New developments on rational RBF

Stefano De Marchi
Department of Mathematics “Tullio Levi-Civita”
University of Padova
Montecatini, 14th February 2018
Outline

1. From RBF to Rational RBF (RRBF)
2. Eigen-rational interpolant
3. Numerical experiments
 - Lebesgue functions and constants
 - Errors
 - Landmark-based Image registration
4. Progetto GNCS 2016-17
From RBF to Rational RBF (RRBF)
work with A. Martinez and E. Perracchione
Notations

Data: \(\Omega \subset \mathbb{R}^d \), \(X \subset \Omega \), test function \(f \)
\(X_N = \{x_1, \ldots, x_N\} \subset \Omega \), \(f = \{f_1, \ldots, f_N\} \), where \(f_i = f(x_i) \)
1. Data: $\Omega \subset \mathbb{R}^d$, $X \subset \Omega$, test function f
 $X_N = \{x_1, \ldots, x_N\} \subset \Omega$, $f = \{f_1, \ldots, f_N\}$, where $f_i = f(x_i)$

2. Approximation setting:
 - $\phi(\varepsilon \cdot)$: Conditionally Positive Definite (CPD) of order ℓ or Strictly Positive Definite (SPD) and radial (ε, shape parameter)

name	ϕ	ℓ
Gaussian C^∞ (GA)	$e^{-\varepsilon^2 r^2}$	0
Generalized Multiquadrics C^∞ (GM)	$(1 + r^2 / \varepsilon^2)^{3/2}$	2

 - globally supported:

 - locally supported:

name	ϕ	ℓ
Wendland C^2 (W2)	$(1 - \varepsilon r)^4 (4\varepsilon r + 1)$	0
Buhmann C^2 (B2)	$2r^4 \log r - 7/2r^4 + 16/3r^3 - 2r^2 + 1/6$	0
Notations

1. **Data:** \(\Omega \subset \mathbb{R}^d, \ X \subset \Omega, \) test function \(f \)
 \[X_N = \{x_1, \ldots, x_N\} \subset \Omega, \ f = \{f_1, \ldots, f_N\}, \text{ where } f_i = f(x_i) \]

2. **Approximation setting:**

 - \(\phi(\varepsilon \cdot) \): Conditionally Positive Definite (CPD) of order \(\ell \) or Strictly Positive Definite (SPD) and radial (\(\varepsilon \), shape parameter)

name	\(\phi \)	\(\ell \)
Gaussian \(C^\infty \) (GA)	\(e^{-\varepsilon^2 r^2} \)	0
Generalized Multiquadrics \(C^\infty \) (GM)	\((1 + r^2 / \varepsilon^2)^{3/2} \)	2

 - **globally supported:**

 - **locally supported:**

name	\(\phi \)	\(\ell \)
Wendland \(C^2 \) (W2)	\((1 - \varepsilon r)^4 (4\varepsilon r + 1) \)	0
Buhmann \(C^2 \) (B2)	\(2r^4 \log r - 7/2r^4 + 16/3r^3 - 2r^2 + 1/6 \)	0

- kernel notation \(K_\varepsilon(\cdot, \cdot) \)
- native space \(\mathcal{N}_K(\Omega) \) (where \(K \) is the reproducing kernel)
- finite subspace \(\mathcal{N}_K(X_N) = \text{span}\{K(\cdot, x) : x \in X_N\} \subset \mathcal{N}_K(\Omega) \)
RBF Interpolation

Given Ω, X_N, f, K

Aim

Find $P_f \in \mathcal{N}_K(X_N)$ s.t. $(P_f)_{X_N} = f$

[Hardy and Gofert 1975] used multiquadrics $K(x, y) = \sqrt{1 + \epsilon^2 \|x - y\|^2}$.

Rescaled interpolant: $\hat{P}_f(x) = P_f(x) P_g(x) = \sum_{k=1}^{N} \alpha_k K(x, x_k) \sum_{k=1}^{N} \beta_k K(x, x_k)$

where P_g is the kernel interpolant of $g(x) = 1$, $\forall x \in \Omega$.

Localized Rescaled and exactness on constants in [Deparis et al 2014]. In [DeM et al 2017] it is shown that it is a Shepard’s PU method.

Linear convergence of localized rescaled interpolants [DeM and Wendland, draft 2017]
RBF Interpolation

Given Ω, X_N, f, K

Aim

Find $P_f \in \mathcal{N}_K(X_N)$ s.t. $(P_f)_{X_N} = f$

- Classical interpolant: $P_f(x) = \sum_{k=1}^{N} \alpha_k K(x, x_k), \quad x \in \Omega, \ x_k \in X_N.$

[Hardy and Gofert 1975] used multiquadrics $K(x, y) = \sqrt{1 + \epsilon^2 \|x - y\|^2}$.
RBF Interpolation

Given Ω, X_N, f, K

Aim

Find $P_f \in \mathcal{N}_K(X_N)$ s.t. $(P_f)_{X_N} = f$

- **Classical interpolant:** $P_f(x) = \sum_{k=1}^{N} \alpha_k K(x, x_k), \quad x \in \Omega, \ x_k \in X_N$.

 [Hardy and Gofert 1975] used multiquadrics

 $K(x, y) = \sqrt{1 + \epsilon^2 \|x - y\|^2}$.

- **Rescaled interpolant:** $\hat{P}_f(x) = \frac{P_f(x)}{P_g(x)} = \frac{\sum_{k=1}^{N} \alpha_k K(x, x_k)}{\sum_{k=1}^{N} \beta_k K(x, x_k)}$ where P_g is the kernel interpolant of $g(x) = 1, \ \forall x \in \Omega$. Localized Rescaled and exactness on constants in [Deparis et al 2014]. In [DeM et al 2017] it is shown that it is a **Shepard’s PU method**. Linear convergence of localized rescaled interpolants [DeM and Wendland, draft 2017]
Rational RBF

\[R(x) = \frac{R^{(1)}(x)}{R^{(2)}(x)} = \frac{\sum_{k=1}^{N} \alpha_k K(x, x_k)}{\sum_{k=1}^{N} \beta_k K(x, x_k)} \]

[Jackbsson et al. 2009, Sarra and Bai 2017]

\[\Rightarrow \text{RRBFs well approximate data with steep gradients or discontinuities [rational with PU+VSK in DeM et al. 2017].} \]
Rational RBF
Learning from rational functions, \(d = 1 \)

- polynomial case.

\[
\begin{align*}
\quad r(x) &= \frac{p_1(x)}{p_2(x)} = \frac{a_m x^m + \cdots + a_0 x^0}{x^n + b_{n-1} x^{n-1} \cdots + b_0}.
\end{align*}
\]

\(M = m + n + 1 \) unknowns (Padé approximation). If \(M < N \) to get the coefficients we may solve the LS problem

\[
\min_{p_1 \in \Pi^1_m, p_2 \in \Pi^1_n} \left(\sum_{k=1}^{N} \left| f(x_k) - r(x_k) \right|^2 \right).
\]
Rational RBF

Learning from rational functions, $d = 1$

- **polynomial case.**

$$r(x) = \frac{p_1(x)}{p_2(x)} = \frac{a_m x^m + \cdots + a_0 x^0}{x^n + b_{n-1} x^{n-1} \cdots + b_0}.$$

$M = m + n + 1$ unknowns (Padé approximation). If $M < N$ to get the coefficients we may solve the LS problem

$$\min_{p_1 \in \Pi^1_m, p_2 \in \Pi^1_n} \left(\sum_{k=1}^{N} \left| f(x_k) - r(x_k) \right|^2 \right).$$

- **RBF case.** Let $X_m = \{x_k, \ldots, x_{k+m-1}\}$, $X_n = \{x_j, \ldots, x_{j+n-1}\} \subset X_N$ be non empty, such that $m + n \leq N$

$$R(x) = \frac{R^{(1)}(x)}{R^{(2)}(x)} = \frac{\sum_{i_1=k}^{k+m-1} \alpha_{i_1} K(x, x_{i_1})}{\sum_{i_2=j}^{j+n-1} \beta_{i_2} K(x, x_{i_2})}, \quad (1)$$

provided $R^{(2)}(x) \neq 0$, for all $x \in \Omega$.
Rational RBF
Find the coefficients: I

[Jackobsson et al 2009] proved the well-posedness of the interpolation on X_N via

$$R(x) = \frac{R^{(1)}(x)}{R^{(2)}(x)} = \frac{\sum_{i=1}^{N} \alpha_i K(x, x_i)}{\sum_{k=1}^{N} \beta_k K(x, x_k)},$$

(2)
Rational RBF

Find the coefficients: I

[Jackobsson et al 2009] proved the well-posedness of the interpolation on X_N via

$$R(x) = \frac{R^{(1)}(x)}{R^{(2)}(x)} = \frac{\sum_{i=1}^{N} \alpha_i K(x, x_i)}{\sum_{k=1}^{N} \beta_k K(x, x_k)}, \quad (2)$$

Letting $\xi = (\alpha^T, \beta^T) \in \mathbb{R}^{2N}$ and B the $N \times 2N$ matrix

$$B = \begin{pmatrix}
K(x_1, x_1) & \cdots & K(x_1, x_N) & -f_1 K(x_1, x_1) & \cdots & -f_1 K(x_1, x_N) \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
K(x_N, x_1) & \cdots & K(x_N, x_N) & -f_N K(x_N, x_1) & \cdots & -f_N K(x_N, x_N)
\end{pmatrix}.$$

The system $B\xi = 0$ can be written as $(A - DA)(\xi) = 0$ with $D = \text{diag}(f_1, \ldots, f_N)$, and $A_{i,j} = K(x_i, x_j)$. ...
Rational RBF

Find the coefficients: I

[Jackobsson et al 2009] proved the well-posedness of the interpolation on X_N via

$$R(x) = \frac{R^{(1)}(x)}{R^{(2)}(x)} = \sum_{i=1}^{N} \frac{\alpha_i K(x, x_i)}{\sum_{k=1}^{N} \beta_k K(x, x_k)},$$

(2)

Letting $\xi = (\alpha^T, \beta^T) \in \mathbb{R}^{2N}$ and B the $N \times 2N$ matrix

$$B = \begin{pmatrix}
 K(x_1, x_1) & \cdots & K(x_1, x_N) & -f_1 K(x_1, x_1) & \cdots & -f_1 K(x_1, x_N) \\
 \vdots & & \vdots & & \vdots & \\
 K(x_N, x_1) & \cdots & K(x_N, x_N) & -f_N K(x_N, x_1) & \cdots & -f_N K(x_N, x_N)
\end{pmatrix}.$$

The system $B\xi = 0$ can be written as $(A - DA)(\xi) = 0$ with $D = \text{diag}(f_1, \ldots, f_N)$, and $A_{i,j} = K(x_i, x_j)$... which is underdetermined!
Rational RBF

Find the coefficients: I

[Jackobsson et al 2009] proved the well-posedness of the interpolation on X_N via

$$R(x) = \frac{R^{(1)}(x)}{R^{(2)}(x)} = \frac{\sum_{i=1}^{N} \alpha_i K(x, x_i)}{\sum_{k=1}^{N} \beta_k K(x, x_k)},$$

(2)

Letting $\xi = (\alpha^T, \beta^T) \in \mathbb{R}^{2N}$ and B the $N \times 2N$ matrix

$$B = \begin{pmatrix}
K(x_1, x_1) & \cdots & K(x_1, x_N) & -f_1 K(x_1, x_1) & \cdots & -f_1 K(x_1, x_N) \\
\vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
K(x_N, x_1) & \cdots & K(x_N, x_N) & -f_N K(x_N, x_1) & \cdots & -f_N K(x_N, x_N)
\end{pmatrix}.$$

The system $B\xi = 0$ can be written as $(A - DA)(\xi) = 0$ with $D = \text{diag}(f_1, \ldots, f_N)$, and $A_{i,j} = K(x_i, x_j)$... which is underdetermined!

Non trivial solution

Following [GolubReinsch1975] non-trivial solutions exist by asking $\|\xi\|_2 = 1$ i.e. solving the problem $\min_{\xi \in \mathbb{R}^N, \|\xi\|_2 = 1} \|B\xi\|_2.$
Rational RBF

Find the coefficients: II

Obs: (Since $R^{(1)}(x_i) = f_i R^{(2)}(x_i)$, $i = 1, \ldots, N$)

Find $\mathbf{q} = (R^{(2)}(x_1), \ldots, R^{(2)}(x_N))^T$ and, as $\mathbf{p} = D\mathbf{q}$, then

$\mathbf{p} = (R^{(1)}(x_1), \ldots, R^{(1)}(x_N))^T$.
Rational RBF

Find the coefficients: II

Obs: (Since $R^{(1)}(x_i) = f_i R^{(2)}(x_i)$, $i = 1, \ldots, N$)

find $q = (R^{(2)}(x_1), \ldots, R^{(2)}(x_N))^T$ and, as $p = Dq$, then
$p = (R^{(1)}(x_1), \ldots, R^{(1)}(x_N))^T$.

If p, q are given then the rational interpolant is known by solving

$$A\alpha = p, \quad A\beta = q.$$ \hspace{1cm} (3)
Rational RBF

Find the coefficients: II

Obs: (Since $R^{(1)}(x_i) = f_i R^{(2)}(x_i), \ i = 1, \ldots, N$)

find $q = (R^{(2)}(x_1), \ldots, R^{(2)}(x_N))^T$ and, as $p = Dq$, then

$p = (R^{(1)}(x_1), \ldots, R^{(1)}(x_N))^T$.

- If p, q are given then the rational interpolant is known by solving

$$A\alpha = p, \ A\beta = q.$$ \hspace{1cm} (3)

- Existence & Uniqueness of (3): K is SPD

Using the native space norms the above problem is equivalent

Problem 1

$$\min_{R^{(1)}, R^{(2)} \in N_K, \ 1/\|f\|_2^2 \|p\|_2^2 + \|q\|_2^2 = 1, \ R^{(1)}(x_k) = f_k R^{(2)}(x_k)} \left(\frac{1}{\|f\|_2^2} \|R^{(1)}\|_{N_K}^2 + \|R^{(2)}\|_{N_K}^2 \right).$$ \hspace{1cm} (4)
Rational RBF

Find the coefficients: III

\[\|R^{(1)}\|^{2}_{N_{K}} = \alpha^{T} A \alpha, \quad \text{and} \quad \|R^{(2)}\|^{2}_{N_{K}} = \beta^{T} A \beta. \]

Then, from (3) and symmetry of \(A \)

\[\|R^{(1)}\|^{2}_{N_{K}} = p^{T} A^{-1} p, \quad \text{and} \quad \|R^{(2)}\|^{2}_{N_{K}} = q^{T} A^{-1} q. \]

Therefore, the Problem 1 reduces to solve

Problem 2

\[
\min_{q \in \mathbb{R}^{N}, \frac{1}{\|f\|^{2}_{2}} \|Dq\|^{2}_{2} + \|q\|^{2}_{2} = 1} \left(\frac{1}{\|f\|^{2}_{2}} q^{T} D^{T} A^{-1} D q + q^{T} A^{-1} q \right).
\]
[Jackbsson 2009] show that this is equivalent to solve the following generalized eigenvalue problem

Problem 3

\[\Sigma q = \lambda \Theta q, \]

with

\[\Sigma = \frac{1}{\|f\|_2^2} D^T A^{-1} D + A^{-1}, \quad \text{and} \quad \Theta = \frac{1}{\|f\|_2^2} D^T D + I_N, \]

where \(I_N \) is the identity matrix.
[Jackbsson 2009] show that this is equivalent to solve the following generalized eigenvalue problem

Problem 3

\[\Sigma q = \lambda \Theta q, \]

with

\[\Sigma = \frac{1}{\|f\|_2^2} D^T A^{-1} D + A^{-1}, \quad \text{and} \quad \Theta = \frac{1}{\|f\|_2^2} D^T D + l_N, \]

where \(l_N \) is the identity matrix.

\(\Rightarrow \) \(q \) is the eigenvector associated to the smallest eigenvalue!
The new eigen-rational interpolant
work with M. Buhmann and E. Perracchione
New class of rational RBF

\[\hat{P}_f(x) = \frac{\sum_{i=1}^{N} \alpha_i K(x, x_i) + \sum_{m=1}^{L} \gamma_m p_m(x)}{\sum_{k=1}^{N} \beta_k \bar{K}(x, x_k)} := \frac{P_g(x)}{P_h(x)} \]

(5)

Ratio of a CPD K of order ℓ and an associate PD \bar{K} \Rightarrow two kernel matrices, Φ_K and $\Phi_{\bar{K}}$.

Obs: 1. Once we know the function values $P_h(x_i) = h_i, i = 1, \ldots, N$, we can construct P_g, i.e. it interpolates $g = (f_1 h_1, \ldots, f_N h_N)^T$. Hence \hat{P}_f interpolates the given function values at the nodes X_N.

2. If K is PD, we fix $\bar{K} = K$ so that we deal with the same kernel matrix for both numerator and denominator.
New class of rational RBF

\[\hat{P}_f(x) = \frac{\sum_{i=1}^{N} \alpha_i K(x, x_i) + \sum_{m=1}^{L} \gamma_m p_m(x)}{\sum_{k=1}^{N} \beta_k \bar{K}(x, x_k)} := \frac{P_g(x)}{P_h(x)} \] (5)

Ratio of a CPD \(K \) of order \(\ell \) and an associate PD \(\bar{K} \) \(\Rightarrow \) two kernel matrices, \(\Phi_K \) and \(\Phi_{\bar{K}} \).

Obs:

1. Once we know the function values \(P_h(x_i) = h_i, i = 1, \ldots, N \), we can construct \(P_g \), i.e. it interpolates \(g = (f_1 h_1, \ldots, f_N h_N)^T \). Hence \(\hat{P}_f \) interpolates the given function values \(f \) at the nodes \(X_N \).

2. If \(K \) is PD, we fix \(\bar{K} = K \) so that we deal with the same kernel matrix for both numerator and denominator.
When $P_h(\mathbf{x}) \neq 0$, $\forall \mathbf{x} \in \Omega$?

Theorem (Perron1907)

All positive square matrices have a positive eigenvalue with corresponding eigenvector with all components positive (called Perron eigenpair).

Theorem (Perron1907)

All positive square matrices possess exactly one Perron eigenpair and the corresponding eigenvalue has the largest modulus.
dividing the interpolant (2) by the eigenvector associated to the largest eigenvalue of $\Phi_{\bar{K}}$ makes computations more accurate and hopefully more stable.

1 hence, the coefficients $\beta = (\beta_1, \ldots, \beta_N)^T$ are the components of the eigenvector associate to the eigenvalue

$$\max \tilde{\beta}^T \Phi_{\bar{K}} \tilde{\beta}, \quad \|\tilde{\beta}\|_2 = 1$$

2 This enables us to give an eigen-rational RBF expansion, independent of the function values of the approximant and depending only on the kernel K (and its associate \tilde{K}) and X_N
Algorithmic issues

Assume K is CPD of order ℓ and \bar{K} the associate PD kernel.

1. Compute β and so the values $P_h(x_i) = h_i, \ i = 1, \ldots, N$ where h is defined by using the matrix $\Phi_{\bar{K}}$ (that depends on X_N and ϕ) and not on the function values.

2. Determine \hat{P}_f in (5) with the function values $g = fh$ and $\mathbf{0}$ (of length L) instead of $(g, \mathbf{0})^T$.
Cardinal functions: I

\[\hat{P}_f = \sum_{j=1}^{N} \alpha_j \frac{K(x, x_j)}{\sum_{i=1}^{N} \beta_i K(x, x_i)} = \sum_{j=1}^{N} \alpha_j \frac{h_j K(x, x_j)}{\sum_{i=1}^{N} \beta_i K(x, x_i) \sum_{i=1}^{N} \beta_i K(x_j, x_i)}, \]

since \(h_j = \sum_{i=1}^{N} \beta_i K(x_j, x_i). \) Then

\[\hat{P}_f = \sum_{j=1}^{N} \tilde{\alpha}_j \frac{K(x, x_j)}{\sum_{i=1}^{N} \beta_i K(x, x_i) \sum_{i=1}^{N} \beta_i \Phi(x_j, x_i)} =: \sum_{j=1}^{N} \tilde{\alpha}_j K_R(x, x_j). \]

Since \(P_h \) is not vanishing, the function

\[K_R(x, y) = \frac{1}{P_h(x)} \frac{1}{P_h(y)} K(x, y), \]

is strictly positive definite [DeMIS17].

Obs:

The same argument applies when \(K \) is only CPD of order \(\ell \) giving \(K_R \) CPD of order \(\ell \).
Proposition (BDeMP18)

Suppose K is CPD of order ℓ in \mathbb{R}^d, \bar{K} is the associated PD kernel. Suppose $X_N \subset \Omega$ is $(\ell - 1)$-unisolvent, then there exist N functions \hat{u}_k so that the interpolant is

$$\hat{P}_f(x) = \sum_{j=1}^{N} f_j \hat{u}_j(x).$$
Proposition (BDeMP18)

Suppose K is CPD of order ℓ in \mathbb{R}^d, \check{K} is the associated PD kernel. Suppose $X_N \subset \Omega$ is $(\ell - 1)$-unisolvent, then there exist N functions \hat{u}_k so that the interpolant is

$$\hat{P}_f(x) = \sum_{j=1}^{N} f_j \hat{u}_j(x).$$

If $K = \check{K}$ is PD, the \hat{u}_k, $k = 1, \ldots, N$, form a partition of unity [DeMIS, AT15 (2017)].

Stability bound

$$\left| \sum_{i=1}^{N} f(x_i) \hat{u}_i(x) \right| \leq \left(\sum_{i=1}^{N} |\hat{u}_i(x)| \right) \|f\|_\infty =: \hat{\lambda}_N(x) \|f\|_\infty \leq \hat{\Lambda}_N \|f\|_\infty,$$

where Λ_N the Lebesgue constant

$$\hat{\lambda}_N := \max_{x \in \Omega} \hat{\lambda}_N(x).$$
Error bound

Proposition (BDeMP18)

Let $\Omega \subseteq \mathbb{R}^d$ be open. Suppose $K \in C(\Omega \times \Omega)$ be CDP of order ℓ and \bar{K} the associate PD kernel. Assume that $X_N \subset \Omega$ is $(\ell - 1)$-unisolvent. Then, for $x \in \Omega$, the pointwise error

$$|f(x) - \hat{P}_f(x)| \leq \frac{1}{|P_h(x)|} \left(\mathcal{P}_{\bar{K},x_N}(x)|h|_{N_{\bar{K}}(\Omega)}|f(x)| + \mathcal{P}_{K,x_N}(x)|g|_{N_K(\Omega)} \right).$$

with \mathcal{P}_{K,x_N} the **power function** for the kernel K and point set X_N and $|\cdot|_{N_K(\Omega)}$ the semi-norm.

\implies Similar bounds are derived using the **fill-distance**, $h_{x_N,\Omega}$.
Numerical tests:

rational eigen-basis vs the standard one
Numerical tests: Lebesgue constants I

<table>
<thead>
<tr>
<th>K</th>
<th>$\Lambda_N (\varepsilon = 0.5)$</th>
<th>$\Lambda_N (\varepsilon = 3)$</th>
<th>$\hat{\Lambda}_N (\varepsilon = 0.5)$</th>
<th>$\hat{\Lambda}_N (\varepsilon = 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>4.98</td>
<td>8.69</td>
<td>5.14</td>
<td>9.13</td>
</tr>
<tr>
<td>GA</td>
<td>9.81</td>
<td>2.58</td>
<td>12.6</td>
<td>3.59</td>
</tr>
<tr>
<td>M6</td>
<td>10.6</td>
<td>2.20</td>
<td>11.1</td>
<td>2.60</td>
</tr>
<tr>
<td>W6</td>
<td>2.10</td>
<td>9.58</td>
<td>2.73</td>
<td>7.90</td>
</tr>
<tr>
<td>B2</td>
<td>30.6</td>
<td>–</td>
<td>29.1</td>
<td>–</td>
</tr>
</tbody>
</table>

Table: Lebesgue constants Λ_N and $\hat{\Lambda}_N$ for classical and eigen-rational interpolants, respectively. They are computed on $N = 10$ equally spaced points on $\Omega = [-1, 1]$. Note: Buhmann’s function is independent of the shape parameter.
Numerical tests: Lebesgue functions (1d)

Figure: Top: 10 Halton points, GM kernel with $\varepsilon = 0.5$ (left) and $\varepsilon = 3$ (right). Bottom: 10 Chebyshev points, GA kernel with $\varepsilon = 0.5$ (left) and $\varepsilon = 3$ (right).
Numerical tests: Lebesgue functions (2d)

Figure: Top: Lebesgue functions computed via the W6 kernel with $\varepsilon = 0.5$ for standard (left) and eigen-rational (right) interpolants. Bottom: Lebesgue functions computed via the B2 kernel for standard (left) and eigen-rational (right) interpolants.
Error and max-abs error comparison

\[f_1(x_1) = \text{sinc}(x_1), \quad x_1 \in [-1, 1] \]

Figure: Error estimates \(\hat{E} \) and \(E \) via LOOCV of max. abs. errors \(\hat{A} \) and \(A \) for eigen-rational and classical interpolants, respectively. Here we consider \(f_1 \) on 81 Chebyshev points on \(\Omega = [-1, 1] \) via GM (left) and GA (right) kernels.
\[f_2(x_1) = \frac{x_1^8}{\tan(1 + x_1^2) + 0.5}, \quad x_1 \in [-1, 1] \]

Figure: Error estimates \(\hat{E} \) and \(E \) via LOOCV of max. abs. errors \(\hat{A} \) and \(A \) for eigen-rational and classical interpolants, respectively. Result are computed with \(f_2 \) and 81 Random points on \(\Omega = [-1, 1] \) via W6 (left) and M6 (right) kernels.
Image registration: landmarks [CDeR2018, C et al 2015]

Figure: (Above) 21 landmarks are plotted with squares on the source image (left) and with dots on the target image (left). (Below) The registered image via eigen-rational interpolants computed with the W2 (left) and M2 (right) kernels and shape parameter $\varepsilon = 0.1$.

![Figure showing image registration landmarks and registered images with different kernels and parameter values](image-url)
Image registration: mean error comparison

\[M = \left(\frac{\sum_{s \in S} \| s - F(s) \|_2^2}{\#S} \right)^{1/2}. \]

Figure: Mean errors \(M \) (standard) and \(\hat{M} \) (rational), varying the shape parameter.
Breve resoconto del progetto GNCS 2016-17
Alcuni dati

1. Finanziamento richiesto/ricevuto: 9.0K/7.8K euro
2. Partecipanti: 15 strutturati, 9 non strutturati;
3. Quote individuali: circa 300 euro
4. Organizzati dai componenti i seguenti meetings: Bernried17, MATAA17 (Torino), CMMSE (Cadiz), DRWA17 (Canazei), SMART17 (Gaeta), AMTA17 (Palermo).
5. Pubblicazioni relative al progetto: CAA Padova + Verona (22+13), Milano (3), Torino (10+2), Firenze (4+1), Potenza (9+2), Cosenza (4+?), Reggio Calabria (4), Palermo (5).
RITA (Rete ITaliana di Approssimazione): sito

https://sites.google.com/site/italianapproximationnetwork/
Some references

M. Buhmann, S. De Marchi, E. Perracchione : Analysis of a new class of rational RBF expansions, darft, 2018

grazie per la vostra attenzione!
thanks for your attention!