Remark: to identify jumps/discontinuities see e.g. [Canny IEEE 1986,
Archibald et al. SINUM2005, Romani et al. JCAM 2019] and Sestini’s
talk, Pepe’s poster.

Algorithm (S-Gibbs)

1 Inputs: Xn, Dm and k > 0.

2 Main procedure:

- 1. αi B kdi , i = 0, . . . ,m.
2. Letting Ai =

∑i
j=0 αj , define S as follows:

S(x) =

{
x, for x ∈ [a, ξ0[,
x + Ai , for x ∈ [ξi , ξi+1[, 0 ≤ i < m, or x ∈ [ξm, b].

3 Outputs: S.
18 of 54



Remarks (S-Gibbs)

Our strategy consists in constructing the map S in such a way
that it sufficiently increases the gap between the node right
before and the one right after the discontinuity via the real
parameters αi .

About the shifting parameter k > 0. We experimentally
observed that its selection is not critical. The resulting
interpolation process is not sensitive to its choice, provided
that it is sufficiently large, i.e. in such a way that in the mapped
space the so-constructed function g has no steep gradients;
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Cardinals

Figure: Left-right, up-down: the original cardinals on 4 nodes, the
cardinals around ξ = 0, k = 0 the cardinals around ξ = 0.2, k = 1,the
cardinals around ξ = 0, k = 0.5.

20 of 54



Runge example
I = [−5, 5], f1 = 1/(1 + x2), Xn: equal or random pts, En evaluation pts.
Relative Maximum Absolute Error (RMAE)

RMAE = max
i=0,...,m

|Rs
n,f (x̄i) − f(x̄i)|

|f(x̄i)|
.

En are equally spaced pts.
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Figure: Interpolation with 13 points of the Runge function on [−5, 5] using
equispaced (left), CL (center) and fake nodes (right). The nodes are
represented by stars, the original and reconstructed functions are plotted
with continuous red and dotted blue lines, respectively.
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Figure: The RMAE for the Runge function varying the number of nodes.
The results with equispaced, CL and fake nodes are represented by
black circles, blue stars and red dots, respectively.
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Figure: Lebesgue functions of equispaced (left), CL (center) and fake CL
(right) nodes.
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Gibbs example

f2(x) B



x2

10
, −5 ≤ x < − 3

2 ,

1
4

x +
19
8
, − 3

2 ≤ x < 5
2 ,

−
x3

30
+ 4, 5

2 ≤ x ≤ 5.
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Figure: Interpolation at 20 points of the function f2 on [−5, 5], using equispaced (left), CL nodes (center) and the
discontinuous map (right). The nodes are represented by stars, the original and reconstructed functions are plotted with
continuous red and dotted blue lines, respectively.
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Figure: The RMAE for the function f2 varying the number of nodes. The
results with equispaced, CL and fake nodes are represented by black
circles, blue stars and red dots, respectively.
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Figure: Lebesgue functions of equispaced (left), CL (center) and fake
nodes (right).
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The abs function
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Figure: Runge for f(x) = 7|x |
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Figure: Gibbs for f(x) = 7|x |
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Two gifs
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What we are doing

Extensions to rational functions, in particular the Floater-Hormann
(FH) and trigonometric FH (for periodic signals)

In the 2d case, we have results on discontinuous functions on the
square, using polynomial approximation at the Padua points or
tensor product meshes;

in 2d and 3d we can extract Approximate Fekete Points on various
domains (disk, sphere, polygons, spherical caps, lunes, ... )

In higher dimensions we could consider to the so-called Lissajous
points or Varyably Scaled Discontinuos Kernels (VSDK) for
scattered data (see part II)

Links: https://www.math.unipd.it/˜marcov/CAA.html,
https://en.wikipedia.org/wiki/Padua_points,
https://en.wikipedia.org/wiki/Runge%27s_phenomenon#

S-Runge_algorithm_without_resampling
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Cont

Stability and error analysis

We are working in improving the error analysis and bounding the
Lebesgue constant(s).

Applications: Image registration in nuclear medicine, periodic
signals,...

Figure: Left: interpolation with PD60 of a function with a circular jump. Right: the same by mapping circularly the PD

points, and using least-squares fake-Padua
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PART II

Variably Scaled Discontinuous Kernels (VSDK)
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Outline PART II

6 Variably Scaled Discontinuous Kernels (VSDK)

7 Generality on kernel-based approximation

8 Variably Scaled Discontinuous Kernels

9 An application
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Generality on kernel-based approximation

φ : [0,∞)→ R, Conditionally Positive Definite (CPD) of order ` or
Strictly Positive Definite (SPD) and radial

globally supported:
name φ `

Gaussian C∞ (GA) e−ε
2 r2

0
Generalized Multiquadrics C∞ (GM) (1 + r2/ε2)3/2 2

locally supported:
name φ `

Wendland C2 (W2) (1 − εr)4
+ (4εr + 1) 0

Buhmann C2 (B2) 2r4 log r − 7/2r4 + 16/3r3 − 2r2 + 1/6 0

we often consider φ(ε·), with ε called shape parameter

kernel notation K(x, y)(= Kε(x, y)) = Φε(x − y) = φ(ε‖x − y‖2)

native space NK (Ω) (where K is the reproducing kernel)

finite subspace NK (X) = span{K(·, x) : x ∈ X , |X | = N} ⊂ NK (Ω).

Pf ,X =
N∑

i=1

ciK(·, xi) is the kernel-based interpolant
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Gaussian C∞ (GA) e−ε
2 r2

0
Generalized Multiquadrics C∞ (GM) (1 + r2/ε2)3/2 2

locally supported:
name φ `

Wendland C2 (W2) (1 − εr)4
+ (4εr + 1) 0

Buhmann C2 (B2) 2r4 log r − 7/2r4 + 16/3r3 − 2r2 + 1/6 0

we often consider φ(ε·), with ε called shape parameter

kernel notation K(x, y)(= Kε(x, y)) = Φε(x − y) = φ(ε‖x − y‖2)

native space NK (Ω) (where K is the reproducing kernel)

finite subspace NK (X) = span{K(·, x) : x ∈ X , |X | = N} ⊂ NK (Ω).

Pf ,X =
N∑
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Separation distance, fill-distance and power function

qX :=
1
2

min
i,j
‖xi − xj ‖2 , (separation distance) hX ,Ω := sup

x∈Ω
min
xj∈X

‖x − xj ‖2 , (fill − distance)

PΦε,X (x) :=

√
Φε(0) − (u∗(x))T A u∗(x) , (power function) Aij = K(xi , xj ), u∗ vector of cardinal functions

Figure: The fill-distance of 25 Halton points h ≈ 0.2667

Figure: Power function for the Gaussian kernel with ε = 6 on a grid of 81 uniform, Chebyshev and Halton points,
respectively. 34 of 54



Pointwise error estimates
see Wendland’s (2005) or Fasshauer’s (2007) books

Theorem
Let Ω ⊂ Rd and K ∈ C(Ω × Ω) be PD on Rd . Let X = {x1, . . . , , xn} be a
set of distinct points. Take a function f ∈ NΦ(Ω) and denote with Pf its
interpolant on X. Then, for every x ∈ Ω

|f(x) − Pf (x)| ≤ PΦε,X (x)‖f‖NK (Ω) . (6)

Theorem
Let Ω ⊂ Rd and K ∈ C2κ(Ω × Ω) be symmetric and positive definite,
X = {x1, . . . , , xN} a set of distinct points. Consider f ∈ NK (Ω) and its
interpolant Pf on X. Then, there exist positive constants h0 and C
(independent of x, f and Φ), with hX ,Ω ≤ h0, such that

|f(x) − Pf (x)| ≤ C hκX ,Ω

√
CK (x)‖f‖NK (Ω) . (7)

and CK (x) = max|β|=2κ maxw,z∈Ω∪B(x,c2hX ,Ω) |D
β
2Φ(w, z)| . 35 of 54



Strategies for controlling the interpolation error

Obs
The choice of the shape parameter ε in order to get the smallest
(possible) interpolation error is crucial.

Trial and Error

Power function minimization

Leave One Out Cross Validation (LOOCV)

Trial and error strategy:
interpolation of the 1d sinc function
with Gaussian for ε ∈ [0, 20], taking
100 values of ε and
N = 2k + 1, k = 1, . . . , 6
equispaced data points.
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Trade-off principle

Figure: RMSE, MAXERR and 2-Condition Number with 30 values of
ε ∈ [0.1, 20], for interpolation of the Franke function on a grid of 40 × 40
Chebyshev points

Trade-off or uncertainty principle [Schaback 1995]

Accuracy vs Stability

Accuracy vs Efficiency

Accuracy and stability vs problem size 37 of 54



From RBF to VSK interpolation

Main motivation
The shape parameter ε is a crucial computational issue in RBF
interpolation (tuning strategies, cross validation,...)

VSK
To overcome such problems, [Bozzini et al 2015] introduced the so-called
Variably Scaled Kernels (VSK)

Scale function
The classical tuning strategy of finding the optimal shape parameter, is
now based on a scaling function which plays the role of a density
function.
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Variably Scaled Kernels (VSK)
[Bozzini et al. 2015]

Definition
Letting Σ ⊆ (0,+∞) and Φ a positive definite radial kernel on
Ω × Σ ⊂ Rd+1, depending on the shape parameter ε > 0. Given a scaling
function ψ : Ω −→ Σ, we define a VSK Φψ on Ω as

Φψ(x, y) := Φ((x, ψ(x)), (y, ψ(y))), ∀ x, y ∈ Ω. (8)

Obs

if Φ is radial Φψ(x, y) = Φ(‖x − y‖2 + (ψ(x) − ψ(y))2) ,

in Machine Learning this is known as Kernel Trick.
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VSK interpolant

Set Ψ(x) = (x, ψ(x)).
The interpolant on the node set

Ψ(X) :=
{
(xk , ψ(xk )), xk ∈ X

}
,

(we choose ε = 1) takes the form

Pf (Ψ(x)) =
N∑

k=1

ck Φ(Ψ(x),Ψ(xk )), x ∈ Ω, xk ∈ X

Given interpolant Pf on Rd+1, we can project back on Ω the points
(x, ψ(x)) ∈ Rd+1. The VSK interpolantVf on Ω , belongs to
span{Φψ(·, xk ), k = 1, . . . ,N} and by using (8)

Vf (x) :=
N∑

k=1

ck Φψ(x, xk ) =
N∑

k=1

ck Φ(Ψ(x),Ψ(xk )) = Pf (Ψ(x)).

(9)
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VSDK

Variably Scaled Discontinous Kernels (VSDK)

References

VSK for discontinuous functions [Rossini 2017],

VSK-PU for elliptic PDEs [DeM et al, 2018].

Variably Scaled Discontinuos Kernels presented [DeM, Marchetti,
Perracchione, 2019]
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Learning 1d example [DeM, Marchetti,
Perracchione, 2019]

Let Ω = (a, b) ⊂ R be an open interval and let ξ ∈ Ω. We consider a
function f that has a jump discontinuity in ξ

f(x) :=

{
f1(x), a < x < ξ,
f2(x), ξ ≤ x < b ,

where
lim

x→ξ−
f1(x) , f2(ξ) .

Problem/Solution

Problem: approximating f on node set X ⊂ Ω originates the Gibbs
phenomenon.

Solution: consider VSK-like interpolants as follows.
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Cont ’

Let α, β ∈ R>0, α , β and S = {α, β}. As scaling function consider

ψ(x) :=

{
α, x < ξ,
β, x ≥ ξ.

ψ is piecewise constant, having a jump discontinuity at ξ as the
function f .

The interpolantVψ on X = {xk , k = 1, . . . ,N} is then a linear
combination of discontinuous functions Φψ(·, xk ) having a jump at ξ

if a < xk < ξ

Φψ(x, xk ) =

{
φ(|x − xk |), x < ξ,
φ(‖(x, α) − (xk , β)‖2), x ≥ ξ,

if ξ ≤ xk < b

Φψ(x, xk ) =

{
φ(|x − xk |), x ≥ ξ,
φ(‖(x, α) − (xk , β)‖2), x < ξ.
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Definition, 1d case

Definition
Let Ω = (a, b) ⊂ R be an open interval, S = {α, β} with α , β ∈ R>0 and
let D = {ξj , j = 1, . . . , `} ⊂ Ω be the set of the jumps, ξj < ξj+1 for all j.
Define ψ : Ω −→ S s.t.

ψ(x) :=

{
α, x ∈ (a, ξ1) or x ∈ [ξj , ξj+1), where j is even,
β, x ∈ [ξj , ξj+1), where j is odd,

and

ψ(x)|[ξ` ,b) :=

{
α, ` is even,
β, ` is odd.

The corresponding kernel Φψ is a VSDK on Ω.

Obs
Dealing with functions having jumps becomes ”natural” to use linear
combination of Φψ(·, xk ) functions having jumps at the same locations.
But the error analysis requires another approach !
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VSDK, analysis
Letting Ω and D as before. Take n ∈ N and ψn : Ω −→ Σ ⊆ (0,+∞)

ψn(x) :=


α, x ∈ (a, ξ1 − 1/n) or x ∈ [ξj + 1/n, ξj+1 − 1/n) j is even,
β, x ∈ [ξj + 1/n, ξj+1 − 1/n) j is odd,
γ1(x), x ∈ [ξj − 1/n, ξj + 1/n) j is odd,
γ2(x), x ∈ [ξj − 1/n, ξj + 1/n) j is even,

(10)

ψn(x)|[ξ`+1/n,b) :=

{
α, ` is even,
β, ` is odd,

where γ1, γ2 are continuous, strictly monotonic functions and

lim
x→ξj+1+1/n

γ1(x) = γ2(ξj − 1/n) = β, lim
x→ξj+1+1/n

γ2(x) = γ1(ξj − 1/n) = α.

Scaling function as pointwise limit

From Definition above it is straightforward to verify that ∀x ∈ Ω

lim
n→∞

ψn(x) = ψ(x).
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Example to fix idea

Take a functions with discontinuities at ξ1 = −0.5 and ξ2 = 0.5. By using
(10), we define the scaling function for the corresponding VSKs

ψn(x) B


1, x ∈ (−1, ξ1 − 1/n) or x ∈ [ξ2 + 1/n, 1),
2, x ∈ [ξ1 + 1/n, ξ2 − 1/n),
(nx − ξ1n + 3)/2, x ∈ [ξ1 − 1/n, ξ1 + 1/n),
(−nx + ξ2n + 3)/2, x ∈ [ξ2 − 1/n, ξ2 + 1/n).

(11)
The limn→∞ ψn(x) is the discontinous scaling function of the VSDKs

ψ(x) B

{
1, x ∈ (−1, ξ1) or x ∈ [ξ2, 1),
2, x ∈ [ξ1, ξ2).

(12)
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Example, cont’
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Figure: The VSK interpolant using ψ10, ψ50, ψ500 and the VSDK
interpolant ψ. f1 on X using Matérn kernel C6.
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VSDK, convergence and error bound

Theorem (DeM, Marchetti, Perracchione 2019)

For every x, y ∈ Ω,
lim

n→∞
Φψn (x, y) = Φψ(x, y),

where Φψ is the kernel considered in Definition.
The interpolant at the nodes X = {xk , k = 1, . . . ,N} on Ω is the limit

lim
n→∞
Vψn (x) = Vψ(x), ∀ x ∈ Ω .

Power function and error bound

PΦψ,X (x) = lim
n→∞

PΦψn ,X (x).

For all f ∈ NKψ(Ω) we have

|f(x) −Vψ(x)| ≤ PΦψ,X (x)‖f‖NKψ(Ω)
, x ∈ Ω.
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VSDK, multidimensional

Obs
VSDKs rely on classical RBFs and therefore they can be extended to any
spatial dimension.

Partition
Let Ω ⊂ Rd be an open subset with Lipschitz boundary and discontinuous
function f : Ω −→ R s.t. exists a disjoint partition P = {R1, . . . ,Rm} of
regions having Lipschitz boundaries with jumps along
(d − 1)-dimensional manifolds, say γ1, . . . , γp

γi ⊆

m⋃
i=1

∂Ri \ ∂Ω, ∀i = 1, . . . , p.

Scaling function

Let Ω as above, S = {α1, . . . , αm} real distinct values and P the partition
of Ω. A scaling functions ψ on Ω is ψ(x)|Ri

:= αi .
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VSDK, multidimensional
We may consider continuous scaling functions ψn on Ω s.t. ∀x ∈ Ω,

lim
n→∞

ψn(x) = ψ(x),

and
lim

n→∞
Vψn (x) = Vψ(x),

Theorem (Power function and error bound)

Let Φψ be a VSDK as in Definition 49. Suppose that
X = {xi , i = 1, . . . ,N} ⊆ Ω have distinct points. For all f ∈ NKψ(Ω)

we have

|f(x) −Vψ(x)| ≤ PΦψ,X (x)‖f‖NKψ(Ω)
, x ∈ Ω.

Note: error estimates in terms of the fill-distance are in [DeM, Erb
et al, 2019]. 50 of 54



An example
Let Ω = (−1, 1)2

f(x1, x2) =

{
e−(x2

1 +x2
2 ), x2

1 + x2
2 ≤ 0.6,

x1 + x2, x2
1 + x2

2 > 0.6,

We take 1089 Halton points on Ω as interpolation nodes and we evaluate
the approximant on equispaced points with mesh size 1.00E − 2.
We interpolate the function f via classical RBF interpolation on the set of
nodes X , using the Gaussian kernel function and selecting the optimal
shape parameter ε via LOOCV. Then, we compare this results with
VSDKs.

Figure: Classical RBF (left) and VSDK (right) interpolants.
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What we are doing

Obs
Applications to Magnetic Particle Imaging on Lissajous points via VSDK
are discussed in the recent paper [DeM, Erb et al, 2019].

Figure: Comparison of different interpolation methods in MPI. The
reconstructed data on the Lissajous nodes LS(33,32)

2 (left) is first
interpolated using the polynomial scheme derived in [Erb et al
2016](middle left). Using a mask constructed upon a threshold strategy
(middle right) the second interpolation is performed by the VSDK scheme
(right).
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Thank you, Gracias, Grazie

Rete ITaliana di Approssimazione
Italian Network on Approximation

https://sites.google.com/site/italianapproximationnetwork/
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