
A new quasi-Monte Carlo
technique based on nonnegative
least squares and approximate

Fekete points1

Stefano De Marchi
Department of Mathematics - University of Padova

Antwerp - December 5, 2014

1Joint work with Claudia Bittante and Alvise Sommariva



Motivation

The computation of integrals in high dimensions and on general
domains, when no explicit cubature rules are known;

The use of as less (good) points as possible to approximate
integrals on general domains;

Nonnegative least-square and approximate Fekete points for
computing the cubature weights.
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Cubature
Notation

Ω = [0, 1]d , i.e. the d-dimensional unit cube

X = {x1, . . . xN} of Ω, the set of samples

Both MC and QMC compute∫
Ω

f(x)dx ≈
λd(Ω)

N

N∑
i=1

f(xi) (1)

where λd(Ω) is the Lebesgue measure of the domain Ω (in the case
of the unit cube it is simply 1).

In QMC the samples are taken as a low-discrepancy sequence
(quasi-random points) (ex: Halton, Sobol);

Using low-discrepancy sequences allow O(N−1) instead of O(N−1/2)
convergence rate.
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Discrepancy

Definition
Given a sequence X = {x1, ..., xN} its discrepancy is

DN(X) := sup
B∈J

∣∣∣∣∣∣#(X ,B)

N
− λd(B)

∣∣∣∣∣∣ (2)

where

J :=
∏d

i=1[ai , bi) = {x ∈ Rd : ai ≤ xi ≤ bi , 0 ≤ ai < bi < 1}
(d-dimensional intervals),

#(X ,B) is the number of points of X in B.

λd is Lebesgue measure

Note. When DN(X) ≈ mis(B) then DN is called low discrepancy.
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Discrepancy

Why the discrepancy is important?

Theorem (Koksma-Hlawka inequality)

Let f : Ω→ R be BV with variation V(f), and let X ⊂ Ω be a (low
discrepancy) sequence of N points of Ω. Let EN(f) be the cubature error,
then

EN(f) ≤ V(f)DN . (3)
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Low-discrepancy examples
Halton and Sobol

these sequences have discrepancy much lower than random points!

Figure : 200 Halton (Left) and Sobol points on the square. Notice: they form a nested sequence

For Halton points in dimension d, it is known DN(HN,d) ≤
C(log N)d

N .
Note. Matlab has built-in functions haltonset, sobolset 7 of 42



Low-discrepancy examples
Halton and Sobol

Figure : 1024 Halton points (Left) and Sobol points
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Nonnegative Least Squares
Definition

Definition

Let A be a m × n matrix and b ∈ Rm a column vector, G a r × n
matrix and h ∈ Rr . A Linear System of Inequalities (LSI) problem is
a least squares problem with linear constraints, that is the
optimization problem

min
x∈Rn
‖Ax − b‖2 (4)

Gx ≥ h .
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Nonnegative Least Squares
How to use them for cubature

A = VT , with V the Vandermonde matrix at the sequence
X = {xi , i = 1, . . . , n} for the polynomial basis {pj , j = 1, . . . ,m};

b being the column vector of size m of the moments, that is

bj =

∫
Ω

pj(x)dµ(x)

for some measure µ on Ω

G = I, h = (0, . . . , 0)T both of order n

then the problem arg minx ‖V
T x − b‖2 subject to x ≥ 0.

Algorithm : Lawson, Hanson Solving Least Squares Problems, PH
1974, p. 161 gives the nonnegative weights x for the cubature at the
point set X .

Matlab has built-in function lsqnonneg in the optim toolbox.
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Fekete Points
Definition

Definition
Let K ⊂ Cd be a compact and Sn = span{qj , j = 1, . . . , νn} a
finite-dimensional space of linearly independent functions. The points
{ξ1, . . . , ξνn } of K are Fekete points if they are unisolvent for the
interpolation on Sn and maximize the absolute value of the Vandermonde
determinant.

In polynomial interpolation νn = dim(Pd
n) = (n+d

d )

For Fekete points |li | ≤ 1, ∀i. As a consequence,
Λn = maxx∈Ω

∑νn
i=1 |li(x)| ≤ νn. This bound is indeed an overestimate

of the Lebegsue constant as it is known (see [Bos et al. NMTA11]),
but gives the idea of the importance (and quasi-optimality) of Fekete
points for interpolation/cubature.

To compute Fekete points we have to solve a NP-hard (discrete)
optimization problem (cf. [Civril&Magdon-Ismail TCS09]).

Fekete points are known only on the interval, complex circle,
square&cube for tensor product interpolation.
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Approximate Fekete Points
Definition

Given a polynomial determining compact set K ⊂ Rd or K ⊂ Cd (i.e.,
polynomials vanishing there are identically zero), [Calvi and Levenberg in
JAT08] introduced the idea of Weakly Admissible Meshes (WAM) as
sequence of discrete subsets An ⊂ K that satisfy the polynomial
inequality

‖p‖K ≤ C(An)‖p‖An , ∀p ∈ Pd
n(K) (5)

where both card(An) ≥ N := dim(Pd
n(K)) and C(An) grow at most

polynomially with n.

•When C(An) is bounded we speak of an Admissible Mesh (AM).
• For our purposes it sufficies to consider WAMs.
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Discrete Extremal Sets

Idea: extracting a maximum determinant N ×N submatrix from the M ×N
Vandermonde matrix V = V(a,p) = [pj(ai)]

NP-hard problem

We look for approximate solutions

This can be done by basic numerical linear algebra

Key asymptotic result (cf. [Bos/De Marchi et al. NMTMA11]): Discrete
Extremal Sets extracted from a WAM by the greedy algorithms below,
have the same asymptotic behavior of the true Fekete points

µn :=
1
N

N∑
j=1

δξj

N→∞
−−−−→ dµK

where µK is the pluripotential equilibrium measure of K
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Approximate Fekete Points: algorithm

Idea: greedy maximization of submatrix volumes [Sommariva/Vianello
ETNA10]

core: select the largest norm row, rowik (V), and remove from each
row of V its orthogonal projection onto rowik onto the largest norm
one (preserves volumes as with parallelograms)

implementation: QR factorization with column pivoting
[Businger/Golub 1965] applied to V t

Matlab script: w = V ′\ones(1 : N) ; ind = find(w , 0); ξ = a(ind)

where a is the array of the WAM.
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AFP in one variable

Figure : N = 31 AFP (deg n = 30) from Admissible Meshes on complex
domains

Table 1. Numerically estimated Lebesgue constants of interpolation
points in some 1-dimensional real and complex compacts

points n = 10 20 30 40 50 60
N = 11 21 31 41 51 61

equisp intv 29.9 1e+4 6e+6 4e+8 7e+9 1e+10
Fekete intv 2.2 2.6 2.9 3.0 3.2 3.3
AFP intv 2.3 2.8 3.1 3.4 3.6 3.8

AFP 2intvs 3.1 6.3 7.1 7.6 7.5 7.2
AFP 3intvs 4.2 7.9 12.6 6.3 5.8 5.3
AFP disk 2.7 3.0 3.3 3.4 3.5 3.7

AFP triangle 3.2 6.2 5.2 4.8 9.6 6.1
AFP 3disks 5.1 3.0 7.6 10.6 3.8 8.3

AFP 3branches 4.7 3.5 3.8 8.3 5.0 4.8 15 of 42



2-dimensional WAMS: disk, triangle, square

Unit disk: a symmetric polar WAM (invariant by rotations of π/2) is
made by equally spaced angles and Chebyshev-Lobatto points
along diameters [Bos at al. 2009]

card(An) = O(n2) , C(An) = O(log2 n)

Unit simplex: starting from the WAM of the disk for polynomials of
degree 2n containing only even powers, by the standard quadratic
transformation

(u, v) 7−→ (x, y) = (u2, v2) .

Square: Chebyshev-Lobatto grid, Padua points.

Notice: by affine transformation these WAMs can be mapped to any
other triangle (P1) or polygon (P4).
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Polar symmetric WAMs for the disk

Figure : Left: for degree n = 11 with 144 = (n + 1)2 points. Right: for
n = 10 with 121 = (n + 1)2 points.
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WAMs for the quadrant and the triangle

Figure : A WAM of the first quadrant for polynomial degree n = 16 (left)
and the corresponding WAM of the simplex for n = 8 (right).
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WAMs for a quadrangle

Figure : A WAM for a quadrangular domain for n = 7 obtained by the
bilinear transformation of the Chebyshev–Lobatto grid of the square
[−1, 1]2

1
4 [(1−u)(1−v)A+(1+u)(1−v)B+(1+u)(1+v)C+(1−u)(1+v)D]
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WAMs for general polygons

Polygon WAMs: by triangulation/quadrangulation

card(An) = O(n2) , C(An) = O(log2 n)

Figure : Left: N = 45 AFP (◦) and DLP (∗) of an hexagon for n = 8 from the WAM (dots) obtained by bilinear
transformation of a 9 × 9 product Chebyshev grid on two quadrangle elements (M = 153 pts); Right: N = 136 AFP (◦) and
DLP (∗) for degree n = 15 in a hand shaped polygon with 37 sides and a 23 element quadrangulation (M ≈ 5500).
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WAMs for (truncated) cones

Starting from a 2-dimensional domain WAM, we ”repeat” the mesh along
a Chebsyhev-Lobatto grid of the z-axis, as shown here in my handwritten
notes (on my whiteboard).
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WAMs for a cone

Figure : A WAM for the rectangular cone for n = 7

Here C(An) = O(log2 n) and the cardinality is O(n3)
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A low dimension WAM for the cube

The cube can be considered as a cylinder with square basis. WAMs for
the cube with dimension O(n3/4) were studied in [DeMarchi/Vianello/Xu
2009] in the framework of cubature and hyperinterpolation.
A WAM for the cube that for n even has (n + 2)3/4 points and for n odd
(n + 1)(n + 2)(n + 3)/4 points, is shown here for a parallelpiped with
n = 4 (here #An = 54)
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WAMs for a pyramid

Figure : A WAM for a non-rectangular pyramid and a truncated one,
made by using Padua points for n = 10. Notice the generating curve of
Padua points that becomes a spiral

In this case C(An) = O(log2 n) and the cardinality is O(n3/2) 24 of 42



WAMs for toroidal sections: points on the disk

Figure : WAM for n = 5 on the torus centered in z0 = 0 of radius r0 = 3,
with −2/3π ≤ θ ≤ 2/3π.

In this case C(An) = O(log2 n) and the cardinality is O(2n3) 25 of 42



WAMs for toroidal sections: Padua points

Figure : Padua points on the toroidal section with z0 = 0, r0 = 3 and
opening −2/3π ≤ θ ≤ 2/3π.

In this case C(An) = O(log2 n) and the cardinality is O(n3).
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AFP and cubature

If in the algorithm AFP we take as r.h.s.

b = m =

∫
K

p(x) dµ

i.e. the moments of the polynomials basis with respect to a given
measure µ,

hence, the vector w(ind) gives directly the weights of an algebraic
cubature formula at the corresponding AFP

The Matlab function approxfek written by [Sommariva/Vianello
CMA10], extracts approximate Fekete or Leja interpolation points
from a 2d or 3d mesh/cloud and estimates their Lebesgue constant.
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Tests on 2d domains
First test: the lens

The lens is given by the intersection of two disks with centers and radii
C1 = (0, 0), r1 = 5 and C2 = (4, 0), r2 = 3, respectively.

Figure : The lens approximated with N = 200000 Halton points. We
extracted 66 points (corresponding to the dimension of P2

10).The points
with gqlens are indicated with (+), the ones with lsqnonneg with exact
moments with (∆) and the AFP by approxfek (◦) . 28 of 42



Tests on 2d domains
First test: the lens, continue...

The exact moments have been computed using nodes and weights
provided by the Matlab function gqlens, which uses subperiodic
trigonometric gaussian formulas [DaFies Vianello DRNA12].

The QMC moments have been computed by starting from an initial
grid of 600000 Halton points

The nodes obtained with the lsqnonneg and the AFP accumulate
along the boundary of the lens.

A measure of stability

ρ =

∑
i wi

|
∑

i wi |
∈ [1,+∞) , (6)

says how many cubature weights of negative sign are present
among all the weights

29 of 42



Tests on 2d domains
First test: the lens, continue...

method N = 50000 N = 100000 N = 200000

n = 10

gqlens 72 (1.00) 72 (1.00) 72 (1.00)
QMC 37968 75925 151880
lsqnonneg exact m. 66 66 66
lsqnonneg QMC m. 66 66 66
AFP exact m. 66 (1.02) 66 (1.00) 66 (1.04)
AFP QMC m. 66 (1.02) 66 (1.00) 66 (1.04)

n = 20

gqlens 242 (1.00) 242 (1.00) 242 (1.00)
QMC 37968 75925 151880
lsqnonneg exact m. 210 209 207
lsqnonneg QMC m. 231 231 231
AFP exact m. 231 (1.03) 231 (1.04) 231 (1.04)
AFP QMC m. 231 (1.03) 231 (1.04) 231 (1.04)

n = 30

gqlens 512 (1.00) 512 (1.00) 512 (1.00)
QMC 37968 75925 151880
lsqnonneg exact m. 416 413 409
lsqnonneg QMC m. 496 495 495
AFP exact m. 496 (1.01) 496 (1.03) 496 (1.01)
AFP QMC m. 496 (1.02) 496 (1.04) 496 (1.02)

Table : Nodes on the lens extracted by gqlens, QMC, lsqnonneg with
exact moments and approximated ones by QMC and the AFP by
approxfek, again with exact moments or approximated by QMC. In
parentheses the ratio (6).
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First test
Test functions

used in many problems and applications

f1(x, y) =
3
4

e−
1
4 ((9x−2)2+(9y−2)2) +

3
4

e−
1

49 (9x+1)2− 1
10 (9y+1)

+
1
2

e−
1
4 ((9x−7)2+(9y−3)2) −

1
5

e−(9x−4)2−(9y−7)2
(7)

f2(x, y) =
√

(x − 0.5)2 + (y − 0.5)2 (8)

f3(x, y) = e−100((x−0.5)2+(y−0.5)2) (9)

f4(x, y) = cos(30(x + y)). (10)

f1 is the Franke function.
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First test
Errors for f1

method N = 50000 N = 100000 N = 200000

n = 10

QMC 2.0e-02 2.2e-02 2.7e-02
lsqnonneg exact m. 2.9e-02 1.7e-02 4.4e-02
lsqnonneg QMC m. 3.9e-02 2.9e-02 2.6e-02
AFP m. esatti 1.8e-02 2.4e-02 5.7e-02
AFP QMC m. 1.8e-02 2.4e-02 5.7e-02

n = 20

QMC 1.4e-02 1.2e-02 7.2e-03
lsqnonneg exact m. 8.5e-04 1.8e-02 2.3e-02
lsqnonneg QMC m. 1.1e-02 1.4e-04 1.3e-02
AFP exact m. 6.0e-02 2.4e-02 1.7e-02
AFP QMC m. 6.0e-02 2.4e-02 1.7e-02

n = 30

QMC 7.6e-03 5.7e-03 6.5e-04
lsqnonneg exact m. 3.3e-03 1.5e-03 9.3e-04
lsqnonneg QMC m. 1.9e-02 7.6e-03 9.1e-04
AFP exact m. 1.6e-03 2.1e-03 5.5e-03
AFP QMC m. 1.4e-03 4.0e-03 4.5e-04

Table : Relative errors for f1 on the lens, using QMC on Halton points.
The values of the integral were computed with gqlens.

Similarly for f2, f3 and f4.
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Second test
A composite domain

The non-convex domain given by overlapping i) the disk with center
C = (0, 0) and radius r = 3; ii) the square [0, 4] × [0, 4] iii) the closed
polygon with vertices V1 = (1, 1),V2 = (6, 2),V3 = (7, 4),V4 =
(10, 3),V5 = (9, 6),V6 = (6, 7),V7 = (4, 5),V8 = (1, 6),V9 = V1.
For this domain does not exist a cubature formula exact on the
polynomials neither a way to compute the exact moments.

Figure : The composed domain approximated with N = 200000 Halton points and n = 10 (i.e. 66 points). The points
selected with lsqnonneg are: with exact moments QMC with (∆) and the AFP (◦) .
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Second test
A composite domain, continue ...

method N = 50000 N = 100000 N = 200000

n = 10
QMC 23323 46619 93269
lsqnonneg 66 66 66
AFP 66 (1.03) 66 (1.08) 66 (1.03)

n = 20
QMC 23323 46619 93269
lsqnonneg 231 231 231
AFP 231 (1.35) 231 (1.28) 231 (1.29)

n = 30
QMC 23323 46619 93269
lsqnonneg 496 496 496
AFP 496 (8544.15) 496 (5092.41) 496 (20346.70)

Table : For the composite domain, varying the number N of Halton points,
we show the points extracted by lsqnonneg and the the AFP via
approxfek at different n. We also show the ratio ρ (in brackets).
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Second test
Errors for f1

method N = 50000 N = 100000 N = 200000

n = 10
lsqnonneg 4.1e-02 3.4e-02 5.3e-02
AFP 5.7e-02 1.1e-01 3.0e-02

n = 20
lsqnonneg 1.3e-02 4.1e-03 6.9e-03
AFP 3.0e-02 4.3e-03 1.1e-02

n = 30
lsqnonneg 3.6e-03 2.8e-03 3.8e-03
AFP 9.4e+00 3.3e+03 3.8e+00

Table : Relative errors for f1 on the composite domain.

Similarly for f2, f3 and f4
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Third example
Three dimensional domain

The union of the cube [0, 0.75] × [0, 0.75] × [0, 0.75] with the sphere
centered in C = (0.5, 0.5, 0.5) and radius r = 0.5

Figure : Composite domain: union of a cube and a sphere

36 of 42



Third example
Points extracted: plots

Figure : From N = 100000 Halton points the points extracted lsqnonneg (∆) and the the AFP via approxfek(◦) for
n = 5 (i.e. 56 points).
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Third example
Points extracted: table

method N = 50000 N = 100000 N = 200000

n = 5
QMC 32212 64431 128793
lsqnonneg QMC m. 56 56 56
AFP QMC m. 56 (1.47) 56 (1.62) 56 (1.28)

n = 7
QMC 32212 64431 128793
lsqnonneg QMC m. 120 120 120
AFP QMC m. 120 (1.48) 120 (1.15) 120 (1.18)

n = 9
QMC 32212 64431 128793
lsqnonneg QMC m. 220 220 216
AFP QMC m. 220 (1.27) 220 (1.24) 220 (1.26)

Table : For the 3d domain, varying the number N of Halton points, we
show the number of points extracted with different n. We also show the
ratio ρ (in brackets).
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First test
Errors

method N = 50000 N = 100000 N = 200000

n = 5
lsqnonneg QMC m. 1.97e-02 3.70e-02 4.58e-03
AFP QMC m. 1.99e-02 5.11e-02 1.33e-02

n = 7
lsqnonneg QMC m. 5.49e-04 4.62e-03 3.43e-03
AFP QMC m. 2.64e-02 3.92e-03 1.07e-02

n = 9
lsqnonneg QMC m. 8.34e-05 3.01e-03 7.80e-03
AFP QMC m. 2.19e-03 2.25e-04 2.82e-05

Table : Relative errors for the 3d Franke function on the composite
domain of Fig. 14. Errors are computed with respect to the QMC method.

Similar behaviour for other functions
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Conclusions
Done and to do

Done

We have provided a general compression technique.

The method applies to every space dimension

Nonnegative least-squares and AFP have shown a better behaviour
than QMC, except for functions with high variation. But this is also
the case for the classical QMC

To do

A faster way of finding AFP

Error analysis
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#thankyou!
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