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Motivation

Len Bos, Multivariate interpolation and polynomial
inequalities, Ph.D. course held in 2001 at the University of
Padova (unpublished notes)

He proved by means of the bivariate Christoffel-Darboux
formula of Xu that the Lebesgue constant of the
Morrow-Patterson points, ΛMP

n = O(n6).

Morrow-Patterson points were the basis of inspiration of the
Padua Points.
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Introduction
Notation

1 K ⊂ Rd , Pd
n(K), N = dim(Pd

n(K)) := (n+d
d );

2 Kn(x, y): reproducing kernel of Pd
n(K) in L2

dµ(K) (µ a positive
measure on K ) with representation (cf. Dunkl and Xu 2001, §3.5)

Kn(x, y) =
N∑

j=1

pj(x)pj(y) , x, y ∈ Rd , (1)

where {pj} is any orthonormal basis of Pd
n(K) in L2

dµ(K). The
function

Kn(x, x) =
N∑

j=1

p2
j (x) (2)

is known as the (reciprocal of) the n-th Christoffel function of µ on
K .
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Introduction
Hyperinterpolation operator

Definition
Hyperinterpolation of multivariate continuous functions, on compact
subsets or manifolds, is a discretized orthogonal projection on polynomial
subspaces [Sloan JAT1995].

It requires 3 main ingredients

1 a good cubature formula (positive weights and high precision);

2 a good formula for representing the reproducing kernel (accurate
and efficient);

3 a slow increase of the Lebegsue constant (which is the operator
norm).

Practically

It is a total-degree polynomial approximation of multivariate continuous
functions, given by a truncated Fourier expansion in o.p. for the given
domain
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Introduction
Initial observation

We observe the following fact.

Let {an} ∈ R+ be a sequence s.t.

an ≥ Cn(dµ,K) =
√

max
x∈K

Kn(x, x) (3)

Let
Ln :

(
C(K), ‖ · ‖L∞(K)

)
→

(
Pd

n , ‖ · ‖L2
dµ(K)

)
(4)

uniformly bounded operators, i.e. ∃M > 0 s.t. for every n

‖Ln‖ = sup
f,0

‖Lnf‖L2
dµ(K)

‖f‖L∞(K)
≤ M .

Then this estimate holds:

‖Ln‖∞ = sup
f,0

‖Lnf‖L∞(K)

‖f‖L∞(K)
≤ anM . (5)
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Lebesgue constant
of the hyperinterpolation operator

Given

cubature formula (X ,w) for µ, exact in Pd
2n(K), with nodes

X = Xn = {ξi(n) , i = 1, . . . ,V} ⊂ K and positive weights
w = wn = {wi(n) , i = 1, . . . ,V},V ≥ N = dim(Pd

n(K)),

{pj , j = 1, . . . ,N} be any orthonormal basis of Pd
n(K) in L2

dµ(K).

hyperinterpolation operator is the discretized orthogonal projection
Ln : C(K)→ Pd

n(K) defined as

Lnf(x) =
N∑

j=1

〈f , pj〉`2
w (X) pj(x) ,

where `2
w(X) is equipped with the scalar product

〈f , g〉 =
V∑

i=1

wi f(ξi)g(ξi) .
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”Lebesgue constant”
of the hyperinterpolation operator

Corollary 1

Assume that (3) holds, then

‖Ln‖∞ ≤ an

√
µ(K) . (6)

Proof. Following Sloan [JAT95], we can write by exactness in Pd
2n(K) and the Pythagorean theorem in `2

w (X)

‖Ln f‖
L2

dµ(K)
= ‖Ln f‖

`2w (X)
≤ ‖f‖

`2w (X)
=

√√√
V∑

i=1

wi f2(ξi )

≤

√√√
V∑

i=1

wi ‖f‖`∞(X) =
√
µ(K) ‖f‖`∞(X) ≤

√
µ(K) ‖f‖L∞(K) ,

so that in Proposition 1 we can take M =
√
µ(K). �
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Estimates
disk and ball, K = Bd

Here we use the Gegenbauer measure

Wλ(x) = (1 − |x |2)λ−1/2 , λ > −
1
2
, (7)

Bos in [NZJM,94] proved

Cn(W0(x) dx,Bd) ≤

√
2
ωd

((
n + d

d

)
+

(
n + d − 1

d

))
= O(nd/2) , (8)

ωd being the surface area of the unit sphere Sd ⊂ Rd+1.

Later [Bloom, Bos, Levenberg, APM12] showed that Cn has polynomial
growth on the ball for dµ = Wλ(x) dx, λ ≥ 0. No explicit bounds were
provided!
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Estimates
formulas for K = B2

Main ingredient: Zernike polynomials (see [Carnicer, Godés NA14]),
orthogonal basis on the disk w.r.t. Lebesgue measure (used in optics)

Ẑm
h (r , θ) =


√

2(h+1)
αm

Rm
h (r) cos(mθ) , m ≥ 0

√
2(h+1)
αm

Rm
h (r) sin(mθ) , m < 0

(9)

for 0 ≤ h ≤ n, |m| ≤ h, h −m ∈ 2Z, where

αm =


2 , m = 0

1 , m , 0
(10)

Rm
h (r) = (−1)(h−m)/2rmPm,0

(h−m)/2(1 − 2r2) (11)

and Pm,0
j is the corresponding Jacobi polynomial of degree j.
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Estimates
formulas for the disk, K = B2

Relevant property: for 0 ≤ h ≤ n, |m| ≤ h, h −m ∈ 2Z

|Ẑm
h (r , θ)| ≤

√
2h + 2
π

, x = (r cos(θ), r sin(θ)) ∈ B2 .

Kn(x, x) =
n∑

h=0

∑
|m|≤h,h−m∈2Z

(Ẑm
h (r , θ))2 ≤

1
π

n∑
h=0

∑
|m|≤h,h−m∈2Z

(2h + 2)

=
1
π

n∑
h=0

(2h + 2)(n − h + 1) =
1
3π

(n + 1)(n + 2)(n + 3) ,

and hence

Cn(dx,B2) ≤
1
√

3π

√
(n + 1)(n + 2)(n + 3) = O(n3/2) . (12)

11 of 26



Estimates
formulas for the cube, K = [−1, 1]d

Jacobi measure

dµ = Wα,β(x) dx , Wα,β(x) =
d∏

i=1

(1 − xi)
α(1 + xi)

β , α, β > −1 ,

(13)

Total-degree orthonormal product basis

Πα,β
k (x) =

d∏
i=1

P̂α,β
ki

(xi) , 0 ≤ |k | ≤ n , (14)

where k = (k1, . . . , kd) with ki ≥ 0 and |k | =
∑d

i=1 ki , and P̂α,β
m

denotes the m-th degree polynomial of the univariate orthonormal
Jacobi basis with parameters α and β.
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Estimates
formulas for K = [−1, 1]d

For max {α, β} ≥ −1/2, max |P̂α,β
ki
| at ±1, then

|P̂α,β
m (t)| ≤ |P̂α,β

m (sign(α − β))| =
√

(2m + α + β + 1)Γ(m + α + β + 1)Γ(m + q + 1)

2α+β+1 m! Γ(m + min {α, β}+ 1)

≤ c(α, β) mq+1/2 , t ∈ [−1, 1] , q = max {α, β} ≥ −
1
2
, (15)
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Estimates
formulas for K = [−1, 1]d

max
x∈[−1,1]d

Kn(x, x) = max
x∈[−1,1]d

∑
0≤|k |≤n

(
Πα,β

k (x)
)2

=
∑

0≤|k |≤n

d∏
i=1

(
P̂α,β

ki
(sign(α − β))

)2
≤ (c(α, β))2d

∑
0≤|k |≤n

d∏
i=1

k 2q+1
i

= (c(α, β))2d
n∑

k1=0

k 2q+1
1

n−k1∑
k2=0

k 2q+1
2 · · ·

n−
∑d−1

j=1 kj∑
kd =0

k 2q+1
d = O(n(2q+2)d) ,

which gives the qualitative bound

Cn(Wα,β(x) dx, [−1, 1]d) = O(n(q+1)d) . (16)
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Special cases
α = β = 0, Legendre polynomials

|P̂0,0
m (t)| ≤ P̂0,0

m (1) =

√
2m + 1

2
, t ∈ [−1, 1] ,

from which we have

max
x∈[−1,1]d

Kn(x, x) =
∑

0≤|k |≤n

d∏
i=1

(
P̂0,0

ki
(1)

)2
=

1
2d

n∑
k1=0

(2k1 + 1)

n−k1∑
k2=0

(2k2 + 1) · · ·

n−
∑d−1

j=1 kj∑
kd =0

(2kd + 1) , (17)

Cn(dx, [−1, 1]) =
1
√

2
(n + 1) , (18)

Cn(dx, [−1, 1]2) =
1

2
√

6

√
(n + 1)(n + 2)(n2 + 3n + 3) , (19)

Cn(dx, [−1, 1]3) =
1

12
√

10

√
(n + 1)(n + 2)2(n + 3)(2n2 + 8n + 15)

(20)
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Special cases
α = β = −1/2, Chebyshev polynomials of first kind

|P̂
− 1

2 ,−
1
2

m (t)| = |T̂m(t)| ≤ T̂m(1) =

√
2 − δ0,m

π
, t ∈ [−1, 1] ,

which entails by a little algebra

πd max
x∈[−1,1]d

Kn(x, x) = πd
∑

0≤|k |≤n

d∏
i=1

(
T̂ki (1)

)2
=

n∑
k1=0

(2 − δ0,k1 )

n−k1∑
k2=0

(2 − δ0,k2 ) · · ·

n−
∑d−1

j=1 kj∑
k2=0

(2 − δ0,kd )

Cn(W− 1
2 ,−

1
2
(x) dx, [−1, 1]) =

1
√
π

√
2n + 1 (21)

(observe that (21) coincides with the bound in (8) for d = 1),

Cn(W− 1
2 ,−

1
2
(x) dx, [−1, 1]2) =

1
π

√
2n2 + 2n + 1 , (22)

Cn(W− 1
2 ,−

1
2
(x) dx, [−1, 1]3) =

1
√

3π3

√
4n3 + 6n2 + 8n + 3 . (23)
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Special cases
α = β = 1/2, Chebyshev polynomials of second kind

|P̂
1
2 ,

1
2

m (t)| = |Ûm(t)| ≤ Ûm(1) =

√
2
π

(m + 1) , t ∈ [−1, 1] ,

which leads to

max
x∈[−1,1]d

Kn(x, x) =
∑

0≤|k |≤n

d∏
i=1

(
Ûki (1)

)2
=

(
2
π

)d n∑
k1=0

(k1 + 1)2
n−k1∑
k2=0

(k2 + 1)2 · · ·

n−
∑d−1

j=1 kj∑
kd =0

(kd + 1)2 , (24)

Cn(W 1
2 ,

1
2
(x) dx, [−1, 1]) =

1
√

3π

√
(n + 1)(n + 2)(2n + 3) , (25)

Cn(W 1
2 ,

1
2
(x) dx, [−1, 1]2) =

1

3π
√

10

√
P6(n) , (26)

P6(n) = (n + 1)(n + 2)(n + 3)(n + 4)(2n2 + 10n + 15) ,

Cn(W 1
2 ,

1
2
(x) dx, [−1, 1]3) =

1

18
√

35π3

√
P9(n) , (27)

P9(n) = (n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)(2n + 7)(n2 + 7n + 18) .
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Lebesgue constants
The case of the d-ball

By Corollary 1, we can give upper bounds for the “Lebesgue constant”,
‖Ln‖∞, independent of the underlying cubature formula, whenever we are
able to estimate the maximum of Kn(x, x).

Wade in [JMAA13] provided this bound in the d-ball

ad,λn(d−1)/2+λ ≤ ‖Ln‖∞ ≤ bd,λn(d−1)/2+λ , n even , d > 1 ,

ad,λ and bd,λ positive constants. This improves the bound O(n log n)
for hyperinterpolation w.r.t the Lebesgue measure on the disk
(λ = 1/2, d = 2), by [Hansen et al. IMA JNA09].

When λ = 0, Corollary 1 and (8) gives ‖Ln‖∞ = O(nd/2), an
overestimate by a factor

√
n (for any d).

For the Lebesgue measure on the disk (λ = 1/2, d = 2), by (6) and
(12) we get ‖Ln‖∞ = O(n3/2), again an overestimate by a factor

√
n.
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Lebesgue constants
The d-cube, Chebeyshev first kind measure

For d = 3, [Caliari at al. CMA08], showed that for any
hyperinterpolation operator w.r.t the dµ = W−1/2,−1/2(x) dx (cf.
(13)), the following estimate holds

‖Ln‖∞ = O(logd n) . (28)

An estimate of this kind was previously obtained in the case of
hyperinterpolation at the Morrow-Patterson-Xu points of the square
(cf. [Caliari at al. JCAM07]).

Corollary 1 and (21)-(23), gives ‖Ln‖∞ = O(nd/2), again an
ovestimate of the actual order of growth by a factor (

√
n/ log(n))d .
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Lebesgue constants
The d-cube, Jacobi measure

For other Jacobi measures, there are apparently no results in the
literature for d > 1. By Corollary 1 we get

‖Ln‖∞ = O(n(q+1)d) , (29)

for any hyperinterpolation operator w.r.t. any Jacobi measure with
q = max {α, β} ≥ −1/2.

Notice, for d = 1, the Lebesgue constant of interpolation at the
zeros of Pα,β

n+1 increases asymptotically like log(n) for q ≤ −1/2, and
like nq+1/2 for q > −1/2, in view of a classical result by Szëgo.

Hence, (29) is again an overestimate!
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The Morrow-Patterson points
definition

We specialized (29) to the case of the product Chebyshev measure of the
second kind on the square.

Morrow-Patterson points [SIAM JNA78]

For even degree n, the MP points are the set {(xm, yk )} ⊂ (−1, 1)2

xm = cos
( mπ
n + 2

)
, yk =


cos

(
2kπ
n+3

)
m odd

cos
(

(2k−1)π
n+3

)
m even

(30)

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n
2 + 1.
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second kind on the square.

Morrow-Patterson points [SIAM JNA78]
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The Morrow-Patterson points
plots

Figure: Left: MP points for n = 10. Right: MP points for n = 20
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The Morrow-Patterson points
Lebesgue constant

The MP points are important for cubature on the square: minimal
formulas of exactness 2n for Chebyshev measure of the second
kind, dµ = W 1

2 ,
1
2
(x1, x2) dx1dx2

Len Bos in a manuscript of 2001, proved by means of the bivariate
Christoffel-Darboux-Xu formula ΛMP

n = O(n6)

Using our approach of hyperinterpolation, we prove

The Lebesgue constant of bivariate polynomial interpolation at the
Morrow-Patterson points has the following upper bound

ΛMP
n ≤

1

6
√

10

√
(n + 1)(n + 2)(n + 3)(n + 4)(2n2 + 10n + 15) = O(n3) .

(31)
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The Morrow-Patterson points
Lebesgue constant

Again, (31) is an overestimate. [Caliari et al. AMC05] showed that the
values of ΛMP

n are well-fitted by the quadratic polynomial (0.7n + 1)2.
Hence, it can be conjectured that the actual order of growth is
ΛMP

n = O(n2).

Figure: The upper bound (31) (◦) and the numerically evaluated Lebesgue constant (∗) of interpolation at the MPX
points. 24 of 26
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