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Lissajous curves
Properties and motivation

1 Are parametric curves studied by Bowditch (1815) and Lissajous
(1857) of the form

γ(t) = (Ax cos(ωx t + αx),Ay sin(ωy t + αy)) .

Ax ,Ay are amplitudes, ωx , ωy are pulsations and αx , αy are phases.

2 Chebyshev polynomials (Tk or Uk ) are Lissajous curves (cf. J. C.
Merino 2003). In fact a parametrization of y = Tn(x), |x | ≤ 1 is{

x = cos t
y = − sin

(
nt − π

2

)
0 ≤ t ≤ π

3 Padua points (of the first family) [JAT 2006] lie on [−1, 1]2 on the
π-periodic Lissajous curve Tn+1(x) = Tn(y) called generating curve
given in parametric form as

γn(t) = (cos nt , cos(n + 1)t), 0 ≤ t ≤ π , n ≥ 1.
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The generating curve of the Padua points
(n = 4)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure : Padn = CO
n+1 × CE

n+2 ∪ CE
n+1 × CO

n+2 ⊂ Cn+1 × Cn+2

Cn+1 =
{
zn

j = cos
(
(j−1)π

n

)
, j = 1, . . . , n + 1

}
: Chebsyhev-Lobatto points

on [−1, 1]

Note: |Padn | = (n+2
2 ) = dim(Pn(R2))
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The generating curve and cubature

Lemma (cf. JAT 2006)

For all p ∈ P2n(R2) we have

1
π2

∫
[−1,1]2

p(x, y)
1

√
1 − x2

1√
1 − y2

dxdy =
1
π

∫ π

0
p(γn(t))dt .

Proof. Check the property for all p(x, y) = Tj(x)Tk (y), j + k ≤ 2n . �
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Lissajous points in 2D: non-degenerate case

[Erb et al. NumerMath16 (to appear)] in the framework of Magnetic
Particle Imaging applications, considered

γn,p(t) = (sin nt , sin((n + p)t)) 0 ≤ t < 2π ,

n, p ∈ N s.t. n and n + p are relative primes.

γn,p is non-degenerate iff p is odd.

Consider tk = 2πk/(4n(n + p)), k = 1, ..., 4n(n + p).

Lisan,p :=
{
γn,p(tk ), k = 1, . . . , 4n(n + p)

}
, |Lisan,p | = 2n(n+p)+2n+p .

Notice: |Lisan,1| = 2n2 + 4n + 1 while |Pad2n | = 2n2 + 3n + 1 is obtained
with p = 1/2.
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Lissajous points: non-degenerate case

Figure : From the paper by Erb et al. NM2016 (cf. arXiv 1411.7589)
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Lissajous points: degenerate case

[Erb AMC16 (to appear)] has then studied the degenerate 2π-Lissajous
curves

γn,p(t) = (cos nt , cos((n + p)t)) 0 ≤ t < 2π ,

Consider tk = πk/(n(n + p)), k = 0, 1, ..., n(n + p).

LDn,p :=
{
γn,p(tk ), k = 0, 1, . . . , n(n + p)

}
, |LDn,p | =

(n + p + 1)(n + 1)

2
.

Notice: for p = 1, |LDn,1| = |Padn | = dim(Pn(R2)) and correspond to
the Padua points themselves.
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Lissajous points: degenerate case

Figure : From the paper by Erb AMC16, (cf. arXiv 1503.00895)
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An application
Image reconstruction with adaptive filters

−→Work in progress with W. Erb and F. Marchetti.
Ideas to avoid Gibbs phenomenon at discontinuites [Gottlieb&Shu
SIAMRev97,Tadmor&Tanner IMAJN05]

1 Sampling with Lissajous for finding the interpolating
polynomial

2 Initial non-adaptive filter

σ(x;α) =

{
exα/(x2−1) |x | ≤ 1
0 |x | > 1

(α can vary with the point x in the adaptive case): this allow to
avoid the Gibbs phenomenon

3 Detect the discontinuities by Canny edge-detector algorithm

4 Apply adptively the filter
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Image reconstruction with adaptive filters:
examples

Figure : Original image: 115 × 115. Lissajous non degenerate curve with
(n, p) = (32, 33); Chebfun2 (modified) for the coefficients; α = 4 for the
initial filter and α chosen “Ad hoc” for the remainig adapted filtering
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3d case: notation

Ω = [−1, 1]3: the standard 3-cube

The product Chebyshev measure

dµ3(x) = w(x)dx , w(x) =
1
π3

1√
(1 − x2

1 )(1 − x2
2 )(1 − x2

3 )
.

(1)

P3
k : space of trivariate polynomials of degree k in R3

(dim(P3
k ) = (k + 1)(k + 2)(k + 3)/6).
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Fundamental theorem

This results shows which are the admissible 3d Lissajous curves

Theorem (cf. Bos, DeM, Vianello 2015, IMA J. NA to appear )

Let n ∈ N+ and (an, bn, cn) be the integer triple

(an, bn, cn) =


(

3
4 n2 + 1

2 n, 3
4 n2 + n, 3

4 n2 + 3
2 n + 1

)
, n even(

3
4 n2 + 1

4 ,
3
4 n2 + 3

2 n − 1
4 ,

3
4 n2 + 3

2 n + 3
4

)
, n odd.

(2)

Then, for every integer triple (i, j, k), not all 0, with i, j, k ≥ 0 and
i + j + k ≤ mn = 2n, we have the property that ian , jbn + kcn,
jbn , ian + kcn, kcn , ian + jbn.
Moreover, mn = 2n is maximal, in the sense that there exists a triple
(i∗, j∗, k ∗), i∗ + j∗ + k ∗ = 2n + 1, that does not satisfy the property.
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Consequence I
Cubature along the curve

On admissible curves follows

Proposition

Consider the Lissajous curves in [−1, 1]3 defined by

`n(θ) = (cos(anθ), cos(bnθ), cos(cnθ)) , θ ∈ [0, π] , (3)

where (an, bn, cn) is the sequence of integer triples (2).
Then, for every total-degree polynomial p ∈ P3

2n∫
[−1,1]3

p(x) dµ3(x) =
1
π

∫ π

0
p(`n(θ)) dθ . (4)

Proof. It suffices to prove the identity for a polynomial basis (ex: for the
tensor product basis Tα(x), |α| ≤ 2n). �
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Consequence II
Exactness

Corollary

Consider p ∈ P3
2n, `n(θ) and ν = n ·max{an, bn, cn} = n · cn. Then∫

[−1,1]3
p(x) w(x)dx =

µ∑
s=0

ws p(`n(θs)) , (5)

where
ws = π2ωs , s = 0, . . . , µ , (6)

with

µ = ν , θs =
(2s + 1)π

2µ + 2
, ωs ≡

π

µ + 1
, s = 0, . . . , µ , (7)

or alternatively

µ = ν+ 1 , θs =
sπ
µ

, s = 0, . . . , µ , ω0 = ωµ =
π

2µ
, ωs ≡

π

µ
, s = 1, . . . , µ − 1 . (8)
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Remarks

The points set {
`n(θs), s = 0, . . . , µ

}
are a 3-dimensional rank-1 Chebyshev lattices (for cubature
of degree of exactness 2n).

Cools and Poppe [cf. CHEBINT, TOMS 2013] wrote a search
algorithm for constructing heuristically such lattices.

Formulae (2) (together with (6), (7), (8)) provide explicit
formulas for any degree.

18 of 48



Conjecture

An algebraic polynomial restricted to `n(θ) is a trig polynomial of degree
ν = n cn.
−→ Complexity of interpolation and quadrature depends on ν. ←−

Optimality

Suppose that (a, b , c) is a triple of strictly positive integers such that
max{a, b , c} < cn, with cn given by (2). Then there exists a triple (i, j, k) of
naturals, not all 0, and i + j + k ≤ 2n, such that either ia = jb + kc,
jb = ia + kc, or kc = ia + jb.

The triples (2) are optimal, that is are those satisfying the Theorem 1
having the minimum maximum.
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Hyperinterpolation and interpolation
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Hyperinterpolation operator
General definition

Definition
Hyperinterpolation of multivariate continuous functions, on compact
subsets or manifolds, is a discretized orthogonal projection on polynomial
subspaces [Sloan JAT1995].

Practically

It is a total-degree polynomial approximation of multivariate continuous
functions, given by a truncated Fourier expansion in o.p. for the given
domain

It requires 3 main ingredients

1 a good cubature formula (positive weights and high precision);

2 a good formula for representing the reproducing kernel (accurate
and efficient);

3 a slow increase of the Lebesgue constant (which is the operator
norm).
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Hyperinterpolation operator
Definition and properties

For f ∈ C([−1, 1]3), using (5), the hyperinterpolation polynomial of f is

Hnf(x) =
∑

0≤i+j+k≤n

Ci,j,k φ̂i,j,k (x) , (9)

φ̂i,j,k (x) = T̂i(x1)T̂j(x2)T̂k (x3) with

T̂m(·) = σm cos(m arccos(·)), σm =

√
1 + sign(m)

π
, m ≥ 0

Ci,j,k =

µ∑
s=0

ws f(`n(θs)) φ̂i,j,k (`n(θs)) . (10)
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Properties

Hnf = f , ∀f ∈ P3
n (projection operator, by construction).

L2-error

‖f −Hnf‖2 ≤ 2π3 En(f) , En(f) = inf
p∈Pn
‖f − p‖∞ . (11)

Lebesgue constant

‖Hn‖∞ = max
x∈[−1,1]3

µ∑
s=0

ws

∣∣∣Kn(x, `n(θs))
∣∣∣ (12)

Kn(x, y) =
∑
|i|≤n

φ̂i(x)φ̂i(y), i = (i, j, k) (13)

where Kn is the reproducing kernel of P3
n w.r.t. product Chebyshev

measure dµ3
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Hyperinterpolation operator
Norm and approximation error estimates

Based on a conjecture stated in [DeM, Vianello & Xu, BIT
2009] and specialized in [H.Wang, K.Wang & X.Wang, CMA
2014] we get

‖Hn‖∞ = O((log n)3)

i.e. the minimal polynomial growth.

Hn is a projection, then

‖f −Hnf‖∞ = O
(
(log n)3 En(f)

)
. (14)
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Computing the hyperinterpolation coefficients
The coefficients {Ci,j,k } can be computed by a single 1D discrete
Chebyshev transform along the Lissajous curve.

Proposition

Letting f ∈ C([−1, 1]3), (an, bn, cn), ν, µ, {θs}, ωs , {ws} as in Corollary 1.
Then

Ci,j,k =
π2

4
σianσjbnσkcn

(
γα1

σα1

+
γα2

σα2

+
γα3

σα3

+
γα4

σα4

)
, (15)

α1 = ian + jbn + kcn , α2 = |ian + jbn − kcn | ,

α3 = |ian − jbn |+ kcn , α4 = ||ian − jbn | − kcn | ,

where {γm} are the first ν + 1 coefficients of the discretized Chebyshev
expansion of f(Tan (t),Tbn (t),Tcn (t)), t ∈ [−1, 1], namely

γm =

µ∑
s=0

ωs T̂m(τs) f(Tan (τs),Tbn (τs),Tcn (τs)) , (16)

m = 0, 1, . . . , ν, with τs = cos(θs), s = 0, 1, . . . , µ.
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Implementation details: I

From previous Prop., hyperinterpolation on `n(t) can be done by a single
1-dimensional FFT −→ Chebfun package [Chebfun 2014].

The polynomial interpolant of a function g can be written

πµ(t) =

µ∑
m=0

cmTm(t) (17)

where

cm =
2
µ

µ∑
s=0

′′ Tm(τs) g(τs) , m = 1, . . . , µ − 1 ,

cm =
1
µ

µ∑
s=0

′′ Tm(τs) g(τs) , m = 0, µ , (18)

Note:
∑µ

s=0
′′ means first and last terms are halved
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Implementation details: II

If g(t) = f(Tan (t),Tbn (t),Tcn (t)) and comparing with the
discrete Chebyshev expansion coefficients (16) we get

γm

σm
=


π
2 cm , m = 1, . . . , µ − 1

π cm , m = 0, µ
(19)

i.e., the 3D hyperinterpolation coefficients (15) can be
computed by the {cm} and (19).

... practically ...

A single call of the function chebfun on f(Tan (t),Tbn (t),Tcn (t)),
truncated at the (µ + 1)th-term, produces all the relevant
coefficients {cm} in an extremely fast and stable way.
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Example
computation of coefficients

Example

Take n = 100 and the functions

f1(x) = exp(−c‖x‖22) , c > 0 , f2(x) = ‖x‖β2 , β > 0 , (20)

To compute the µ = 3
4n3 + 3

2n2 + n + 2 = 765102 coefficients from
which we get, by (15), the (n + 1)(n + 2)(n + 3)/6 = 176851
coefficients of trivariate hyperinterpolation,

it took about 1 sec by using Chebfun 5.1 on a Athlon 64 X2 Dual
Core 4400+ 2.4 GHz processor.
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Example
hyperinterpolation errors

Figure : Left: Hyperinterpolation errors for the trivariate polynomials
‖x‖2k

2 with k = 5 (diamonds) and k = 10 (triangles), and for the trivariate
function f1 with c = 1 (squares) and c = 5 (circles). Right:
Hyperinterpolation errors for the trivariate function f2 with β = 5 (squares)
and β = 3 (circles).
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Software for Lissajous sampling

The sampling set (Chebyshev lattice)
An = {`n(θs) , s = 0, . . . , µ} has been used as a Weakly
Admissible Mesh (WAM) from which we extracted the
Approximate Fekete Points (AFP) and the Discrete Leja Points
(DLP).
Notice: DLP form a sequence, i.e., its first Nr = dim(Pd

r )
elements span Pd

r , 1 ≤ r ≤ n.

The extraction of N = dim(P3
n) points has been done by the

software available at
www.math.unipd.it/∼marcov/CAAsoft.
We wrote the package hyperlissa, a Matlab code for
hyperinterpolation on 3d Lissajous curves.
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Example
Chebyshev lattice points

Figure : Left: the Chebyshev lattice (circles) and the extracted AFP (red
asterisks), on the Lissajous curve for polynomial degree n = 5. Right: A
face projection of the curve and the sampling nodes
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Figure : Lebesgue constants (log scale) of the AFP (asterisks) and DLP
(squares) extracted from the Chebyshev lattices on the Lissajous curves,
for degree n = 1, 2, . . . , 30, compared with
dim(P3

n) = (n + 1)(n + 2)(n + 3)/6 (upper solid line) and n2 (dots).
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Figure : Interpolation errors on AFP (asterisks) and DLP (squares) for the
trivariate functions f1 (Left) with c = 1 (solid line) and c = 5 (dotted line),
and f2 (Right) with β = 5 (solid line) and β = 3 (dotted line).
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The general approach
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Some notation

Pd
m, the space of polynomials of total degree at most m (in Rd)

P⊗d
m , the d ordered tensor product of P1

m

Definition

V = Pd
m and α ∈ Zd we set |α|V :=

∑d
i=1 |αi |

V = P⊗d
m and α ∈ Zd we set |α|V := max1≤i≤d |α|i

xα ∈ V ⇐⇒ |α|V ≤ m

Take a ∈ Zd
>0: `a(t) := (cos(a1t), cos(a2t), · · · , cos(ad t)) the Lissajous

curve.

Problem
Among the curves `a(t) select the ones s.t.

max
p∈V

deg(p(`a(t)))→ min
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>0: `a(t) := (cos(a1t), cos(a2t), · · · , cos(ad t)) the Lissajous

curve.

Problem
Among the curves `a(t) select the ones s.t.

max
p∈V

deg(p(`a(t)))→ min
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V-admissible tuples and cubature

Definition
a = (a1, a2, . . . , ad) ∈ Zd

>0 is V-admissible (of order m) if(
@ 0 , b ∈ Zd , |b|V ≤ m

)
s.t .

∑d
i=1 biai = 0.

We denote this set by A(V).

−→ a ∈ A(V) means that there are no “small” solution of the diophantine
equation

∑d
i=1 xiai = 0.

Proposition

Let a ∈ Zd
>0, then ∫

[−1,1]d
p(x)dµd(x) =

1
π

∫ π

0
p(`a(t))dt (21)

for all polynomials p ∈ V if and only if a ∈ A(V).

Proof. It suffices to prove (21) for a basis. �
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Remarks

p(x) ∈ V restricted to the curve `a(t) is a univariate trigonometric
polynomial q(t) := p(`a(t)) whose complexity is bounded by its degree.

For example: p ∈ V = Pd
m,

deg(q(t)) ≤
(
max
1≤i≤d

ai

)
m

It is then natural to try to find

min
a∈A(V)

max
1≤i≤d

ai

For d=3 [cf. Theorem 1, Bos et al. 2016] has been indeed proved

min
a∈A(V)

max
1≤i≤d

ai = O(m2) .
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The construction for d = 3
A Conjecture for “optimality”

Conjecture
For m ≡ 0(4) let

a1 =
3m2 + 4m

16
, a2 =

3m2 + 8m
16

, a3 =
3m2 + 12m + 16

16
.

For m ≡ 1(4) let

a1 =
3m2 + 6m + 7

16
, a2 =

3m2 + 10m + 19
16

, a3 =
3m2 + 14m + 15

16
.

For m ≡ 2(4) let

a1 =
3m2 + 4

16
, a2 =

3m2 + 12m − 4
16

, a3 =
3m2 + 12m + 12

16
.

For m ≡ 3(4) let

a1 =


3m2+2m−1

16 m ≡ 3 (8)
3m2+6m+19

16 m ≡ 7 (8),
a2 =


3m2+14m+11

16 m ≡ 3 (8)
3m2+10m+7

16 m ≡ 7 (8),
a3 =

3m2 + 14m + 27
16

.

The triple (a1, a2, a3) ∈ A(V) is then optimal, that is

a3 = max{a1, a2, a3} = min
b∈A(V)

max
1≤i≤d

bi .
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“Optimal” triples obtained by computer search

m
2 1 2 3
3 1 3 5

3 4 5
4 4 5 7

4 6 7
5 7 8 10

7 9 10
6 7 11 12
7 7 15 17

9 11 17
9 15 17

10 16 17
13 14 17
13 16 17

8 14 16 19
14 17 19

9 19 21 24
19 22 24

10 19 26 27
11 24 33 34
12 30 33 37

30 34 37
15 41 47 57

49 52 57
49 54 57

31 177 191 209
177 195 209
184 208 209
193 200 209
193 202 209
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“Optimal” 4-tuples obtained by computer search

The case of d = 4 seems already to be more complicated

m
2 1 2 3 4
3 1 3 5 7

4 5 6 7
4 5 9 11 12
5 5 13 17 19
6 11 24 27 28

15 24 27 28
7 9 31 37 39
8 34 50 54 55
9 59 61 71 74

59 62 72 74
10 59 90 95 96

65 90 91 96
53 89 90 96

11 77 89 119 121
53 109 119 121

12 105 138 150 152
13 159 167 187 188
14 177 215 229 230
15 193 219 267 273

199 215 271 273

Remark: search complexity O(m3), very expensive! No idea about the

pattern (as for d = 3) 40 of 48



The tensor product case
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V = P⊗d
m

In this setting

deg(p(`a(t)) ≤

 d∑
i=1

ai

 m

so that we have to solve

min
a∈A(V)

d∑
i=1

ai (P)

The unique solution exists

Proposition

For V = P⊗d
M the tuple

g = (1, (m + 1), (m + 1)2, · · · , (m + 1)d−1) ∈ A(V)

is the unique minimizer (up to permutation) of the problem (P).

Proof: long and technical [Bos el al. 2016] .
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Hyperinterpolation in P⊗d
m

1 When m = 2n then for a ∈ A(V), we have the quadrature formula
(21)

2 Equivalently, for any p, q ∈ P⊗d
n ,∫

[−1,1]d
p(x)q(x)dµd(x) =

1
π

∫ π

0
p(`a(t))q(`a(t))dt . (22)

3 For f ∈ C([−1, 1]d), its best least squares approximation in
L2([−1, 1]d ; dµd) is given by

πn(f) =
∑
|α|∞≤n

〈f , T̂α〉T̂α.

with 〈·, ·〉 the inner product

〈f , g〉 :=

∫
[−1,1]d

f(x)g(x)dµd(x)

and T̂α(x) = cα
∏d

j=1 Tj(xj) the normalized Chebyshev polynomials
(orthonormal basis of P⊗d

n )
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Hyperinterpolation in P⊗d
m (cont)

Define
πa

n :=
∑
|α|∞≤n

〈f , T̂α〉aT̂α

where 〈f , g〉a := 1
π

∫ π

0 f(`a(t))g(`a(t))dt . By integrating along the
Lissajous curve, (22), we have

πa
n(p) = πn(p) = p, ∀p ∈ P⊗d

n ,

i.e, πa
n is a projection onto P⊗d

n .

Quadrature of πa
n

1
π

∫ π

0
t(θ)dθ =

1
N

1
2

t(θ0) +
N−1∑
k=1

t(θk ) +
1
2

t(θN)


for (at least) all even trigonometric polynomials of degree at most
2N − 1 (θk := kπ/N, 0 ≤ k ≤ N, are the equally spaced angles).
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Hyperinterpolation in P⊗d
m (cont)

Now, p(`a) is an even trigonometric polynomial of degree ≤ 2n(
∑d

i=1 ai).
Taking

N := 1 + n
d∑

i=1

ai

letting

xk := `a(θk ), w0 :=
1

2N
, wk :=

1
N
, 1 ≤ k ≤ N − 1, wN =

1
2N

,

we have

〈p, q〉a =
N∑

k=0

wk p(xk )q(xk ) (23)

for all p, q ∈ P⊗d
n .

Computing πa
n by means of (23) with get the hyperinterpolation operator

with uniform norm of O(logd(n)) (in the Chebyshev measure on the
d-cube) [H. Wang, K. Wang, X. Wang 2014].
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Summary

1 Lissajous curves on 2d, 3d for total degree polynomial
(hyper)-interpolation and cubature

2 Lissajous “optimal” for 3d

3 Lissajous optimal for the tensor product polynomials

Opne problem

Are these curves suitable for finding Padua-like points on the
d-cube?
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#thankyou!
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