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From RBF to Rational RBF (RRBF)

work with A. Martinez and E. Perracchione
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Data: Q c RY, X c Q, test function f
XN = {X1,...,XN} C Q, f= {f1,...,fN}, where f, = f(X,')
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Data: Q c RY, X c Q, test function f
XN = {X1,...,XN} C Q, f= {f1,...,fN}, where f, = f(X,')
Approximation setting:

m ¢(e-): Conditionally Positive Definite (CPD) of order ¢ or
Strictly Positive Definite (SPD) and radial (&, shape parameter)

name 4 t

H globally supported: Gavssian G (OA) s

0
Generalized Multiquadrics C* (GM) (1 +r?/e2)3/2 2

m locally supported:
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Notations

Data: Q c RY, X c Q, test function f
XN = {X1,...,XN} C Q, f= {f1,...,fN}, where f, = f(X,')
Approximation setting:

m ¢(e-): Conditionally Positive Definite (CPD) of order ¢ or
Strictly Positive Definite (SPD) and radial (&, shape parameter)

name 4 t

H globally supported: Gavssian G (OA) s

0
Generalized Multiquadrics C* (GM) (1 +r?/e2)3/2 2

m locally supported:
name ¢ t
Wendland C2 (W2) (1-en) (der +1) 0
Buhmann C2 (B2)  2rtlogr—7/2r* +16/3r3 —2r2 4+ 1/6 0
m kernel notation K.(-, ")
m native space N, (Q2) (where K is the reproducing kernel)
m finite subspace N, (Xn) = span{K(-, x) : x € Xy} € N ()
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RBF Interpolation

Given Q, Xn.f, K
Aim

Find P; € N (Xn) s.t. (Pr)xy =f
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RBF Interpolation

Given Q, Xy, f, K
Aim

Find P; € N (Xn) s.t. (Pr)xy =f

m Classical interpolant: Py(x ZakK X, Xk), X €K, xx € Xy.

[Hardy and Gofert 1975] used multhuadrlcs

K(x,y) = N1+ €llx -yl

. P oy aK(x,
m Rescaled interpolant: P(x) = () _ Do @K X0)

Pg(x) Z,(NﬁﬂkK(x, Xk)
is the kernel interpolant of g(x) = 1, ¥x € Q. Localized Rescaled
and exactness on constants in [Deparis et al 2014]. In [DeM et al
2017] it is shown that it is a Shepard’s PU method. Linear
convergence of localized rescaled interpolants [DeM and Wendland,
draft 2017]
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Rational RBF

definition

_ R(1)(X) _ Zﬁ:1 axK(x, xk)
ROG) 2L Bk (6 x0)
[Jackbsson et al. 2009, Sarra and Bai 2017]

— RRBFs well approximate data with steep gradients or
discontinuites [rational with PU+VSK in DeM et al. 2017].

o
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Rational RBF

Learning from rational functions, d = 1

m polynomial case.

_pi(x) . amX" 4+ agX’
pg(X) Xn+bn71Xn71 "'+b0'

r(x)

M = m+ n+ 1 unknowns (Padé approximation). If M < N to get the
coefficients we may solve the LS problem

N
min [Z |f(xk) - r(xk)|2].
k=1

pien} .poen}
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Rational RBF

Learning from rational functions, d = 1

m polynomial case.
_ pi(x) amX™ + - 4 apx°

) = pa(x) X"+ byyx"T -+ by’

M = m+ n+ 1 unknowns (Padé approximation). If M < N to get the
coefficients we may solve the LS problem

N
min [Z |f(xk) - r(xk)|2].
k=1

p1eNy,.peM}

m RBF case. Let X, = {xx, ... s Xk4+-m—1 L X = {Xj, oo Xjtn—1 } € Xy be
non empty, such that m+n <N
mn_mwn_zﬁfm«mm> "
RE() 2 BuK(x %)

provided R®)(x) # 0,for all x € Q.
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Rational RBF

Find the coefficients: |

[Jackobsson et al 2009] proved the well-posedness of the interpolation
on Xy via
RD(x) I, aik(x,x)

()

RO(X) 3N BeK(x. %)
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Rational RBF

Find the coefficients: |

[Jackobsson et al 2009] proved the well-posedness of the interpolation
on Xy via
RD(x) I, aik(x,x)

RO(X) 3N BeK(x. %)

Letting £ = (@ ,B") € R?N and B the N x 2N matrix

()

K(X1,X1) K(X1,XN) —f1 K(X1,X1) —f1 K(X1,XN)
B=| z :
K(XN,X1) K(XN,XN) —fN K(XN,X1) —fN K(XN, XN)

The system B¢ = 0 can be written as (A — DA)(£) = 0 with
D= diag(f1, ey fN), and A,‘J‘ = K(X,‘,Xj)...
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Rational RBF

Find the coefficients: |

[Jackobsson et al 2009] proved the well-posedness of the interpolation
on Xy via
RD(x) I, aik(x,x)

RO(X) 3N BeK(x. %)

Letting £ = (@ ,B") € R?N and B the N x 2N matrix

(2)

K(xi,x1) - K(xi,xn) —fiK(x1,x1) -+ —fi K(x1,Xn)

B= : : :
K(XN,X1) K(XN,XN) —fNK(XN,X1) —fNK(XN,XN)

The system B¢ = 0 can be written as (A — DA)(£) = 0 with

D = diag(fy,...,fn), and A;j = K(x;, x;)... which is underdetermined!

Non trivial solution

Following [GolubReinsch1975] non-trivial solutions exist by asking

l€]l = 1 i.e. solving the problem  min  [|BE]l>.
£eRN,1g]l=1
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Rational RBF

Find the coefficients: I

Obs: (Since RM(x;) = iR®)(x), i=1,...,N)

findq = (R®(xq),..., R®(xy))T and, as p = Dq, then
p = (RO, . RO (xx))T .
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m If p, q are given then the rational interpolant is known by solving
Ao =p, AB=q. 3)
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Rational RBF

Find the coefficients: I

Obs: (Since RM(x;) = iR®)(x), i=1,...,N)

findq = (R®(xq),...,R®(xy))T and, as p = Dq, then
p= (F?(1 (x)s s RO (xn)) T

m If p, q are given then the rational interpolant is known by solving
Ao =p, AB=q. (3)

m Existence & Uniqueness of (3): K is SPD

Using the native space norms the above problem is equivalent

Problem 1

( SIROI, +IR®IR, ) (4)
I1fII2

min
RM RGP eN,
1/If21Ipl3-+IqlE=1,

RM (x)=f R® (x¢).
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Rational RBF

Find the coefficients: IlI

IRMWIZ, =e"Ae, and [R®|E,_=BTAB.
Then, from (3) and symmetry of A

IRVI, =pTA™p, and IR®|Z, =q'A™q.

Therefore, the Problem 1 reduces to solve

Problem 2

(ufnqu AT AT q)

min
qeRV,
1/1IfI31IDqIB+qlE=1.

10033
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Rational RBF

Find the coefficients: IV

[Jackbsson 2009] show that this is equivalent to solve the following
generalized eigenvalue problem

Problem 3

>q=A10q,

with ] y
Y=—D'ATD+A"", and ©=—D"D+Iy,
Ifllz lIfllz

where Iy is the identity matrix.
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Rational RBF

Find the coefficients: IV

[Jackbsson 2009] show that this is equivalent to solve the following
generalized eigenvalue problem

Problem 3

>q=A10q,
with y
Y=—D'ATD+A"", and ©=—D"D+Iy,
Ifllz lIfllz

where Iy is the identity matrix.

|
<> ¢ is the eigenvector associated to the smallest eigenvalue! «

e 11of3s




The new eigen-rational interpolant
work with M. Buhmann and E. Perracchione
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New class of rational RBF

Z,N=1 aiK(x, X;) + 2#7:1 YmPm (X) L Pg(x)

B(x) — ; -
) Sk BicK (%, xi) Pn(x)

(5)

Ratio of a CPD K of order ¢ and an associate PD K .... = two kernel
matrices, Pk and Pi.
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New class of rational RBF

Z,N=1 aiK(x, X;) + 2#7:1 YmPm (X) _: Pg(x)
Sk BicK (%, xi) ~ Pa(x)

Pi(x) = (5)

Ratio of a CPD K of order ¢ and an associate PD K .... = two kernel
matrices, Pk and Pi.

Obs:

Once we know the function values Py(X;) = hi,i=1,...,N, we can
construct Py, i.e. it interpolates g = (f; hy,....fnhN)T. Hence P;
interpolates the given function values f at the nodes Xy.

If K is PD, we fix K = K so that we deal with the same kernel matrix
for both numerator and denominator.
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The rational interpolant is well-defined

When P(x) # 0, ¥x € Q?

Theorem (Perron1907)

All positive square matrices have a positive eigenvalue with
corresponding eigenvector with all components positive (called Perron
eigenpair)

Theorem (Perron1907)

All positive square matrices possess exactly one Perron eigenpair and
the corresponding eigenvalue has the largest modulus.
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Remarks

dividing the interpolant (2) by the eigenvector associated to the largest
eigenvalue of ®z makes computations more accurate and hopefully more
stable.

hence, the coefficients B = (B1,....Bn)" are the components of the
eigenvector associate to the eigenvalue

max B’ oxp, (6)
[1Bll2=1

This enables us to give an eigen-rational RBF expansion,
independent of the function values of the approximant and
depending only on the kernel K (and its associate K) and Xy

e 15of33




Algorithmic issues

Assume K is CPD of order ¢ and K the associate PD kernel
Compute B and so the values Pp(x;) = h;, i = 1,..., N where
h is defined by using the matrix ¢ (that depends on Xy and
¢) and not on the function values.

Determine Ps in (5) with the function values g = fh and 0 (of
lengtth L) instead of (g,0)".
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Cardinal functions: |

A K(x, x; N hiK(x, x;)
P — i) X, Xj ,
= LT ) 2 T ) T G %)

j=1

K(x.x)) P
Pf Z ; / = Z(II'KH(X,XI').
=

= N BiK(x. xi) TN, Bid(x;, X))
Since Py, is not vanishing, the function
1 1
K
Pn(x) Pn(y)
is strictly positive definite [DeMIS17].
Obs:

The same argument applies when K is only CPD of order ¢ giving Kg

CPD of order ¢. —

Kr(x,y) =
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Cardinal form of the interpolant and stability

Proposition (BDeMP18)

Suppose K is CPD of order ¢ in R?, K is the associated PD kernel.
Suppose Xy c Q is (¢ — 1)-unisolvent, then there exist N functions U so
that the interpolant is




EMATEMATIJX
Cardinal form of the interpolant and stability

Proposition (BDeMP18)

Suppose K is CPD of order ¢ in R?, K is the associated PD kernel.
Suppose Xy c Q is (¢ — 1)-unisolvent, then there exist N functions U so
that the interpolant is

— If K = K is PD, the 0, k = 1,..., N, form a partition of unity [DeMIS,
AT15 (2017)].
= Stability bound

N
2. Tx)itx

where Ay the Lebesgue constant

(Z 105 (x Jnfnm = AOlflle < Anllfleo.

~

An := max An(x).

xeQ -
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Error bound

Proposition (BDeMP18)

Let Q C RY be open. Suppose K € C(Q x Q) be CDP of order ¢ and K
the associate PD kernel. Assume that Xy c Q is (¢ — 1)-unisolvent.
Then, for x € Q, the pointwise error

If (x) = Py (x)| < m(PR,XN(’{NMNK(Q)V(XN 4 PK,XN(X)|Q|NK(Q))-

with Pk x,, the power function for the kernel K and point set Xy and
| Ine (o) the semi-norm.

— Similar bounds are derived using the fill-distance, hx, q.
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Numerical tests:
rational eigen-basis vs the standard one




Numerical tests: Lebesgue constants |

K | AN(e=05) An(=3) | Ay(e=05) Ay(e=3)
GM 4.98 8.69 5.14 9.13
GA 9.81 258 126 3.59
M6 10.6 2.20 1.1 2.60
we 2.10 9.58 2.73 7.90
B2 30.6 - 29.1 -

Table: Lebesgue constants Ay and Ay for classical and eigen-rational
interpolants, respectively. They are computed on N = 10 equally spaced
points on Q = [-1, 1]. Note: Buhmann’s function is independent of the
shape parameter.




Numerical tests: Lebesgue functions (1d)

Aw(@1)
— Ay (z1)

Figure: Top: 10 Halton points, GM kernel with & = 0.5 (left) and & = 3 (right). Bottom: 10 Chebyshev points, GA
kernel with & = 0.5 (left) and & = 3 (right).
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Numerical tests: Lebesgue functions (2d)

Figure: Top: Lebesgue functions computed via the W6 kernel with & = 0.5 for standard (left) and eigen-rational (right)
interpolants. Bottom: Lebesgue functions computed via the B2 kernel for standard (left) and eigen-rational (right)
interpolants.
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Error and max-abs error comparison

fi (X1) = sinc(x1), X1 € [—1, 1]

Figure: Error estimates £ and E via LOOCV of max. abs. errors A and A
for eigen-rational and classical interpolants, respectively. Here we
consider f; on 81 Chebyshev points on Q = [-1, 1] via GM (left) and GA

(right) kernels.

e 240f33




8

X
Xq € [—1,1]

f2(X1 ) =

tan(1 + x2) + 0.5’

Figure: Error estimates £ and E via LOOCV of max. abs. errors A and A
for eigen-rational and classical interpolants, respectively. Result are
computed with f, and 81 Random points on Q = [-1, 1] via W6 (left) and

M6 (right) kernels.
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Image registration: landmarks [CDeR2018, C et al 2015]

Figure: (Above) 21 landmarks are plotted with squares on the source image (left) and with dots on the target image
(left). (Below) The registered image via eigen-rational interpolants computed with the W2 (left) and M2 (right) kernels and
shape parameter ¢ = 0.1.
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Image registration: mean error comparison

([ Zsesls - F(s)Ig)"
M‘( #s ) |

Figure: Mean errors M (standard) and M (rational), varying the shape
parameter.
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Breve resoconto del progetto GNCS 2016-17
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Alcuni dati

Finanziamento richiesto/ricevuto: 9.0K/7.8K euro
Partecipanti: 15 strutturati, 9 non strutturati;
Quote individuali: circa 300 euro

Organizzati dai componenti i seguenti meetings: Bernried17,
MATAA17 (Torino), CMMSE (Cadiz), DRWA17 (Canazei),
SMART17(Gaeta), AMTA17 (Palermo).

Pubblicazioni relative al progetto: CAA Padova+Verona(22+13),
Milano(83), Torino(10+2), Firenze(4+1), Potenza(9+2),
Cosenza(4+7?), Reggio Calabria(4), Palermo(5).
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RITA (Rete ITaliana di Approssimazione): sito

fict

RITA 2017

https://sites.google.com/site/italianapproximationnetwork/
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grazie per la vostra attenzione!
thanks for your attention!
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