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Lissajous curves
Properties and motivation

1 Are parametric curves studied by Bowditch (1815) and
Lissajous (1857) of the form

γ(t) = (A cos(at + α),B sin(bt + β)) .

2 Chebyshev polynomials (Tk or Uk ) are Lissajous curves (cf. J.
C. Merino 2003). In fact a parametrization of
y = Tn(x), |x | ≤ 1 is x = cos t

y = − sin
(
nt − π

2

)
0 ≤ t ≤ π

3 Padua points (of the first family) lie on [−1, 1]2 on the
π-periodic Lissajous curve Tn+1(x) = Tn(y) called generating
curve given also as

γn(t) = (cos nt , cos(n + 1)t), 0 ≤ t ≤ π , n ≥ 1.
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The generating curve of the Padua points
(n = 4)
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Figure : Padn = CO
n+1 × CE

n+2 ∪ CE
n+1 × CO

n+2 ⊂ Cn+1 × Cn+2

Cn+1 =
{
zn

j = cos
(
(j−1)π

n

)
, j = 1, . . . , n + 1

}
: Chebsyhev-Lobatto points

on [−1, 1]

Note: |Padn | = (n+2
2 ) = dim(Pn(R2))
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The generating curve and cubature

Lemma (cf. Bos at al. JAT 2006)

For all p ∈ P2n(R2) we have

1
π2

∫
[−1,1]2

p(x, y)
1

√
1 − x2

1√
1 − y2

dxdy =
1
π

∫ π

0
p(γn(t))dt .
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Lissajous points in 2D: non-degenerate case

Erb et al. 2014 (cf. arXiv 1411.7589) in the framework of Magnetic
Particle Imaging applications, considered

γn,p(t) = (sin nt , sin((n + p)t)) 0 ≤ t < 2π ,

n, p ∈ N s.t. n and n + p are relative primes.

γn,p is non-degenerate iff p is odd.

Take tk = 2πk/(4n(n + p)), k = 1, ..., 4n(n + p).

Lisan,p :=
{
γn,p(tk ), k = 1, . . . , 4n(n + p)

}
, |Lisan,p | = 2n(n+p)+2n+p .

Notice: p = 1, |Lisan,1| = 2n2 + 4n + 1 while |Pad2n | = 2n2 + 3n + 1.
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Lissajous points: non-degenerate case

Figure : From the paper by Erb et al. 2014 (cf. arXiv 1411.7589)
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Lissajous points: degenerate case
Erb 2015, (cf. arXiv 1503.00895) has then studied the degenerate
2π-Lissajous curves

γn,p(t) = (cos nt , cos((n + p)t)) 0 ≤ t < 2π ,

E

Take tk = πk/(n(n + p)), k = 0, 1, ..., n(n + p).

LDn,p :=
{
γn,p(tk ), k = 0, 1, . . . , n(n + p)

}
, |LDn,p | =

(n + p + 1)(n + 1)

2
.

Notice: for p = 1, |LDn,1| = |Padn | = dim(Pn(R2)) and correspond to
the Padua points themselves.
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Lissajous points: degenerate case

Figure : From the paper by Erb 2015, (cf. arXiv 1503.00895)
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Notation in 3d

Ω = [−1, 1]3: the standard 3-cube

The product Chebyshev measure

dλ = w(x)dx , w(x) =
1√

(1 − x2
1 )(1 − x2

2 )(1 − x2
3 )

. (1)

P3
k : space of trivariate polynomials of degree k in R3

(dim(P3
k ) = (k + 1)(k + 2)(k + 3)/6).
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Fundamental theorem

This results shows which are the admissible 3d Lissajous curves

Theorem (cf. Bos, De Marchi at al. 2015, arXiv 1502.04114)

Let be n ∈ N+ and (an, bn, cn) be the integer triple

(an, bn, cn) =


(

3
4 n2 + 1

2 n, 3
4 n2 + n, 3

4 n2 + 3
2 n + 1

)
, n even(

3
4 n2 + 1

4 ,
3
4 n2 + 3

2 n − 1
4 ,

3
4 n2 + 3

2 n + 3
4

)
, n odd

(2)

Then, for every integer triple (i, j, k), not all 0, with i, j, k ≥ 0 and
i + j + k ≤ mn = 2n, we have the property that ian , jbn + kcn,
jbn , ian + kcn, kcn , ian + jbn.
Moreover, mn = 2n is maximal, in the sense that there exists a triple
(i∗, j∗, k ∗), i∗ + j∗ + k ∗ = 2n + 1, that does not satisfy the property.
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Consequence I
Cubature along the curve

On admissible curve the integration becomes the integral on the
curve.

Proposition

Consider the Lissajous curves in [−1, 1]3 defined by

`n(θ) = (cos(anθ), cos(bnθ), cos(bnθ)) , θ ∈ [0, π] , (3)

where (an, bn, cn) is the sequence of integer triples (2).
Then, for every total-degree polynomial p ∈ P3

2n∫
[−1,1]3

p(x) w(x)dx = π2
∫ π

0
p(`n(θ)) dθ . (4)

Proof. It suffices to prove the identity for a polynomial basis (ex:
for the tensor product basis Tα(x), |α| ≤ 2n). � 12 of 31



Consequence II
Exactness

Corollary

Let p ∈ P3
2n, `n(θ) and ν = n max{an, bn, cn}. Then∫

[−1,1]3
p(x) w(x)dx =

µ∑
s=0

ws p(`n(θs)) , (5)

where
ws = π2ωs , s = 0, . . . , µ , (6)

with

µ = ν , θs =
(2s + 1)π

2µ+ 2
, ωs ≡

π

µ+ 1
, s = 0, . . . , µ , (7)

or alternatively

µ = ν+ 1 , θs =
sπ
µ

, s = 0, . . . , µ ,

ω0 = ωµ =
π

2µ
, ωs ≡

π

µ
, s = 1, . . . , µ − 1 . (8)
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Remarks

The points set {
`n(θs), s = 0, . . . , µ

}
are a 3-dimensional rank-1 Chebyshev lattices (for cubature
of degree of exactness 2n).

Cools and Poppe [cf. CHEBINT, TOMS 2013] wrote a search
algorithm for constructing heuristically such lattices.

WE HAVE an explicit formula for any degree.
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Hyperinterpolation operator
General definition

Definition
Hyperinterpolation of multivariate continuous functions, on compact
subsets or manifolds, is a discretized orthogonal projection on polynomial
subspaces [Sloan JAT1995].

Practically

It is a total-degree polynomial approximation of multivariate continuous
functions, given by a truncated Fourier expansion in o.p. for the given
domain

It requires 3 main ingredients

1 a good cubature formula (positive weights and high precision);

2 a good formula for representing the reproducing kernel (accurate
and efficient);

3 a slow increase of the Lebesgue constant (which is the operator
norm).

15 of 31



Hyperinterpolation operator
General definition

Definition
Hyperinterpolation of multivariate continuous functions, on compact
subsets or manifolds, is a discretized orthogonal projection on polynomial
subspaces [Sloan JAT1995].

Practically

It is a total-degree polynomial approximation of multivariate continuous
functions, given by a truncated Fourier expansion in o.p. for the given
domain

It requires 3 main ingredients

1 a good cubature formula (positive weights and high precision);

2 a good formula for representing the reproducing kernel (accurate
and efficient);

3 a slow increase of the Lebesgue constant (which is the operator
norm).

15 of 31



Hyperinterpolation operator
General definition

Definition
Hyperinterpolation of multivariate continuous functions, on compact
subsets or manifolds, is a discretized orthogonal projection on polynomial
subspaces [Sloan JAT1995].

Practically

It is a total-degree polynomial approximation of multivariate continuous
functions, given by a truncated Fourier expansion in o.p. for the given
domain

It requires 3 main ingredients

1 a good cubature formula (positive weights and high precision);

2 a good formula for representing the reproducing kernel (accurate
and efficient);

3 a slow increase of the Lebesgue constant (which is the operator
norm).

15 of 31



Hyperinterpolation operator
General definition

Definition
Hyperinterpolation of multivariate continuous functions, on compact
subsets or manifolds, is a discretized orthogonal projection on polynomial
subspaces [Sloan JAT1995].

Practically

It is a total-degree polynomial approximation of multivariate continuous
functions, given by a truncated Fourier expansion in o.p. for the given
domain

It requires 3 main ingredients

1 a good cubature formula (positive weights and high precision);

2 a good formula for representing the reproducing kernel (accurate
and efficient);

3 a slow increase of the Lebesgue constant (which is the operator
norm). 15 of 31



Hyperinterpolation operator
Definition and properties

For f ∈ C([−1, 1]3), using (5), the hyperinterpolation polynomial of f is

Hnf(x) =
∑

0≤i+j+k≤n

Ci,j,k φ̂i,j,k (x) , (9)

φ̂i,j,k (x) = T̂i(x1)T̂j(x2)T̂k (x3) with Ts(·) the normalized Chebyshev
polynomials

Ci,j,k =

µ∑
s=0

ws f(`n(θs)) φ̂i,j,k (`n(θs)) . (10)
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Properties

Hnf = f , ∀f ∈ P3
n (projection operator, by construction).

L2-error

‖f −Hnf‖2 ≤ 2π3 En(f) , En(f) = inf
p∈Pn
‖f − p‖∞ . (11)

Lebesgue constant

‖Hn‖∞ = max
x∈[−1,1]3

µ∑
s=0

ws
∣∣∣Kn(x, `n(θs))

∣∣∣ , Kn(x, y) =
∑
|i|≤n

φ̂i(x)φ̂i(y), i = (i, j, k)

(12)
where Kn is the reproducing kernel of P3

n w.r.t. product
Chebyshev measure
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Hyperinterpolation operator
Norm and approximation error estimates

Based on a conjecture stated in [DeM, Vianello & Xu, BIT
2009] and specialized in [H.Wang, K.Wang & X.Wang, CMA
2014] we get

‖Hn‖∞ = O((log n)3)

i.e. the minimal polynomial growth.

Hn is a projection, then

‖f −Hnf‖∞ = O
(
(log n)3 En(f)

)
. (13)
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Computing the hyperinterpolation coefficients
The coefficients {Ci,j,k } can be computed by a single 1D discrete
Chebyshev transform along the Lissajous curve.

Proposition

Let be f ∈ C([−1, 1]3), (an, bn, cn), ν, µ, {θs}, ωs , {ws} as in Corollary 1.
Then

Ci,j,k =
π2

4
σianσjbnσkcn

(
γα1

σα1

+
γα2

σα2

+
γα3

σα3

+
γα4

σα4

)
, (14)

α1 = ian + jbn + kcn , α2 = |ian + jbn − kcn | ,

α3 = |ian − jbn |+ kcn , α4 = ||ian − jbn | − kcn | ,

where {γm} are the first ν + 1 coefficients of the discretized Chebyshev
expansion of f(Tan (t),Tbn (t),Tcn (t)), t ∈ [−1, 1], namely

γm =

µ∑
s=0

ωs T̂m(τs) f(Tan (τs),Tbn (τs),Tcn (τs)) , (15)

m = 0, 1, . . . , ν, with τs = cos(θs), s = 0, 1, . . . , µ.
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Remarks
Lissajous sampling, cubature, WAMs

1 Within the emerging 3d MPI (Magnetic Particle Imaging)
technology, Lissajous sampling is one of the most common
sampling method.

2 Hyperinterpolation polynomials on d-dimensional cubes can
be done by other cubature formulas (exacteness 2n) for the
product Chebyshev measure : O(n4) [DeM, Vianello, Xu BIT
2009]; [Godzina 1995] which have the lowest cardinality and
used in the package CHEBINT by Cools&Poppe.

3 The set An = {`n(θs) , s = 0, . . . , µ} in (7)-(8), forms a
Weakly Admissible Mesh for [−1, 1]3, so they provide a
Lissajous sampling to 3D polynomial interpolation.
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Implementation details: I

From Prop. 2, hyperinterpolation on `n(t) can be done by a single
1-dimensional FFT. We used the Chebfun package [Chebfun 2014].

The polynomial interpolant of a function g can be written

πµ(t) =

µ∑
m=0

cmTm(t) (16)

where

cm =
2
µ

µ∑
s=0

′′ Tm(τs) g(τs) , m = 1, . . . , µ − 1 ,

cm =
1
µ

µ∑
s=0

′′ Tm(τs) g(τs) , m = 0, µ , (17)

Note:
∑µ

s=0
′′ means first and last terms are halved
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Implementation details: II

If g(t) = f(Tan (t),Tbn (t),Tcn (t)) and comparing with the
discrete Chebyshev expansion coefficients (15)

γm

σm
=


π
2 cm , m = 1, . . . , µ − 1

π cm , m = 0, µ
(18)

i.e., the 3D hyperinterpolation coefficients (14) can be
computed by the {cm} and (18).

A single call of the function chebfun on
f(Tan (t),Tbn (t),Tcn (t)), truncated at the (µ + 1)th-term,
produces all the relevant coefficients {cm} in an extremely fast
and stable way.
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Example
computation of coefficients

Example

Take n = 100 and the functions

f1(x) = exp(−c‖x‖22) , c > 0 , f2(x) = ‖x‖β2 , β > 0 , (19)

To compute the µ = 3
4n3 + 3

2n2 + n + 2 = 765102 coefficients from
which we get by (14) the (n + 1)(n + 2)(n + 3)/6 = 176851
coefficients of trivariate hyperinterpolation,

it took about 1 second by using Chebfun 5.1 on a Athlon 64 X2
Dual Core 4400+ 2.4 GHz processor.
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Example
hyperinterpolation errors

Figure : Left: Hyperinterpolation errors for the trivariate polynomials
‖x‖2k

2 with k = 5 (diamonds) and k = 10 (triangles), and for the trivariate
function f1 with c = 1 (squares) and c = 5 (circles). Right:
Hyperinterpolation errors for the trivariate function f2 with β = 5 (squares)
and β = 3 (circles).
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Interpolation by Lissajous sampling

The sampling set (Chebyshev lattice)
An = {`n(θs) , s = 0, . . . , µ} has been used as a WAM from
which we have extracted the AFP and the DLP.

The extraction of N = dim(P3
n) points has been done by the

software available at
www.math.unipd.it/∼marcov/CAAsoft.
DLP form a sequence, i.e., its first Nr = dim(Pd

r ) elements
span Pd

r , 1 ≤ r ≤ n.

We wrote the package hyperlissa, a Matlab code for
hyperinterpolation on 3d Lissajous curves. Available at the
same web page.
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Example
Chebyshev lattice points

Figure : Left: the Chebyshev lattice (circles) and the extracted
Approximate Fekete Points (red asterisks), on the Lissajous curve for
polynomial degree n = 5. Right: A face projection of the curve and the
sampling nodes
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Figure : Lebesgue constants (log scale) of the Approximate Fekete
Points (asterisks) and Discrete Leja Points (squares) extracted from the
Chebyshev lattices on the Lissajous curves, for degree n = 1, 2, . . . , 30,
compared with dim(P3

n) = (n + 1)(n + 2)(n + 3)/6 (upper solid line) and
n2 (dots).
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Figure : Interpolation errors on Approximate Fekete Points (asterisks)
and Discrete Leja Points (squares) for the trivariate functions f1 (Left) with
c = 1 (solid line) and c = 5 (dotted line), and f2 (Right) with β = 5 (solid
line) and β = 3 (dotted line).
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Future works

A general results for generating “good” Lissajous curves for
every dimension d.

A faster way to extract AFP and LDP from Lissajous curves.

Construct Padua points on the cube [−1, 1]3.
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Future meetings in the Dolomites

7th Research week: 5-8/9/2015,
http://events.math.unipd.it/drwa15/

4th Workshop: 8-13/9/2016,
http://events.math.unipd.it/dwcaa16/
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#thankyou!
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