Integration on manifolds by mapped low-discrepancy points and greedy minimal *k*_s-energy points¹

Stefano De Marchi

Department of Mathematics - University of Padova *IBC 2016* - Bedlewo (Poland) August 29- September 2, 2016

¹joint work with G. Elefante (Fribourg - CH)

1 Motivations and aims

- 2 Preserving measure maps (on 2-manifolds)
- 3 Minimal Riesz-energy points
 - Greedy minimal Riesz-energy points
- 4 Numerical results

Motivations and aims

 Integrate functions on manifolds by QMC method: low-discrepancy points (Sobol, Hammersley, Fibonacci lattices,...)

$$\int_X f(x) \mathrm{d}x \approx \frac{1}{N} \sum_{i=1}^N f(x_i), \quad x_i \in X$$

Integrate functions on manifolds by QMC method: low-discrepancy points (Sobol, Hammersley, Fibonacci lattices,...)

$$\int_X f(x) \mathrm{d}x \approx \frac{1}{N} \sum_{i=1}^N f(x_i), \quad x_i \in X$$

Low-discrepancy points are uniformly distributed w.r.t. Lebegsue measure dx

Integrate functions on manifolds by QMC method: low-discrepancy points (Sobol, Hammersley, Fibonacci lattices,...)

$$\int_X f(x) \mathrm{d}x \approx \frac{1}{N} \sum_{i=1}^N f(x_i), \quad x_i \in X$$

Low-discrepancy points are uniformly distributed w.r.t. Lebegsue measure dx

Take

$$\frac{1}{\mathcal{H}_d(\mathcal{M})}\int_{\mathcal{M}}f(x)\mathrm{d}\mathcal{H}_d(x)$$

where M is a *d*-dimensional manifold and H_d is the *d*-dimensional Hausdorff measure. Here we can again use QMC

Integrate functions on manifolds by QMC method: low-discrepancy points (Sobol, Hammersley, Fibonacci lattices,...)

$$\int_X f(x) \mathrm{d}x \approx \frac{1}{N} \sum_{i=1}^N f(x_i), \quad x_i \in X$$

Low-discrepancy points are uniformly distributed w.r.t. Lebegsue measure dx

Take

$$\frac{1}{\mathcal{H}_d(\mathcal{M})}\int_{\mathcal{M}}f(x)\mathrm{d}\mathcal{H}_d(x)$$

where M is a *d*-dimensional manifold and H_d is the *d*-dimensional Hausdorff measure. Here we can again use QMC

Poppy-seed Bagel Theorem (PsB) [Hardin, Saff 2004]: "minimal Riesz s-energy points, under some assumptions, are uniformly distributed with respect to the Hausdorff measure H_d"

Observe that from the (PsB)-Theorem, the Riesz *s*-energy points can be useful for a QMC method when using the Hausdorff measure

Observe that from the (PsB)-Theorem, the Riesz *s*-energy points can be useful for a QMC method when using the Hausdorff measure

Ideas

- Find a measure preserving map so that we can map low discrepancy poins to points nearly uniformly distributed wrt the Hausdorff measure on the manifold
- Extract approximate minimal Riesz s-energy points from a suitable discretization of the manifold
- Compare results

Preserving measure maps (on 2-manifolds)

Error bound on bounded domains and discrepancy

Theorem (Zaremba 1970)

wher

Let $B \subseteq [0, 1)^d$ be a convex d-dimensional subset and f a function with bounded variation V(f) on $[0, 1)^d$ in the sense of Hardy and Krause. Then, for any points set $P = \{x_1, ..., x_N\} \subseteq [0, 1)^d$, we have that

$$\left| \frac{1}{N} \sum_{\substack{i=1\\x_i \in B}}^{N} f(x_i) - \int_B f(x) dx \right| \le (V(f) + |f(\mathbf{1})|) J_N(P), \tag{1}$$

$$e \, \mathbf{1} = \underbrace{(1, \dots, 1)}_{d}.$$

where $J_N(P)$ is the *isotropic discrepancy* of the points set *P* defined as $J_N(P) = D_N(C; P)$ with *C* a family of all convex subsets of $[0, 1)^d$ and $D_N(C; P)$ the classical *discrepancy* of the set *P*.

Error bound on manifolds and discrepancy

Theorem (Brandolini et al. JoC 2013)

Let \mathcal{M} be a smooth compact manifold with a normalized measure dx. Fix a family of local charts $\{\varphi_k\}_{k=1}^K, \varphi_k : [0,1)^d \to \mathcal{M}$, and a smooth partition of unity $\{\psi_k\}_{k=1}^K$ subordinate to these charts. Then, there exists c > 0depending only on the local charts (not on the function f and the measure μ),

$$\left|\int_{\mathcal{M}} f(y) \overline{\mathrm{d}\mu(y)}\right| \le c \mathcal{D}(\mu) ||f||_{W^{d,1}(\mathcal{M})},$$
(2)

where $\mathcal{D}(\mu) = \sup_{U \in \mathcal{A}} \left| \int_U d\mu(y) \right|$, \mathcal{A} is the collection of all intervals in \mathcal{M} and

$$\|f\|_{W^{n,p}(\mathcal{M})} = \sum_{1 \le k \le K} \sum_{|\alpha| \le n} \left(\int_{[0,1)^d} \left| \frac{\partial^{\alpha}}{\partial x^{\alpha}} (\psi_k(\varphi_k(x)) f(\varphi_k(x))) \right|^p \mathrm{d}x \right)^{1/p}.$$

Error bound on manifolds and discrepancy

Theorem (Brandolini et al. JoC 2013)

Let \mathcal{M} be a smooth compact manifold with a normalized measure dx. Fix a family of local charts $\{\varphi_k\}_{k=1}^K, \varphi_k : [0,1)^d \to \mathcal{M}$, and a smooth partition of unity $\{\psi_k\}_{k=1}^K$ subordinate to these charts. Then, there exists c > 0depending only on the local charts (not on the function f and the measure μ),

$$\left|\int_{\mathcal{M}} f(y) \overline{\mathrm{d}\mu(y)}\right| \le c \mathcal{D}(\mu) ||f||_{W^{d,1}(\mathcal{M})},$$
(2)

where $\mathcal{D}(\mu) = \sup_{U \in \mathcal{A}} \left| \int_U d\mu(y) \right|$, \mathcal{A} is the collection of all intervals in \mathcal{M} and

$$||f||_{W^{n,p}(\mathcal{M})} = \sum_{1 \le k \le K} \sum_{|\alpha| \le n} \left(\int_{[0,1)^d} \left| \frac{\partial^{\alpha}}{\partial x^{\alpha}} (\psi_k(\varphi_k(x)) f(\varphi_k(x))) \right|^p \mathrm{d}x \right)^{1/p}.$$

Notice: if $d\mu = \frac{1}{N} \sum_{x \in X_N} \delta_x - dx$ in (2), we have the analogue of the Koksma-Hlawka inequality for manifolds

On $\mathcal{M} = \mathbb{S}^2$

- It is not easy to compute an estimate of the error using the previous inequality
- If M = S² [Marques et al. 2013] observed that minimizing the spherical cap discrepancy (s.c.d.) is equivalent to minimize the w.c.e. (worst case error)

$$\sup_{f \in \mathcal{H}} \left| \frac{1}{N} \sum_{x \in X_N} f(x) - \frac{1}{4\pi} \int_{\mathbb{S}^2} f(x) \mathrm{d}\sigma(x) \right|,$$

with \mathcal{H} a normed function space (C_0 are ok! polynomials \rightarrow sperical design). By using the Stolarsky's invariance principle [Stolarsky '73, Brauchard&Dick 2013], the w.c.e is proportional to the distance-based energy metric

$$E_N(X_N) = \left(\frac{4}{3} - \frac{1}{N^2} \sum_{x_i, x_j \in X_N} |x_i - x_j|\right)^{1/2}$$

Then we can maximize the term $\sum_{x_i, x_j \in X_N} |x_i - x_j|$ instead of the s.c.d.

On $\mathcal{M} = \mathbb{S}^2$

- It is not easy to compute an estimate of the error using the previous inequality
- If M = S² [Marques et al. 2013] observed that minimizing the spherical cap discrepancy (s.c.d.) is equivalent to minimize the w.c.e. (worst case error)

$$\sup_{f \in \mathcal{H}} \left| \frac{1}{N} \sum_{x \in X_N} f(x) - \frac{1}{4\pi} \int_{\mathbb{S}^2} f(x) \mathrm{d}\sigma(x) \right|,$$

with \mathcal{H} a normed function space (C_0 are ok! polynomials \rightarrow sperical design). By using the Stolarsky's invariance principle [Stolarsky '73, Brauchard&Dick 2013], the w.c.e is proportional to the distance-based energy metric

$$E_N(X_N) = \left(\frac{4}{3} - \frac{1}{N^2} \sum_{x_i, x_j \in X_N} |x_i - x_j|\right)^{1/2}$$

Then we can maximize the term $\sum_{x_i, x_i \in X_N} |x_i - x_j|$ instead of the s.c.d.

On different manifolds?

Preserving measure maps on 2-manifolds

Idea

construct a sequence which is uniformly distributed w.r.t. Hausdorff measure on \mathcal{M} , by a preserving measure map.

Preserving measure maps on 2-manifolds

Idea

construct a sequence which is uniformly distributed w.r.t. Hausdorff measure on \mathcal{M} , by a preserving measure map.

Letting $S = (X_N)_{N \ge 1}$ uniformly distributed w.r.t. the Lebesgue measure λ on a rectangle $\mathcal{U} \subset \mathbb{R}^2$, \mathcal{M} a regular manifold of dimension 2 and Φ an invertible map from \mathcal{U} to \mathcal{M} .

Definition

Let us consider $A \subset M$. We define the measure $\mu_{\Phi}(A)$ as

$$\mu_{\Phi}(A) := \lambda(\Phi^{-1}(A)) = \int_{\Phi^{-1}(A)} \mathrm{d}\lambda. \tag{3}$$

Preserving measure maps on 2-manifolds

Idea

construct a sequence which is uniformly distributed w.r.t. Hausdorff measure on \mathcal{M} , by a preserving measure map.

Letting $S = (X_N)_{N \ge 1}$ uniformly distributed w.r.t. the Lebesgue measure λ on a rectangle $\mathcal{U} \subset \mathbb{R}^2$, \mathcal{M} a regular manifold of dimension 2 and Φ an invertible map from \mathcal{U} to \mathcal{M} .

Definition

Let us consider $A \subset M$. We define the measure $\mu_{\Phi}(A)$ as

$$\mu_{\Phi}(A) := \lambda(\Phi^{-1}(A)) = \int_{\Phi^{-1}(A)} \mathrm{d}\lambda.$$
(3)

 \hookrightarrow Hence the sequence of points $\Phi(S)$ is uniformly distributed with respect to the measure μ_{Φ} (by definition!).

Preserving measure maps on 2-manifolds (cont)

Take the measure \mathcal{H}_2 on the manifold $\mathcal M$ which, by means of the area formula [Folland, p. 353] is of the type

$$\int_{\mathcal{U}} g(x) \mathrm{d}x,$$

(4)

with *g* a density function (that depends on the parametrization Φ of \mathcal{M}).

Preserving measure maps on 2-manifolds (cont)

1 Take the measure \mathcal{H}_2 on the manifold \mathcal{M} which, by means of the area formula [Folland, p. 353] is of the type

$$\int_{\mathcal{U}} g(x) \mathrm{d}x,\tag{4}$$

with g a density function (that depends on the parametrization Φ of \mathcal{M}).

2 Consider the change of variables from another rectangle $\mathcal{U}' \subset \mathbb{R}^2$

$$\begin{aligned}
\Psi : & \mathcal{U}' \longrightarrow \mathcal{U} \\
& x' \mapsto \Psi(x') = x,
\end{aligned}$$
(5)

so that

$$g(\Psi(x'))|J\Psi(x')| = g(x) = 1,$$
(6)

Preserving measure maps on 2-manifolds (cont)

1 Take the measure \mathcal{H}_2 on the manifold \mathcal{M} which, by means of the area formula [Folland, p. 353] is of the type

$$\int_{\mathcal{U}} g(x) \mathrm{d}x,\tag{4}$$

with g a density function (that depends on the parametrization Φ of \mathcal{M}).

2 Consider the change of variables from another rectangle $\mathcal{U}' \subset \mathbb{R}^2$

$$\begin{aligned} \Psi : & \mathcal{U}' & \longrightarrow & \mathcal{U} \\ & x' & \mapsto & \Psi(x') = x \,, \end{aligned}$$
 (5)

so that

$$g(\Psi(x'))|J\Psi(x')| = g(x) = 1,$$
(6)

3 Equating the "natural" measure $\mu_{\Phi \circ \Psi}$ (which comes from the parametrization) and the Hausdorff measure \mathcal{H}_2 on the manifold \mathcal{M} we get

$$\mathcal{H}_{2}(\mathcal{M}) \stackrel{\text{areaformula}}{=} \int_{\mathcal{U}} g(x) \mathrm{d}x = \int_{\mathcal{U}'} g(\Psi(x')) |J\Psi(x')| \mathrm{d}x' = \int_{\mathcal{U}'} \mathrm{d}x' = \mu_{\Phi \circ \Psi}(\mathcal{M}).$$

Preserving measure maps on 2-manifolds (cont)

$$\int_{\mathcal{U}} g(x) \mathrm{d}x, \tag{4}$$

with g a density function (that depends on the parametrization Φ of \mathcal{M}).

2 Consider the change of variables from another rectangle $\mathcal{U}' \subset \mathbb{R}^2$

$$\begin{aligned}
\Psi : & \mathcal{U}' \longrightarrow \mathcal{U} \\
& x' \mapsto \Psi(x') = x,
\end{aligned}$$
(5)

so that

$$g(\Psi(x'))|J\Psi(x')| = g(x) = 1,$$
(6)

3 Equating the "natural" measure $\mu_{\Phi \circ \Psi}$ (which comes from the parametrization) and the Hausdorff measure H_2 on the manifold M we get

$$\mathcal{H}_{2}(\mathcal{M}) \stackrel{\text{areadormula}}{=} \int_{\mathcal{U}} g(\mathbf{x}) d\mathbf{x} = \int_{\mathcal{U}'} g(\Psi(\mathbf{x}')) |J\Psi(\mathbf{x}')| d\mathbf{x}' = \int_{\mathcal{U}'} d\mathbf{x}' = \mu_{\Phi \circ \Psi}(\mathcal{M}).$$

Hence, by using (5), the sequence $\Phi(\Psi(S'))$ (*S'* is a sequence uniformly distributed w.r.t. the Lebesgue meas on $\mathcal{U}' \subset \mathbb{R}^2$), will be uniformly distributed wrt the measure \mathcal{H}_2 on \mathcal{M} .

Practically

Examples: cylinder, cone, sphere

In order to determine the Lebesgue preserving measure's map we look for a nondecreasing function $\phi: I \rightarrow l', I$, with $\phi(I) = I'$

$$\tilde{\Phi}(u, \theta) = (\phi(u) \cos(\theta), \phi(u) \sin(\theta), \phi(u))$$

will preserve the Lebesgue measure. The reparametrization (5) is

$$\Psi(u,\theta) = (\phi(u),\theta). \tag{7}$$

- **1** cylinder: $U = [-1, 1] \times [0, 2\pi]$ and $(\phi(u) = u, v)$
- **2** cone: $\mathcal{U} = [0, 1] \times [0, 2\pi], (\phi(u) = \sqrt{u}, v)$
- **3** sphere: $\mathcal{U} = [-1, 1] \times [0, 2\pi], (\phi(u) = \arcsin(u), v)$

Minimal Riesz-energy points

s-Riesz energy and points [Hardin&Saff, 2004]

Definition (minimal *s*-Riesz energy points)

Let $X_N = \{x_1, ..., x_N\} \subset A \subseteq \mathbb{R}^d$ be a set of N distinct points. For each real s > 0, the s-Riesz energy of X_N is given by

$$E_{s}(X_{N}) := \sum_{\substack{y \in X_{N} \\ x \neq y}} \sum_{\substack{x \in X_{N} \\ x \neq y}} \frac{1}{\|x - y\|_{2}^{s}},$$
(8)

s-Riesz energy and points [Hardin&Saff, 2004]

Definition (minimal *s*-Riesz energy points)

Let $X_N = \{x_1, ..., x_N\} \subset A \subseteq \mathbb{R}^d$ be a set of N distinct points. For each real s > 0, the s-Riesz energy of X_N is given by

$$E_{s}(X_{N}) := \sum_{\substack{y \in X_{N} \\ x \neq y}} \sum_{\substack{x \in X_{N} \\ x \neq y}} \frac{1}{\|x - y\|_{2}^{s}}, \qquad (8)$$

Points that have

$$\mathcal{E}_{s}(A,N) := \inf_{X_{N} \subset A} E_{s}(X_{N})$$
(9)

are minimal s-energy N-points over A.

s-Riesz energy and points [Hardin&Saff, 2004]

Definition (minimal *s*-Riesz energy points)

Let $X_N = \{x_1, ..., x_N\} \subset A \subseteq \mathbb{R}^d$ be a set of N distinct points. For each real s > 0, the s-Riesz energy of X_N is given by

$$E_{s}(X_{N}) := \sum_{\substack{y \in X_{N} \\ x \neq y}} \sum_{\substack{x \in X_{N} \\ x \neq y}} \frac{1}{\|x - y\|_{2}^{s}}, \qquad (8)$$

Points that have

$$\mathcal{E}_{s}(A,N) := \inf_{X_{N} \subset A} E_{s}(X_{N})$$
(9)

are minimal s-energy N-points over A.

Definition

Let $A \subset \mathbb{R}^d$ be an infinite compact set whose d-dimensional Hausdorff measure $\mathcal{H}_d(A)$ is finite. A symmetric function $w : A \times A \rightarrow [0, +\infty)$ is called a CPD (Continuous and Positive on the Diagonal)-weight function on $A \times A$ if w is continuous at \mathcal{H}_d -almost every point of the diagonal $D(A) = \{(x, x) : x \in A\},$ 14 of 33

Definition (weighted Riesz *s*-energy)

Let s > 0. Given N points $X_N = \{x_1, ..., x_N\} \subset A \subseteq \mathbb{R}^d$, the weighted Riesz s-energy of X_N is $E_s^w(X_N) := \sum_{1 \le i \ne j \le N} \frac{w(x_i, x_j)}{||x_i - x_j||_2^s}$, with $w : A \times A \rightarrow [0, \infty)$ a CPD-function while the N-point weighted Riesz s-energy of A is

$$\mathcal{E}_{s}^{w}(A,N) = \inf\{E_{s}^{w}(X_{N}) : X_{N} \subset A\}.$$

and their weighted Hausdorff measure $\mathcal{H}_d^{s,w}$ on Borel sets $B \subset A$ is

$$\mathcal{H}_d^{s,w}(B) = \int_B (w(x,x))^{-d/s} \mathrm{d}\mathcal{H}_d(x).$$

Weighted Poppy-seed Bagel Theorem

The connection between the Riesz energy and a sequence uniformly distributed w.r.t. the Hausdorff measure is given by

Theorem (Hardin & Saff 2004, Borodachov et al. 2008)

Let $A \subset \mathbb{R}^{d'}$ be a compact subset of a d-dimensional C^1 -manifold (immersed) in $\mathbb{R}^{d'}$, d < d', and w is a CDP-weight function on $A \times A$. Then

$$\lim_{N\to\infty} \frac{\mathcal{E}_d^w(A,N)}{N^2 \log N} = \frac{Vol(\mathcal{B}^d)}{\mathcal{H}_d^{d,w}(A)},$$
(10)

with \mathcal{B}^d the unit ball.

Greedy minimal Riesz-energy points

General greedy algorithm

Let $k : X \times X \to \mathbb{R} \cup \{\infty\}$ be a symmetric kernel on a locally compact Hausdorff space X, and let $A \subset X$ be a compact set. A sequence $(a_n)_{n=1}^{\infty} \subset A$ such that

(i) a_1 is selected arbitrarily on A;

(ii)
$$a_{n+1}, n \ge 1$$

$$\sum_{i=1}^n k(a_{n+1}, a_i) = \inf_{x \in A} \sum_{i=1}^n k(x, a_i), \quad \text{ for every } n \ge 1.$$

is called a greedy minimal k-energy sequence on A.

The Riesz kernel in $X = \mathbb{R}^{d'}$, which depends on a parameter $s \in [0, +\infty)$ $K_s(||x - y||_2), \quad x, y \in \mathbb{R}^{d'}$, with

$$\mathcal{K}_{s}(t) := \begin{cases} t^{-s} & \text{if } s > 0\\ -\log(t) & \text{if } s = 0, \end{cases}$$
(11)

For $k = K_s$ we get the greedy minimal k_s -energy points.

Taking $k = w K_s$ we get the so-called greedy minimal (w, s)-energy points.

Remarks and questions

[Lopez-Garcia&Saff 2010] then proved

- Greedy k_d-energy points, say X^w_{N,d}, on S^d are asymptotically d-energy minimizing. This results does not hold for s > d.
- If $A \subset \mathbb{R}^d$ is a compact subset of a C^1 manifold and w is CPD on $A \times A$, then a (w, d)-energy sequence X_{Nd}^w , is dense in A.
- Taking *w* = 1, the same conclusion holds for greedy *k*_s-energy points.

Remarks and questions

[Lopez-Garcia&Saff 2010] then proved

- Greedy k_d-energy points, say X^w_{N,d}, on S^d are asymptotically d-energy minimizing. This results does not hold for s > d.
- If $A \subset \mathbb{R}^d$ is a compact subset of a C^1 manifold and w is CPD on $A \times A$, then a (w, d)-energy sequence $X_{N,d}^w$, is dense in A.
- Taking *w* = 1, the same conclusion holds for greedy *k*_s-energy points.

Questions

- 1 Can greedy (w, d)-energy points can be used for integration on manifolds wrt to \mathcal{H}_d^w ?
- 2 Are they preferable to mapped low-discrepancy points on the manifold?

Numerical results

Integration

Compute the integral

$$\frac{1}{\mathcal{H}_d(\mathcal{M})}\int_{\mathcal{M}}f(x)\mathrm{d}\mathcal{H}_d(x),$$

by a QMC method with

(a) low discrepancy points mapped on the manifolds,

(b) greedy minimal k_s -energy points.

Integration

Compute the integral

$$\frac{1}{\mathcal{H}_d(\mathcal{M})}\int_{\mathcal{M}}f(x)\mathrm{d}\mathcal{H}_d(x),$$

by a QMC method with

(a) low discrepancy points mapped on the manifolds,

(b) greedy minimal k_s -energy points.

About (b): we start from a uniform mesh on a rectangle of \mathbb{R}^2 consisting of $N^2/2$ points and we map them to the manifold - if available by using the corresponding preserving measure map - and then we extract *N* greedy minimal k_s -energy points from this mapped mesh.

Functions and 2-manifolds

$$\begin{split} f_{1}(x,y,z) &:= \sqrt{(1+z)(1-z)}\cos\left(\frac{x}{2} + \frac{y}{3} + \frac{z}{5}\right), \\ f_{2}(x,y,z) &:= \begin{cases} \cos(30xyz) & \text{if } z < \frac{1}{2} \\ (x^{2} + y^{2} + z^{2})^{3/2} & \text{if } z \ge \frac{1}{2}, \end{cases} \\ f_{3}(x,y,z) &:= e^{-\sin(2x^{2} + 3y^{2} + 5z^{2})}, \\ f_{4}(x,y,z) &:= \frac{e^{-\sqrt{x^{2} + y^{2} + z^{2}}}}{1 + x^{2}}\cos(1 + x^{2})\sin(1 - y^{2})e^{|z|}. \end{split}$$
(12)

Manifolds: cylinder, cone, sphere and torus.

Functions and 2-manifolds

$$\begin{split} f_{1}(x,y,z) &:= \sqrt{(1+z)(1-z)}\cos\left(\frac{x}{2} + \frac{y}{3} + \frac{z}{5}\right), \\ f_{2}(x,y,z) &:= \begin{cases} \cos(30xyz) & \text{if } z < \frac{1}{2} \\ (x^{2} + y^{2} + z^{2})^{3/2} & \text{if } z \ge \frac{1}{2}, \end{cases} \\ f_{3}(x,y,z) &:= e^{-\sin(2x^{2} + 3y^{2} + 5z^{2})}, \\ f_{4}(x,y,z) &:= \frac{e^{-\sqrt{x^{2} + y^{2} + z^{2}}}}{1 + x^{2}}\cos(1 + x^{2})\sin(1 - y^{2})e^{|z|}. \end{split}$$
(12)

Manifolds: cylinder, cone, sphere and torus.

for the **torus** we do not know a preserving Lebesgue measure map, but we used simply

$$[0, 2\pi] \times [0, 2\pi] \ni (u, v) \rightarrow \begin{cases} x = (2 + \cos(u))\cos(v) \\ y = (2 + \cos(u))\sin(v) \\ z = \sin(u) \end{cases}$$
(13)

We compare the results with the greedy minimal k_2 -energy points,

- QMC method using Halton points and Fibonacci lattice mapped on the manifolds.
- Fibonacci sequence from 144 (12-th Fibonacci number) up to 2584 (18-thFibonacci number)
- In the tables we present the results only for 144, 610 and 2584 points.

The exact value of the integrals taken by the built-in Matlab function dblquad with a tollerance of order 10^{-11}

The cone

function f_1

(a) Halton points

(b) Greedy minimal k_2 - (c) Fibonacci points energy points

Figure: 610 points on the cone

Ν	Halton	Fibonacci	GM <i>k</i> ₂	
144	1.215e-02	5.352e-03	2.097e-01	
610	4.939e-03	1.270e-03	1.470e-01	
2584 1.241e-03 3.029e-04 9.817e-02				
Relative errors for f_1 on the cone				

The cone

functions f_2 , f_3 and f_4

Ν	Halton	Fibonacci	GM <i>k</i> ₂
144	9.101e-03	6.250e-03	2.366e-01
610	5.277e-03	1.173e-03	1.764e-01
2584	6.766e-04	3.678e-04	1.212e-01

Relative errors for f_2 on the cone

N	Halton	Fibonacci	GM k ₂
144	1.059e-02	1.416e-03	7.048e-02
610	3.763e-04	3.389e-04	7.172e-02
2584	1.289e-04	8.026e-05	3.790e-02
Deletive errors for f an the same			

Relative errors for f_3 on the cone

N	Halton	Fibonacci	$GM k_2$
144	2.767e-02	1.384e-02	2.333e-01
610	9.623e-03	3.230e-03	1.782e-01
2584	3.068e-03	7.594e-04	1.313e-01

Relative errors for f₄ on the cone

The torus

function f_1

Figure: 610 points on the torus

Ν	Halton	Fibonacci	GM k ₂	
144	2.152e-01	1.777e-01	6.894e-02	
610	1.888e-01	1.780e-01	5.367e-02	
2584 1.788e-01 1.780e-01 4.014e-02				
Relative errors for f_1 on the torus				

27 of 33

The torus

functions f_2 , f_3 and f_4

Ν	Halton	Fibonacci	$GM k_2$
144	1.218e-01	1.690e-01	3.081e-02
610	1.453e-01	1.410e-01	4.728e-02
2584	1.414e-01	1.411e-01	2.297e-02

Relative errors for f_2 on the torus

N	Halton	Fibonacci	GM k ₂
144	3.033e-02	3.426e-02	4.949e-03
610	2.716e-03	8.821e-03	1.349e-02
2584	8.763e-03	6.453e-03	1.673e-03
Deletive errors for f an the terror			

Relative errors for f_3 on the torus

N	Halton	Fibonacci	GM k ₂
144	6.015e-01	5.339e-01	2.435e-01
610	5.109e-01	5.237e-01	1.874e-01
2584	5.252e-01	5.238e-01	1.319e-01

Relative errors for f₄ on the torus

Computational time for extracting greedy points

Ν	Cone	Cylinder	Torus	Sphere
144	0.217	0.218	0.248	0.208
610	20.067	21.046	19.340	19.284
2584	1519.112	1513.211	1571.449	1511.768

Time in seconds to compute the greedy minimal k_2 -energy points

- From numerical experiments we show the importance of knowing a measure preserving map (torus docet!)
- Adding more and more greedy points the error does not change significantly
- From experiments the time to extract the greedy minimal k_s-energy points grows: a good compromise, error vs computational time, is to use 610 points.
- By tuning the parameter *s* we have seen that, in the stationary case the bets choice is *s* ≤ 2 (2=manifold dimension) ... except for the sphere.

S. De Marchi and G. Elefante: "Integration on manifolds by mapped low-discrepancy points and greedy minimal ks-energy points" (draft, Mar. 2016)

DWCAA16

4th Dolomites Workshop on Constructive Approximation and Applications (DWCAA16) Alba di Canazei (ITALY), 8-13/9/2016

http://events.math.unipd.it/dwcaa16/

Happy birthday Henryk!