Polynomial approximation on Lissajous curves on the *d*-cube ¹

Stefano De Marchi 5émes Journeés Approximation, Université de Lille 1 Friday May 20, 2016

Università degli Studi

¹Joint work with Len Bos (Verona), Wolfgang Erb (Lueveck) Prancesco Marchetti (Padova) and Marco Vianello (Padova),

Outline

1 Introduction and known results

- 2d Lissajous curves
- 3d Lissajous curves
- Hyperinterpolation
- Computational issues
- Interpolation
- 2 The general approach
- 3 The tensor product case

4 Conclusion

Introduction and known results

Lissajous curves

Properties and motivation

Are parametric curves studied by Bowditch (1815) and Lissajous (1857) of the form

$$\gamma(t) = (A_x \cos(\omega_x t + \alpha_x), A_y \sin(\omega_y t + \alpha_y)).$$

 A_x, A_y are amplitudes, ω_x, ω_y are pulsations and α_x, α_y are phases.

Lissajous curves

Properties and motivation

Are parametric curves studied by Bowditch (1815) and Lissajous (1857) of the form

$$\gamma(t) = (A_x \cos(\omega_x t + \alpha_x), A_y \sin(\omega_y t + \alpha_y)).$$

 A_x, A_y are amplitudes, ω_x, ω_y are pulsations and α_x, α_y are phases.

2 Chebyshev polynomials (T_k or U_k) are Lissajous curves (cf. J. C. Merino 2003). In fact a parametrization of $y = T_n(x)$, $|x| \le 1$ is

$$\begin{cases} x = \cos t \\ y = -\sin\left(nt - \frac{\pi}{2}\right) & 0 \le t \le \pi \end{cases}$$

Lissajous curves

Properties and motivation

Are parametric curves studied by Bowditch (1815) and Lissajous (1857) of the form

$$\gamma(t) = (A_x \cos(\omega_x t + \alpha_x), A_y \sin(\omega_y t + \alpha_y)).$$

 A_x, A_y are amplitudes, ω_x, ω_y are pulsations and α_x, α_y are phases.

2 Chebyshev polynomials (T_k or U_k) are Lissajous curves (cf. J. C. Merino 2003). In fact a parametrization of $y = T_n(x)$, $|x| \le 1$ is

$$\begin{cases} x = \cos t \\ y = -\sin\left(nt - \frac{\pi}{2}\right) & 0 \le t \le \pi \end{cases}$$

3 Padua points (of the first family) [JAT 2006] lie on $[-1, 1]^2$ on the π -periodic Lissajous curve $T_{n+1}(x) = T_n(y)$ called generating curve given in parametric form as

$$\gamma_n(t) = (\cos nt, \cos(n+1)t), \ 0 \le t \le \pi, \ n \ge 1.$$

The generating curve of the Padua points (n = 4)

Figure : $\operatorname{Pad}_n = C_{n+1}^{O} \times C_{n+2}^{E} \cup C_{n+1}^{E} \times C_{n+2}^{O} \subset C_{n+1} \times C_{n+2}$

 $C_{n+1} = \left\{ z_j^n = \cos\left(\frac{(j-1)\pi}{n}\right), \ j = 1, \dots, n+1 \right\}$: Chebsyhev-Lobatto points on [-1, 1]

The generating curve of the Padua points (n = 4)

Figure : $\operatorname{Pad}_{n} = C_{n+1}^{O} \times C_{n+2}^{E} \cup C_{n+1}^{E} \times C_{n+2}^{O} \subset C_{n+1} \times C_{n+2}$

$$\begin{split} & C_{n+1} = \left\{ z_j^n = \cos\left(\frac{(j-1)\pi}{n}\right), \ j = 1, \dots, n+1 \right\}: \text{Chebsyhev-Lobatto points} \\ & \text{on } [-1,1] \\ & \text{Note: } |Pad_n| = \binom{n+2}{2} = dim(\mathbb{P}_n(\mathbb{R}^2)) \end{split}$$

Lemma (cf. JAT 2006)

For all $p \in \mathbb{P}_{2n}(\mathbb{R}^2)$ we have

$$\frac{1}{\pi^2}\int_{[-1,1]^2}p(x,y)\frac{1}{\sqrt{1-x^2}}\frac{1}{\sqrt{1-y^2}}dxdy=\frac{1}{\pi}\int_0^{\pi}p(\gamma_n(t))dt.$$

Lemma (cf. JAT 2006)

For all $p \in \mathbb{P}_{2n}(\mathbb{R}^2)$ we have

$$\frac{1}{\pi^2}\int_{[-1,1]^2}p(x,y)\frac{1}{\sqrt{1-x^2}}\frac{1}{\sqrt{1-y^2}}dxdy=\frac{1}{\pi}\int_0^{\pi}p(\gamma_n(t))dt.$$

Proof. Check the property for all $p(x, y) = T_j(x)T_k(y)$, $j + k \le 2n$. \Box

Lissajous points in 2D: non-degenerate case

[Erb et al. NumerMath16 (to appear)] in the framework of Magnetic Particle Imaging applications, considered

$$\gamma_{n,p}(t) = (\sin nt, \sin((n+p)t)) \quad 0 \le t < 2\pi,$$

 $n, p \in \mathbb{N}$ s.t. *n* and n + p are relative primes.

Lissajous points in 2D: non-degenerate case

[Erb et al. NumerMath16 (to appear)] in the framework of Magnetic Particle Imaging applications, considered

$$\gamma_{n,p}(t) = (\sin nt, \sin((n+p)t)) \quad 0 \le t < 2\pi,$$

 $n, p \in \mathbb{N}$ s.t. *n* and n + p are relative primes.

• $\gamma_{n,p}$ is non-degenerate iff p is odd.

Lissajous points in 2D: non-degenerate case

[Erb et al. NumerMath16 (to appear)] in the framework of Magnetic Particle Imaging applications, considered

$$\gamma_{n,p}(t) = (\sin nt, \sin((n+p)t)) \quad 0 \le t < 2\pi,$$

 $n, p \in \mathbb{N}$ s.t. *n* and n + p are relative primes.

- $\gamma_{n,p}$ is non-degenerate iff p is odd.
- Consider $t_k = 2\pi k/(4n(n+p)), k = 1, ..., 4n(n+p).$

 $Lisa_{n,p} := \{\gamma_{n,p}(t_k), k = 1, ..., 4n(n+p)\}, |Lisa_{n,p}| = 2n(n+p)+2n+p.$

Notice: $|Lisa_{n,1}| = 2n^2 + 4n + 1$ while $|Pad_{2n}| = 2n^2 + 3n + 1$ is obtained with p = 1/2.

Figure : From the paper by Erb et al. NM2016 (cf. arXiv 1411.7589)

UNIVERSIT?

DI PADOVA

[Erb AMC16 (to appear)] has then studied the degenerate 2π -Lissajous curves

[Erb AMC16 (to appear)] has then studied the degenerate 2π -Lissajous curves

$$\gamma_{n,p}(t) = (\cos nt, \cos((n+p)t)) \quad 0 \le t < 2\pi,$$

[Erb AMC16 (to appear)] has then studied the degenerate 2π -Lissajous curves

$$\gamma_{n,p}(t) = (\cos nt, \cos((n+p)t)) \quad 0 \le t < 2\pi,$$

Consider
$$t_k = \pi k / (n(n+p)), \ k = 0, 1, ..., n(n+p).$$

$$LD_{n,p} := \{\gamma_{n,p}(t_k), k = 0, 1, ..., n(n+p)\}, |LD_{n,p}| = \frac{(n+p+1)(n+1)}{2}$$

Notice: for p = 1, $|LD_{n,1}| = |Pad_n| = \dim(\mathbb{P}_n(\mathbb{R}^2))$ and correspond to the Padua points themselves.

Figure : From the paper by Erb AMC16, (cf. arXiv 1503.00895)

→ Work in progress with W. Erb and F. Marchetti. Ideas to avoid Gibbs phenomenon at discontinuites [Gottlieb&Shu SIAMRev97,Tadmor&Tanner IMAJN05]

 \longrightarrow Work in progress with W. Erb and F. Marchetti.

Ideas to avoid Gibbs phenomenon at discontinuites [Gottlieb&Shu SIAMRev97,Tadmor&Tanner IMAJN05]

- 1 Sampling with Lissajous for finding the interpolating polynomial
- 2 Initial non-adaptive filter

$$\sigma(x;\alpha) = \begin{cases} e^{x^{\alpha}/(x^2-1)} & |x| \le 1\\ 0 & |x| > 1 \end{cases}$$

(α can vary with the point *x* in the adaptive case): this allow to avoid the Gibbs phenomenon

- 3 Detect the discontinuities by Canny edge-detector algorithm
- 4 Apply adptively the filter

Image reconstruction with adaptive filters: examples

Figure : Original image: 115 × 115. Lissajous non degenerate curve with (n, p) = (32, 33); Chebfun2 (modified) for the coefficients; $\alpha = 4$ for the initial filter and α chosen "Ad hoc" for the remainig adapted filtering

UNIVERSIT?

DI PADOV

Image reconstruction with adaptive filters: examples

Figure : Original image: 115 × 115. Lissajous non degenerate curve with (n, p) = (32, 33); Chebfun2 (modified) for the coefficients; $\alpha = 4$ for the initial filter and α chosen "Ad hoc" for the remaining adapted filtering

UNIVERSITY

DI PADON

• $\Omega = [-1, 1]^3$: the standard 3-cube

The product Chebyshev measure

$$d\mu_3(\mathbf{x}) = w(\mathbf{x})d\mathbf{x}, \quad w(\mathbf{x}) = \frac{1}{\pi^3} \frac{1}{\sqrt{(1 - x_1^2)(1 - x_2^2)(1 - x_3^2)}}.$$
(1)

■ \mathbb{P}_k^3 : space of trivariate polynomials of degree k in \mathbb{R}^3 (dim(\mathbb{P}_k^3) = (k + 1)(k + 2)(k + 3)/6).

This results shows which are the admissible 3d Lissajous curves

Theorem (cf. Bos, DeM, Vianello 2015, IMA J. NA to appear)

Let $n \in \mathbb{N}^+$ and (a_n, b_n, c_n) be the integer triple

$$(a_n, b_n, c_n) = \begin{cases} \left(\frac{3}{4}n^2 + \frac{1}{2}n, \frac{3}{4}n^2 + n, \frac{3}{4}n^2 + \frac{3}{2}n + 1\right), & n \text{ even} \\ \left(\frac{3}{4}n^2 + \frac{1}{4}, \frac{3}{4}n^2 + \frac{3}{2}n - \frac{1}{4}, \frac{3}{4}n^2 + \frac{3}{2}n + \frac{3}{4}\right), & n \text{ odd.} \end{cases}$$
(2)

Then, for every integer triple (i, j, k), not all 0, with $i, j, k \ge 0$ and $i + j + k \le m_n = 2n$, we have the property that $ia_n \ne jb_n + kc_n$, $jb_n \ne ia_n + kc_n$, $kc_n \ne ia_n + jb_n$. Moreover, $m_n = 2n$ is maximal, in the sense that there exists a triple (i^*, j^*, k^*) , $i^* + j^* + k^* = 2n + 1$, that does not satisfy the property.

Cubature along the curve

On admissible curves follows

Proposition

Consider the Lissajous curves in $[-1, 1]^3$ defined by

 $\boldsymbol{\ell}_{n}(\theta) = \left(\cos(a_{n}\theta), \cos(b_{n}\theta), \cos(c_{n}\theta)\right), \quad \theta \in [0,\pi], \quad (3)$

where (a_n, b_n, c_n) is the sequence of integer triples (2). Then, for every total-degree polynomial $p \in \mathbb{P}^3_{2n}$

$$\int_{[-1,1]^3} p(\boldsymbol{x}) \, d\mu_3(\boldsymbol{x}) = \frac{1}{\pi} \, \int_0^{\pi} p(\boldsymbol{\ell}_n(\theta)) \, d\theta \,. \tag{4}$$

Proof. It suffices to prove the identity for a polynomial basis (ex: for the tensor product basis $T_{\alpha}(\mathbf{x}), |\alpha| \le 2n$). \Box

Consequence II

Exactness

Corollary

Consider $p \in \mathbb{P}^3_{2n}$, $\ell_n(\theta)$ and $v = n \cdot \max\{a_n, b_n, c_n\} = n \cdot c_n$. Then

$$\int_{[-1,1]^3} p(\boldsymbol{x}) w(\boldsymbol{x}) d\boldsymbol{x} = \sum_{s=0}^{\mu} w_s p(\boldsymbol{\ell}_n(\theta_s)) , \qquad (5)$$

where

$$w_s = \pi^2 \omega_s , \quad s = 0, \dots, \mu , \qquad (6)$$

with

$$\mu = \nu, \ \theta_s = \frac{(2s+1)\pi}{2\mu+2}, \ \omega_s \equiv \frac{\pi}{\mu+1}, \ s = 0, \dots, \mu,$$
 (7)

or alternatively

$$\mu = \nu + 1 , \ \theta_{\rm S} = \frac{s\pi}{\mu} , \ s = 0, \dots, \mu , \ \omega_0 = \omega_\mu = \frac{\pi}{2\mu} , \ \omega_{\rm S} \equiv \frac{\pi}{\mu} , \ s = 1, \dots, \mu - 1 .$$
 (8)

The points set

$$\{\boldsymbol{\ell}_n(\theta_s), \ s=0,\ldots,\mu\}$$

are a 3-dimensional rank-1 Chebyshev lattices (for cubature of degree of exactness 2*n*).

- Cools and Poppe [cf. CHEBINT, TOMS 2013] wrote a search algorithm for constructing heuristically such lattices.
- Formulae (2) (together with (6), (7), (8)) provide explicit formulas for any degree.

An algebraic polynomial restricted to $\ell_n(\theta)$ is a trig polynomial of degree $\nu = n c_n$.

 \longrightarrow Complexity of interpolation and quadrature depends on $\nu.$ \longleftarrow

Optimality

Suppose that (a, b, c) is a triple of strictly positive integers such that $\max\{a, b, c\} < c_n$, with c_n given by (2). Then there exists a triple (i, j, k) of naturals, not all 0, and $i + j + k \le 2n$, such that either ia = jb + kc, jb = ia + kc, or kc = ia + jb.

The triples (2) are optimal, that is are those satisfying the Theorem 1 having the minimum maximum.

Hyperinterpolation and interpolation

General definition

Definition

Hyperinterpolation of multivariate continuous functions, on compact subsets or manifolds, is a discretized orthogonal projection on polynomial subspaces [Sloan JAT1995].

General definition

Definition

Hyperinterpolation of multivariate continuous functions, on compact subsets or manifolds, is a discretized orthogonal projection on polynomial subspaces [Sloan JAT1995].

Practically

It is a total-degree polynomial approximation of multivariate continuous functions, given by a truncated Fourier expansion in o.p. for the given domain

General definition

Definition

Hyperinterpolation of multivariate continuous functions, on compact subsets or manifolds, is a discretized orthogonal projection on polynomial subspaces [Sloan JAT1995].

Practically

It is a total-degree polynomial approximation of multivariate continuous functions, given by a truncated Fourier expansion in o.p. for the given domain

It requires 3 main ingredients

General definition

Definition

Hyperinterpolation of multivariate continuous functions, on compact subsets or manifolds, is a discretized orthogonal projection on polynomial subspaces [Sloan JAT1995].

Practically

It is a total-degree polynomial approximation of multivariate continuous functions, given by a truncated Fourier expansion in o.p. for the given domain

It requires 3 main ingredients

- **1** a good cubature formula (positive weights and high precision);
- **2** a good formula for representing the reproducing kernel (accurate and efficient);
- **3** a slow increase of the Lebesgue constant (which is the operator norm).

Definition and properties

For $f \in C([-1, 1]^3)$, using (5), the hyperinterpolation polynomial of f is

$$\mathcal{H}_n f(\mathbf{x}) = \sum_{0 \le i+j+k \le n} C_{i,j,k} \,\hat{\phi}_{i,j,k}(\mathbf{x}) , \qquad (9)$$

 $\hat{\phi}_{i,j,k}(oldsymbol{x}) = \hat{T}_i(x_1)\hat{T}_j(x_2)\hat{T}_k(x_3)$ with

$$\hat{T}_m(\cdot) = \sigma_m \cos(m \arccos(\cdot)), \ \ \sigma_m = \sqrt{\frac{1 + sign(m)}{\pi}}, \ \ m \ge 0$$

$$C_{i,j,k} = \sum_{s=0}^{\mu} w_s f(\ell_n(\theta_s)) \hat{\phi}_{i,j,k}(\ell_n(\theta_s)) .$$
(10)

Properties

■ $\mathcal{H}_n f = f$, $\forall f \in \mathbb{P}_n^3$ (projection operator, by construction).

$$||f - \mathcal{H}_n f||_2 \le 2\pi^3 E_n(f) , \quad E_n(f) = \inf_{p \in \mathbb{P}_n} ||f - p||_{\infty} . \tag{11}$$

Lebesgue constant

$$\|\mathcal{H}_n\|_{\infty} = \max_{\boldsymbol{x} \in [-1,1]^3} \sum_{s=0}^{\mu} w_s \left| K_n(\boldsymbol{x}, \boldsymbol{\ell}_n(\theta_s)) \right|$$
(12)

$$\mathcal{K}_{n}(\boldsymbol{x},\boldsymbol{y}) = \sum_{|\mathbf{i}| \leq n} \hat{\phi}_{\mathbf{i}}(\boldsymbol{x}) \hat{\phi}_{\mathbf{i}}(\boldsymbol{y}), \quad \mathbf{i} = (i,j,k)$$
(13)

where K_n is the reproducing kernel of \mathbb{P}_n^3 w.r.t. product Chebyshev measure $d\mu_3$

 Based on a conjecture stated in [DeM, Vianello & Xu, BIT 2009] and specialized in [H.Wang, K.Wang & X.Wang, CMA 2014] we get

$$\|\mathcal{H}_n\|_{\infty} = O((\log n)^3)$$

i.e. the minimal polynomial growth.

• \mathcal{H}_n is a projection, then

$$\|f - \mathcal{H}_n f\|_{\infty} = O\left((\log n)^3 E_n(f)\right) . \tag{14}$$
Computing the hyperinterpolation coefficient

The coefficients $\{C_{i,j,k}\}$ can be computed by a single 1D discrete Chebyshev transform along the Lissajous curve.

Proposition

Letting $f \in C([-1, 1]^3)$, (a_n, b_n, c_n) , v, μ , $\{\theta_s\}$, ω_s , $\{w_s\}$ as in Corollary 1. Then

$$C_{i,j,k} = \frac{\pi^2}{4} \sigma_{ia_n} \sigma_{jb_n} \sigma_{kc_n} \left(\frac{\gamma_{\alpha_1}}{\sigma_{\alpha_1}} + \frac{\gamma_{\alpha_2}}{\sigma_{\alpha_2}} + \frac{\gamma_{\alpha_3}}{\sigma_{\alpha_3}} + \frac{\gamma_{\alpha_4}}{\sigma_{\alpha_4}} \right), \quad (15)$$

$$\alpha_1 = ia_n + jb_n + kc_n , \quad \alpha_2 = |ia_n + jb_n - kc_n| ,$$

$$\alpha_3 = |ia_n - jb_n| + kc_n$$
, $\alpha_4 = ||ia_n - jb_n| - kc_n|$,

where { γ_m } are the first v + 1 coefficients of the discretized Chebyshev expansion of $f(T_{a_n}(t), T_{b_n}(t), T_{c_n}(t))$, $t \in [-1, 1]$, namely

$$\gamma_{m} = \sum_{s=0}^{\mu} \omega_{s} \, \hat{T}_{m}(\tau_{s}) \, f(T_{a_{n}}(\tau_{s}), T_{b_{n}}(\tau_{s}), T_{c_{n}}(\tau_{s})) \,, \tag{16}$$

 $m = 0, 1, ..., \nu$, with $\tau_s = \cos(\theta_s)$, $s = 0, 1, ..., \mu$.

From previous Prop., hyperinterpolation on $\ell_n(t)$ can be done by a single 1-dimensional FFT \rightarrow Chebfun package [Chebfun 2014].

From previous Prop., hyperinterpolation on $\ell_n(t)$ can be done by a single 1-dimensional FFT \rightarrow Chebfun package [Chebfun 2014].

The polynomial interpolant of a function g can be written

$$\pi_{\mu}(t) = \sum_{m=0}^{\mu} c_m T_m(t)$$
(17)

where

$$c_{m} = \frac{2}{\mu} \sum_{s=0}^{\mu} {}^{\prime\prime} T_{m}(\tau_{s}) g(\tau_{s}) , \quad m = 1, \dots, \mu - 1 ,$$

$$c_{m} = \frac{1}{\mu} \sum_{s=0}^{\mu} {}^{\prime\prime} T_{m}(\tau_{s}) g(\tau_{s}) , \quad m = 0, \mu , \qquad (18)$$

Note: $\sum_{s=0}^{\mu}$ " means first and last terms are halved

If g(t) = f(T_{an}(t), T_{bn}(t), T_{cn}(t)) and comparing with the discrete Chebyshev expansion coefficients (16) we get

$$\frac{\gamma_m}{\sigma_m} = \begin{cases} \frac{\pi}{2} c_m, & m = 1, \dots, \mu - 1\\ \pi c_m, & m = 0, \mu \end{cases}$$
(19)

i.e., the 3D hyperinterpolation coefficients (15) can be computed by the $\{c_m\}$ and (19).

... practically ...

A single call of the function **chebfun** on $f(T_{a_n}(t), T_{b_n}(t), T_{c_n}(t))$, truncated at the $(\mu + 1)$ th-term, produces all the relevant coefficients $\{c_m\}$ in an extremely fast and stable way.

Example

Take n = 100 and the functions

$$f_1(\mathbf{x}) = \exp(-c \|\mathbf{x}\|_2^2), \ c > 0, \ f_2(\mathbf{x}) = \|\mathbf{x}\|_2^{\beta}, \ \beta > 0,$$
 (20)

To compute the $\mu = \frac{3}{4}n^3 + \frac{3}{2}n^2 + n + 2 = 765102$ coefficients from which we get, by (15), the (n + 1)(n + 2)(n + 3)/6 = 176851 coefficients of trivariate hyperinterpolation,

it took about 1 sec by using Chebfun 5.1 on a Athlon 64 X2 Dual Core 4400+ 2.4 GHz processor.

Example hyperinterpolation errors

Figure : Left: Hyperinterpolation errors for the trivariate polynomials $\|\mathbf{x}\|_2^{2k}$ with k = 5 (diamonds) and k = 10 (triangles), and for the trivariate function f_1 with c = 1 (squares) and c = 5 (circles). Right: Hyperinterpolation errors for the trivariate function f_2 with $\beta = 5$ (squares) and $\beta = 3$ (circles).

The sampling set (Chebyshev lattice)

 $\mathcal{A}_n = \{\ell_n(\theta_s), s = 0, ..., \mu\}$ has been used as a Weakly Admissible Mesh (WAM) from which we extracted the Approximate Fekete Points (AFP) and the Discrete Leja Points (DLP).

Notice: DLP form a sequence, i.e., its first $N_r = \dim(\mathbb{P}_r^d)$ elements span \mathbb{P}_r^d , $1 \le r \le n$.

The extraction of N = dim(P³_n) points has been done by the software available at www.math.unipd.it/~marcov/CAAsoft.
 We wrote the package hyperlissa, a Matlab code for hyperinterpolation on 3d Lissajous curves.

Example Chebyshev lattice points

Figure : Left: the Chebyshev lattice (circles) and the extracted AFP (red asterisks), on the Lissajous curve for polynomial degree n = 5. Right: A face projection of the curve and the sampling nodes

Figure : Lebesgue constants (log scale) of the AFP (asterisks) and DLP (squares) extracted from the Chebyshev lattices on the Lissajous curves, for degree n = 1, 2, ..., 30, compared with $\dim(\mathbb{P}_n^3) = (n+1)(n+2)(n+3)/6$ (upper solid line) and n^2 (dots).

Figure : Interpolation errors on AFP (asterisks) and DLP (squares) for the trivariate functions f_1 (Left) with c = 1 (solid line) and c = 5 (dotted line), and f_2 (Right) with $\beta = 5$ (solid line) and $\beta = 3$ (dotted line).

The general approach

- \mathbb{P}_m^d , the space of polynomials of total degree at most *m* (in \mathbb{R}^d)
- $\mathbb{P}_m^{\otimes d}$, the *d* ordered tensor product of \mathbb{P}_m^1

- \mathbb{P}_m^d , the space of polynomials of total degree at most *m* (in \mathbb{R}^d)
- $\mathbb{P}_m^{\otimes d}$, the *d* ordered tensor product of \mathbb{P}_m^1

Definition

•
$$V = \mathbb{P}_m^d$$
 and $\alpha \in \mathbb{Z}^d$ we set $|\alpha|_V := \sum_{i=1}^d |\alpha_i|$

■
$$V = \mathbb{P}_m^{\otimes d}$$
 and $\alpha \in \mathbb{Z}^d$ we set $|\alpha|_V := \max_{1 \le i \le d} |\alpha|_i$

$$x^{\alpha} \in V \iff |\alpha|_V \leq m$$

- \mathbb{P}_m^d , the space of polynomials of total degree at most *m* (in \mathbb{R}^d)
- **\blacksquare** $\mathbb{P}_m^{\otimes d}$, the *d* ordered tensor product of \mathbb{P}_m^1

Definition

•
$$V = \mathbb{P}_m^d$$
 and $\alpha \in \mathbb{Z}^d$ we set $|\alpha|_V := \sum_{i=1}^d |\alpha_i|$

■
$$V = \mathbb{P}_m^{\otimes d}$$
 and $\alpha \in \mathbb{Z}^d$ we set $|\alpha|_V := \max_{1 \le i \le d} |\alpha|_i$

$$x^{\alpha} \in V \iff |\alpha|_V \le m$$

Take $\mathbf{a} \in \mathbb{Z}_{>0}^d$: $\ell_{\mathbf{a}}(t) := (\cos(a_1 t), \cos(a_2 t), \cdots, \cos(a_d t))$ the Lissajous curve.

- \mathbb{P}_m^d , the space of polynomials of total degree at most *m* (in \mathbb{R}^d)
- **\blacksquare** $\mathbb{P}_m^{\otimes d}$, the *d* ordered tensor product of \mathbb{P}_m^1

Definition

•
$$V = \mathbb{P}_m^d$$
 and $\alpha \in \mathbb{Z}^d$ we set $|\alpha|_V := \sum_{i=1}^d |\alpha_i|$

■
$$V = \mathbb{P}_m^{\otimes d}$$
 and $\alpha \in \mathbb{Z}^d$ we set $|\alpha|_V := \max_{1 \le i \le d} |\alpha|_i$

$$x^{\alpha} \in V \iff |\alpha|_V \le m$$

Take $\mathbf{a} \in \mathbb{Z}_{>0}^d$: $\ell_{\mathbf{a}}(t) := (\cos(a_1 t), \cos(a_2 t), \cdots, \cos(a_d t))$ the Lissajous curve.

Problem

Among the curves $\ell_{a}(t)$ select the ones s.t.

 $\max_{p \in V} \deg(p(\ell_{\mathbf{a}}(t))) \to \min$

V-admissible tuples and cubature

Definition

$$\mathbf{a} = (a_1, a_2, \dots, a_d) \in \mathbb{Z}^d_{>0}$$
 is V-admissible (of order *m*) if

$$\left(\nexists \ 0 \neq \mathbf{b} \in \mathbb{Z}^d, \ |\mathbf{b}|_V \leq m\right) \ s.t. \ \sum_{i=1}^d b_i a_i = 0.$$

We denote this set by $\mathcal{A}(V)$.

 $\longrightarrow \mathbf{a} \in \mathcal{A}(V)$ means that there are no "small" solution of the diophantine equation $\sum_{i=1}^{d} x_i a_i = 0$.

V-admissible tuples and cubature

Definition

$$\mathbf{a} = (a_1, a_2, \dots, a_d) \in \mathbb{Z}_{>0}^d$$
 is V-admissible (of order *m*) if

$$\left(\nexists \ 0 \neq \mathbf{b} \in \mathbb{Z}^d, \ |\mathbf{b}|_V \leq m\right) \ s.t. \ \sum_{i=1}^d b_i a_i = 0.$$

We denote this set by $\mathcal{A}(V)$.

 $\longrightarrow \mathbf{a} \in \mathcal{A}(V)$ means that there are no "small" solution of the diophantine equation $\sum_{i=1}^{d} x_i a_i = 0$.

Proposition

Let $\mathbf{a} \in \mathbb{Z}_{>0}^d$, then

$$\int_{[-1,1]^d} p(\mathbf{x}) d\mu_d(\mathbf{x}) = \frac{1}{\pi} \int_0^{\pi} p(\ell_{\mathbf{a}}(t)) dt$$
(21)

for all polynomials $p \in V$ if and only if $\mathbf{a} \in \mathcal{A}(V)$.

 $p(x) \in V$ restricted to the curve $\ell_a(t)$ is a *univariate* trigonometric polynomial $q(t) := p(\ell_a(t))$ whose complexity is bounded by its degree.

For example: $p \in V = \mathbb{P}_m^d$,

 $\deg(q(t)) \leq \left(\max_{1 \leq i \leq d} a_i\right) m$

 $p(x) \in V$ restricted to the curve $\ell_a(t)$ is a *univariate* trigonometric polynomial $q(t) := p(\ell_a(t))$ whose complexity is bounded by its degree.

For example:
$$p \in V = \mathbb{P}_m^d$$
,

$\deg(q(t)) \leq \left(\max_{1 \leq i \leq d} a_i\right) m$

It is then natural to try to find

 $\min_{\mathbf{a}\in\mathcal{A}(V)}\max_{1\leq i\leq d}a_i$

 $p(x) \in V$ restricted to the curve $\ell_a(t)$ is a *univariate* trigonometric polynomial $q(t) := p(\ell_a(t))$ whose complexity is bounded by its degree.

For example:
$$p \in V = \mathbb{P}_m^d$$
,

$\deg(q(t)) \leq \left(\max_{1 \leq i \leq d} a_i\right) m$

It is then natural to try to find

 $\min_{\mathbf{a}\in\mathcal{A}(V)}\max_{1\leq i\leq d}a_i$

■ For d=3 [cf. Theorem 1, Bos et al. 2016] has been indeed proved

 $\min_{\mathbf{a}\in\mathcal{A}(V)}\max_{1\leq i\leq d}a_i=O(m^2).$

The construction for d = 3

A Conjecture for "optimality"

Conjecture

For $m \equiv 0(4)$ let

$$a_1 = \frac{3m^2 + 4m}{16}, \ a_2 = \frac{3m^2 + 8m}{16}, \ a_3 = \frac{3m^2 + 12m + 16}{16}.$$

For $m \equiv 1(4)$ let

$$a_1=\frac{3m^2+6m+7}{16},\;a_2=\frac{3m^2+10m+19}{16},\;a_3=\frac{3m^2+14m+15}{16}.$$

For $m \equiv 2(4)$ let

$$a_1 = \frac{3m^2 + 4}{16}, \ a_2 = \frac{3m^2 + 12m - 4}{16}, \ a_3 = \frac{3m^2 + 12m + 12}{16}.$$

For $m \equiv 3(4)$ let

$$a_{1} = \begin{cases} \frac{3m^{2} + 2m - 1}{16} & m \equiv 3(8) \\ \frac{3m^{2} + 6m + 19}{16} & m \equiv 7(8), \end{cases} \quad a_{2} = \begin{cases} \frac{3m^{2} + 14m + 11}{16} & m \equiv 3(8) \\ \frac{3m^{2} + 10m 7}{16} & m \equiv 7(8), \end{cases} \quad a_{3} = \frac{3m^{2} + 14m + 27}{16}$$

The triple $(a_1, a_2, a_3) \in \mathcal{A}(V)$ is then optimal, that is

$$a_3 = \max\{a_1, a_2, a_3\} = \min_{\mathbf{b}\in\mathcal{A}(V)} \max_{1\leq i\leq d} b_i.$$

"Optimal" triples obtained by computer search

m			
2	1	2	3
3	1	3	5
	3	4	5
4	4	5	7
	4	6	7
5	7	8	10
	7	9	10
6	7	11	12
7	7	15	17
	9	11	17
	9	15	17
	10	16	17
	13	14	17
	13	16	17
8	14	16	19
	14	17	19
9	19	21	24
	19	22	24
10	19	26	27
11	24	33	34
12	30	33	37
	30	34	37
15	41	47	57
	49	52	57
	49	54	57
31	177	191	209
	177	195	209
	184	208	209
	193	200	209
	193	202	209

The case of d = 4 seems already to be more complicated

m				
2	1	2	3	4
3	1	3	5	7
	4	5	6	7
4	5	9	11	12
5	5	13	17	19
6	11	24	27	28
	15	24	27	28
7	9	31	37	39
8	34	50	54	55
9	59	61	71	74
	59	62	72	74
10	59	90	95	96
	65	90	91	96
	53	89	90	96
11	77	89	119	121
	53	109	119	121
12	105	138	150	152
13	159	167	187	188
14	177	215	229	230
15	193	219	267	273
	199	215	271	273

Remark: search complexity $O(m^3)$, very expensive! No idea about the

...

pattern (as for d = 3)

40 of 48

The tensor product case

In this setting

 $\deg(p(\ell_{\mathbf{a}}(t)) \leq \left(\sum_{i=1}^{d} a_{i}\right) m$

so that we have to solve

In this setting

 $\deg(p(\ell_{\mathbf{a}}(t)) \leq \left(\sum_{i=1}^{d} a_{i}\right) m$

so that we have to solve

The unique solution exists 🙂

Proposition

For $V = \mathbb{P}_M^{\otimes d}$ the tuple

$$\mathbf{g} = (1, (m+1), (m+1)^2, \cdots, (m+1)^{d-1}) \in \mathcal{A}(V)$$

is the unique minimizer (up to permutation) of the problem (P).

Proof: long and technical [Bos el al. 2016] .

 When m = 2n then for a ∈ A(V), we have the quadrature formula (21)

- When m = 2n then for a ∈ A(V), we have the quadrature formula (21)
- **2** Equivalently, for any $p, q \in \mathbb{P}_n^{\otimes d}$,

$$\int_{[-1,1]^d} p(x)q(x)d\mu_d(x) = \frac{1}{\pi} \int_0^{\pi} p(\ell_{\mathbf{a}}(t))q(\ell_{\mathbf{a}}(t))dt.$$
(22)

- When m = 2n then for a ∈ A(V), we have the quadrature formula (21)
- **2** Equivalently, for any $p, q \in \mathbb{P}_n^{\otimes d}$,

$$\int_{[-1,1]^d} p(x)q(x)d\mu_d(x) = \frac{1}{\pi} \int_0^{\pi} p(\ell_{\mathbf{a}}(t))q(\ell_{\mathbf{a}}(t))dt.$$
(22)

3 For *f* ∈ *C*([−1, 1]^{*d*}), its best least squares approximation in L₂([−1, 1]^{*d*}; *d*µ_{*d*}) is given by

$$\pi_n(f) = \sum_{|\alpha|_{\infty} \leq n} \langle f, \hat{T}_{\alpha} \rangle \hat{T}_{\alpha}.$$

with $\langle \cdot, \cdot \rangle$ the inner product

$$\langle f,g\rangle := \int_{[-1,1]^d} f(x)g(x)d\mu_d(x)$$

and $\hat{T}_{\alpha}(x) = c_{\alpha} \prod_{j=1}^{d} T_{j}(x_{j})$ the normalized Chebyshev polynomials (orthonormal basis of $\mathbb{P}_{n}^{\otimes d}$) 43 of 48

Define

$$\pi_n^{\mathbf{a}} := \sum_{|\alpha|_{\infty} \le n} \langle f, \hat{T}_{\alpha} \rangle_{\mathbf{a}} \hat{T}_{\alpha}$$

where $\langle f, g \rangle_{\mathbf{a}} := \frac{1}{\pi} \int_{0}^{\pi} f(\ell_{\mathbf{a}}(t)) g(\ell_{\mathbf{a}}(t)) dt$. By integrating along the Lissajous curve, (22), we have

$$\pi_n^{\mathbf{a}}(p) = \pi_n(p) = p, \quad \forall p \in \mathbb{P}_n^{\otimes d},$$

i.e, $\pi_n^{\mathbf{a}}$ is a projection onto $\mathbb{P}_n^{\otimes d}$.

Define

$$\pi_n^{\mathbf{a}} := \sum_{|\alpha|_{\infty} \le n} \langle f, \, \hat{T}_{\alpha} \rangle_{\mathbf{a}} \, \hat{T}_{\alpha}$$

where $\langle f, g \rangle_{\mathbf{a}} := \frac{1}{\pi} \int_0^{\pi} f(\ell_{\mathbf{a}}(t)) g(\ell_{\mathbf{a}}(t)) dt$. By integrating along the Lissajous curve, (22), we have

$$\pi_n^{\mathbf{a}}(p) = \pi_n(p) = p, \quad \forall p \in \mathbb{P}_n^{\otimes d},$$

i.e, $\pi_n^{\mathbf{a}}$ is a projection onto $\mathbb{P}_n^{\otimes d}$.

Quadrature of π^a_n

$$\frac{1}{\pi}\int_0^{\pi} t(\theta)d\theta = \frac{1}{N}\left\{\frac{1}{2}t(\theta_0) + \sum_{k=1}^{N-1}t(\theta_k) + \frac{1}{2}t(\theta_N)\right\}$$

for (at least) all even trigonometric polynomials of degree at most 2N - 1 ($\theta_k := k\pi/N$, $0 \le k \le N$, are the equally spaced angles).

Now, $p(\ell_a)$ is an even trigonometric polynomial of degree $\leq 2n(\sum_{i=1}^{d} a_i)$. Taking

$$N:=1+n\sum_{i=1}^{a}a_{i}$$

letting

$$x_k := \ell_{\mathbf{a}}(\theta_k), \quad w_0 := \frac{1}{2N}, \ w_k := \frac{1}{N}, \ 1 \le k \le N-1, \ w_N = \frac{1}{2N},$$

we have

$$\langle p, q \rangle_{\mathbf{a}} = \sum_{k=0}^{N} w_k p(x_k) q(x_k)$$
(23)

for all $p, q \in \mathbb{P}_n^{\otimes d}$.

Now, $p(\ell_a)$ is an even trigonometric polynomial of degree $\leq 2n(\sum_{i=1}^{d} a_i)$. Taking

$$N:=1+n\sum_{i=1}^{a}a_{i}$$

letting

$$x_k := \ell_{\mathbf{a}}(\theta_k), \quad w_0 := \frac{1}{2N}, \ w_k := \frac{1}{N}, \ 1 \le k \le N-1, \ w_N = \frac{1}{2N},$$

we have

$$\langle p,q \rangle_{\mathbf{a}} = \sum_{k=0}^{N} w_k p(x_k) q(x_k)$$
 (23)

for all $p, q \in \mathbb{P}_n^{\otimes d}$. Computing π_n^a by means of (23) with get the hyperinterpolation operator with uniform norm of $O(\log^d(n))$ (in the Chebyshev measure on the *d*-cube) [H. Wang, K. Wang, X. Wang 2014].

- Lissajous curves on 2d, 3d for total degree polynomial (hyper)-interpolation and cubature
- 2 Lissajous "optimal" for 3d
- 3 Lissajous optimal for the tensor product polynomials

- Lissajous curves on 2d, 3d for total degree polynomial (hyper)-interpolation and cubature
- 2 Lissajous "optimal" for 3d
- 3 Lissajous optimal for the tensor product polynomials

Opne problem

Are these curves suitable for finding Padua-like points on the *d*-cube?

4th Dolomites Workshop on Constructive Approximation and Applications (DWCAA16) Alba di Canazei (ITALY), 8-13/9/2016

http://events.math.unipd.it/dwcaa16/

#thankyou!