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From RBF to Rational RBF (RRBF)
work with A. Martinez and E. Perracchione
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Notations

1 Data: Ω ⊂ Rd , X ⊂ Ω, test function f
XN = {x1, . . . , xN} ⊂ Ω, f = {f1, . . . , fN}, where fi = f(xi)

2 Approximation setting:

φ(ε ·): Conditionally Positive Definite (CPD) of order ` or
Strictly Positive Definite (SPD) and radial (ε, shape parameter)

globally supported:
name φ `

Gaussian C∞ (GA) e−ε
2 r2

0
Generalized Multiquadrics C∞ (GM) (1 + r2/ε2)3/2 2

locally supported:
name φ `

Wendland C2 (W2) (1 − εr)4
+ (4εr + 1) 0

Buhmann C2 (B2) 2r4 log r − 7/2r4 + 16/3r3 − 2r2 + 1/6 0

kernel notation Kε(·, ·)
native space NK (Ω) (where K is the reproducing kernel)
finite subspace NK (XN) = span{K(·, x) : x ∈ XN} ⊂ NK (Ω)
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RBF Interpolation

Given Ω,XN , f,K

Aim
Find Pf ∈ NK (XN) s.t. (Pf )XN = f

Classical interpolant: Pf (x) =
N∑

k=1

αk K(x, xk ), x ∈ Ω, xk ∈ XN .

[Hardy and Gofert 1975] used multiquadrics
K(x, y) =

√
1 + ε2‖x − y‖2.

Rescaled interpolant: P̂f (x) =
Pf (x)

Pg(x)
=

∑N
k=1 αk K(x, xk )∑N
k=1 βk K(x, xk )

where Pg

is the kernel interpolant of g(x) = 1, ∀x ∈ Ω. Localized Rescaled
and exactness on constants in [Deparis et al 2014]. In [DeM et al
2017] it is shown that it is a Shepard’s PU method. Linear
convergence of localized rescaled interpolants [DeM and Wendland,
draft 2017]
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Rational RBF
definition

R(x) =
R(1)(x)

R(2)(x)
=

∑N
k=1 αk K(x, xk )∑N
k=1 βk K(x, xk )

[Jackbsson et al. 2009, Sarra and Bai 2017]

=⇒ RRBFs well approximate data with steep gradients or
discontinuites [rational with PU+VSK in DeM et al. 2017].
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Rational RBF
Learning from rational functions, d = 1

polynomial case.

r(x) =
p1(x)

p2(x)
=

amxm + · · ·+ a0x0

xn + bn−1xn−1 · · ·+ b0
.

M = m + n + 1 unknowns (Padé approximation). If M < N to get the
coefficients we may solve the LS problem

min
p1∈Π1

m ,p2∈Π1
n

 N∑
k=1

∣∣∣f(xk ) − r(xk )
∣∣∣2 .

RBF case. Let Xm = {xk , . . . , xk+m−1},Xn = {xj , . . . , xj+n−1} ⊂ XN be
non empty, such that m + n ≤ N

R(x) =
R(1)(x)

R(2)(x)
=

∑k+m−1
i1=k αi1 K(x, xi1 )∑j+n−1
i2=j βi2 K(x, xi2 )

, (1)

provided R(2)(x) , 0, for all x ∈ Ω.
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M = m + n + 1 unknowns (Padé approximation). If M < N to get the
coefficients we may solve the LS problem

min
p1∈Π1

m ,p2∈Π1
n

 N∑
k=1

∣∣∣f(xk ) − r(xk )
∣∣∣2 .

RBF case. Let Xm = {xk , . . . , xk+m−1},Xn = {xj , . . . , xj+n−1} ⊂ XN be
non empty, such that m + n ≤ N

R(x) =
R(1)(x)

R(2)(x)
=

∑k+m−1
i1=k αi1 K(x, xi1 )∑j+n−1
i2=j βi2 K(x, xi2 )

, (1)

provided R(2)(x) , 0, for all x ∈ Ω.
7 of 33



Rational RBF
Find the coefficients: I

[Jackobsson et al 2009] proved the well-posedness of the interpolation
on XN via

R(x) =
R(1)(x)

R(2)(x)
=

∑N
i=1 αiK(x, xi)∑N

k=1 βk K(x, xk )
, (2)

Letting ξ = (αT ,βT ) ∈ R2N and B the N × 2N matrix

B =


K(x1, x1) · · · K(x1, xN) −f1 K(x1, x1) · · · −f1 K(x1, xN)

...
...

...
K(xN , x1) · · · K(xN , xN) −fN K(xN , x1) · · · −fN K(xN , xN)

 .
The system Bξ = 0 can be written as (A − DA)(ξ) = 0 with
D = diag(f1, . . . , fN), and Ai,j = K(xi , xj)... which is underdetermined!

Non trivial solution
Following [GolubReinsch1975] non-trivial solutions exist by asking
||ξ||2 = 1 i.e. solving the problem min

ξ∈RN ,||ξ||2=1
||Bξ||2.
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Rational RBF
Find the coefficients: II

Obs: (Since R(1)(xi) = fiR(2)(xi), i = 1, . . . ,N)

find q = (R(2)(x1), . . . ,R(2)(xN))T and, as p = Dq, then
p = (R(1)(xi), ...,R(1)(xN))T .

If p, q are given then the rational interpolant is known by solving

Aα = p, Aβ = q . (3)

Existence & Uniqueness of (3): K is SPD

Using the native space norms the above problem is equivalent

Problem 1

min
R(1),R(2)∈NK ,

1/||f||22 ||p||
2
2+||q||22=1,

R(1)(xk )=fk R(2)(xk ).

 1
||f ||22
||R(1)||2NK

+ ||R(2)||2NK

 . (4)
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Rational RBF
Find the coefficients: III

||R(1)||2NK
= αT Aα, and ||R(2)||2NK

= βT Aβ.

Then, from (3) and symmetry of A

||R(1)||2NK
= pT A−1p, and ||R(2)||2NK

= qT A−1q.

Therefore, the Problem 1 reduces to solve

Problem 2

min
q∈RN ,

1/||f ||22 ||Dq||22+||q||22=1.

 1
||f ||22

qT DT A−1Dq + qT A−1q
 .
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Rational RBF
Find the coefficients: IV

[Jackbsson 2009] show that this is equivalent to solve the following
generalized eigenvalue problem

Problem 3

Σq = λΘq,

with
Σ =

1
||f ||22

DT A−1D + A−1, and Θ =
1
||f ||22

DT D + IN ,

where IN is the identity matrix.

↪→ q is the eigenvector associated to the smallest eigenvalue! ←↩
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The new eigen-rational interpolant
work with M. Buhmann and E. Perracchione
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New class of rational RBF

P̂f (x) =

∑N
i=1 αiK(x, xi) +

∑L
m=1 γmpm (x)∑N

k=1 βk K̄(x, xk )
:=

Pg(x)

Ph(x)
(5)

Ratio of a CPD K of order ` and an associate PD K̄ .... =⇒ two kernel
matrices, ΦK and ΦK̄ .

Obs:

1 Once we know the function values Ph(x i) = hi , i = 1, . . . ,N, we can
construct Pg, i.e. it interpolates g = (f1h1, . . . , fNhN)T . Hence P̂f

interpolates the given function values f at the nodes XN .

2 If K is PD, we fix K̄ = K so that we deal with the same kernel matrix
for both numerator and denominator.
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The rational interpolant is well-defined

When Ph(x) , 0, ∀x ∈ Ω?

Theorem (Perron1907)

All positive square matrices have a positive eigenvalue with
corresponding eigenvector with all components positive (called Perron
eigenpair)

Theorem (Perron1907)

All positive square matrices possess exactly one Perron eigenpair and
the corresponding eigenvalue has the largest modulus.
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Remarks

dividing the interpolant (2) by the eigenvector associated to the largest
eigenvalue of ΦK̄ makes computations more accurate and hopefully more
stable.

1 hence, the coefficients β = (β1, . . . , βN)T are the components of the
eigenvector associate to the eigenvalue

max
||β̃||2=1

β̃
T

ΦK̄ β̃, (6)

2 This enables us to give an eigen-rational RBF expansion,
independent of the function values of the approximant and
depending only on the kernel K (and its associate K̄ ) and XN

15 of 33



Algorithmic issues

Assume K is CPD of order ` and K̄ the associate PD kernel

1 Compute β and so the values Ph(x i) = hi , i = 1, . . . ,N where
h is defined by using the matrix ΦK̄ (that depends on XN and
φ) and not on the function values.

2 Determine P̂f in (5) with the function values g = fh and 0 (of
lengtth L ) instead of (g, 0)T .
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Cardinal functions: I

P̂f =
N∑

j=1

αj
K(x, x j)∑N

i=1 βiK(x, x i)
=

N∑
j=1

αj
hjK(x, x j)∑N

i=1 βiK(x, x i)
∑N

i=1 βiK(x j , x i)
,

since hj =
∑N

i=1 βiK(x j , x i). Then

P̂f =
N∑

j=1

α̃j
K(x, x j)∑N

i=1 βiK(x, x i)
∑N

i=1 βiΦ(x j , x i)
=:

N∑
j=1

α̃jKR(x, x j).

Since Ph is not vanishing, the function

KR(x, y) =
1

Ph(x)

1
Ph(y)

K(x, y),

is strictly positive definite [DeMIS17].

Obs:
The same argument applies when K is only CPD of order ` giving KR

CPD of order `. 17 of 33



Cardinal form of the interpolant and stability

Proposition (BDeMP18)

Suppose K is CPD of order ` in Rd , K̄ is the associated PD kernel.
Suppose XN ⊂ Ω is (` − 1)-unisolvent, then there exist N functions ûk so
that the interpolant is

P̂f (x) =
N∑

j=1

fj ûj(x).

=⇒ If K = K̄ is PD, the ûk , k = 1, . . . ,N, form a partition of unity [DeMIS,
AT15 (2017)].
=⇒ Stability bound∣∣∣∣∣∣∣

N∑
i=1

f(x i)ûi(x)

∣∣∣∣∣∣∣ ≤
 N∑

i=1

|ûi(x)|

 ||f ||∞ =: λ̂N(x)||f ||∞ ≤ Λ̂N ||f ||∞,

where ΛN the Lebesgue constant

Λ̂N := max
x∈Ω

λ̂N(x).
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Error bound

Proposition (BDeMP18)

Let Ω ⊆ Rd be open. Suppose K ∈ C(Ω × Ω) be CDP of order ` and K̄
the associate PD kernel. Assume that XN ⊂ Ω is (` − 1)-unisolvent.
Then, for x ∈ Ω, the pointwise error

|f (x) − P̂f (x) | ≤
1

|Ph(x)|

(
PK̄ ,XN

(x)|h|NK̄ (Ω)|f(x)|+ PK ,XN (x)|g|NK (Ω)

)
.

with PK ,XN the power function for the kernel K and point set XN and
| · |NK (Ω) the semi-norm.

=⇒ Similar bounds are derived using the fill-distance, hXN ,Ω.
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Numerical tests:
rational eigen-basis vs the standard one
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Numerical tests: Lebesgue constants I

K ΛN (ε = 0.5) ΛN (ε = 3) Λ̂N (ε = 0.5) Λ̂N (ε = 3)

GM 4.98 8.69 5.14 9.13

GA 9.81 2.58 12.6 3.59

M6 10.6 2.20 11.1 2.60

W6 2.10 9.58 2.73 7.90

B2 30.6 – 29.1 –

Table: Lebesgue constants ΛN and Λ̂N for classical and eigen-rational
interpolants, respectively. They are computed on N = 10 equally spaced
points on Ω = [−1, 1]. Note: Buhmann’s function is independent of the
shape parameter.
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Numerical tests: Lebesgue functions (1d)

Figure: Top: 10 Halton points, GM kernel with ε = 0.5 (left) and ε = 3 (right). Bottom: 10 Chebyshev points, GA
kernel with ε = 0.5 (left) and ε = 3 (right).
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Numerical tests: Lebesgue functions (2d)

Figure: Top: Lebesgue functions computed via the W6 kernel with ε = 0.5 for standard (left) and eigen-rational (right)
interpolants. Bottom: Lebesgue functions computed via the B2 kernel for standard (left) and eigen-rational (right)
interpolants.

23 of 33



Error and max-abs error comparison

f1(x1) = sinc(x1), x1 ∈ [−1, 1]

Figure: Error estimates Ê and E via LOOCV of max. abs. errors Â and A
for eigen-rational and classical interpolants, respectively. Here we
consider f1 on 81 Chebyshev points on Ω = [−1, 1] via GM (left) and GA
(right) kernels.
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f2(x1) =
x8

1

tan(1 + x2
1 ) + 0.5

, x1 ∈ [−1, 1]

Figure: Error estimates Ê and E via LOOCV of max. abs. errors Â and A
for eigen-rational and classical interpolants, respectively. Result are
computed with f2 and 81 Random points on Ω = [−1, 1] via W6 (left) and
M6 (right) kernels.
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Image registration: landmarks [CDeR2018, C et al 2015]

Figure: (Above) 21 landmarks are plotted with squares on the source image (left) and with dots on the target image
(left). (Below) The registered image via eigen-rational interpolants computed with the W2 (left) and M2 (right) kernels and
shape parameter ε = 0.1.
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Image registration: mean error comparison

M =

∑s∈S ||s − F(s)||22
#S

1/2

.

Figure: Mean errors M (standard) and M̂ (rational), varying the shape
parameter.
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Breve resoconto del progetto GNCS 2016-17
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Alcuni dati

1 Finanziamento richiesto/ricevuto: 9.0K/7.8K euro

2 Partecipanti: 15 strutturati, 9 non strutturati;

3 Quote individuali: circa 300 euro

4 Organizzati dai componenti i seguenti meetings: Bernried17,
MATAA17 (Torino), CMMSE (Cadiz), DRWA17 (Canazei),
SMART17(Gaeta), AMTA17 (Palermo).

5 Pubblicazioni relative al progetto: CAA Padova+Verona(22+13),
Milano(3), Torino(10+2), Firenze(4+1), Potenza(9+2),
Cosenza(4+?), Reggio Calabria(4), Palermo(5).
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RITA
RITA (Rete ITaliana di Approssimazione): sito

https://sites.google.com/site/italianapproximationnetwork/
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grazie per la vostra attenzione!
thanks for your attention!
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