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Facts

Integrate functions on manifolds by QMC method: low-discrepancy
points (Sobol, Hammersley, Fibonacci lattices,...)∫

X
f(x)dx ≈

1
N

N∑
i=1

f(xi), xi ∈ X

Low-discrepancy points are uniformly distributed w.r.t. Lebegsue
measure dx

Take
1

Hd(M)

∫
M

f(x)dHd(x)

whereM is a d-dimensional manifold and Hd is the d-dimensional
Hausdorff measure. Here we can again use QMC

Poppy-seed Bagel Theorem (PsB) [Hardin, Saff 2004]: “minimal
Riesz s-energy points, under some assumptions, are uniformly
distributed with respect to the Hausdorff measure Hd”
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Aims

Observe that from the (PsB)-Theorem, the Riesz s-energy points
can be useful for a QMC method when using the Hausdorff
measure

Ideas

Find a measure preserving map so that we can map low
discrepancy poins to points nearly uniformly distributed wrt
the Hausdorff measure on the manifold

Extract approximate minimal Riesz s-energy points from a
suitable discretization of the manifold

Compare results
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Preserving measure maps (on 2-manifolds)
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Error bound on bounded domains and
discrepancy

Theorem (Zaremba 1970)

Let B ⊆ [0, 1)d be a convex d-dimensional subset and f a function with
bounded variation V(f) on [0, 1)d in the sense of Hardy and Krause.
Then, for any points set P = {x1, . . . , xN} ⊆ [0, 1)d , we have that∣∣∣∣∣∣∣∣∣∣

1
N

N∑
i=1
xi∈B

f(xi) −

∫
B

f(x)dx

∣∣∣∣∣∣∣∣∣∣ ≤ (V(f) + |f(1)|)JN(P), (1)

where 1 = (1, . . . , 1)︸     ︷︷     ︸
d

.

where JN(P) is the isotropic discrepancy of the points set P defined as
JN(P) = DN(C; P) with C a family of all convex subsets of [0, 1)d and
DN(C; P) the classical discrepancy of the set P.
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Error bound on manifolds and discrepancy

Theorem (Brandolini et al. JoC 2013)

LetM be a smooth compact manifold with a normalized measure dx. Fix
a family of local charts {ϕk }

K
k=1, ϕk : [0, 1)d →M, and a smooth partition

of unity {ψk }
K
k=1 subordinate to these charts. Then, there exists c > 0

depending only on the local charts ( not on the function f and the
measure µ), ∣∣∣∣∣∣

∫
M

f(y)dµ(y)

∣∣∣∣∣∣ ≤ cD(µ)||f ||Wd,1(M), (2)

where D(µ) = supU∈A

∣∣∣∫
U dµ(y)

∣∣∣, A is the collection of all intervals inM
and

||f ||Wn,p(M) =
∑

1≤k≤K

∑
|α|≤n

(∫
[0,1)d

∣∣∣∣∣ ∂α∂xα
(ψk (ϕk (x))f(ϕk (x)))

∣∣∣∣∣p dx
)1/p

.

Notice: if dµ = 1
N

∑
x∈XN

δx − dx in (2), we have the analogue of the
Koksma-Hlawka inequality for manifolds
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OnM = S2

It is not easy to compute an estimate of the error using the previous
inequality

IfM = S2 [Marques et al. 2013] observed that minimizing the
spherical cap discrepancy (s.c.d.) is equivalent to minimize the
w.c.e. (worst case error)

sup
f∈H

∣∣∣∣∣∣∣ 1
N

∑
x∈XN

f(x) −
1
4π

∫
S2

f(x)dσ(x)

∣∣∣∣∣∣∣ ,
withH a normed function space (C0 are ok! polynomials→ sperical
design). By using the Stolarsky’s invariance principle [Stolarsky ‘73,
Brauchard&Dick 2013], the w.c.e is propotional to the
distance-based energy metric

EN(XN) =

4
3
−

1
N2

∑
xi ,xj∈XN

|xi − xj |


1/2

.

Then we can maximize the term
∑

xi ,xj∈XN
|xi − xj | instead of the s.c.d.

On different manifolds?
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Preserving measure maps on 2-manifolds

Idea
construct a sequence which is uniformly distributed w.r.t. Hausdorff
measure onM, by a preserving measure map.

Letting S = (XN)N≥1 uniformly distributed w.r.t. the Lebesgue measure λ
on a rectangleU ⊂ R2,M a regular manifold of dimension 2 and Φ an
invertible map fromU toM.

Definition
Let us consider A ⊂ M. We define the measure µΦ(A) as

µΦ(A) := λ(Φ−1(A)) =

∫
Φ−1(A)

dλ. (3)

↪→ Hence the sequence of points Φ(S) is uniformly distributed with
respect to the measure µΦ (by definition!).
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Preserving measure maps on 2-manifolds
(cont)

1 Take the measure H2 on the manifoldM which, by means of the area formula [Folland, p. 353] is of the type∫
U

g(x)dx, (4)

with g a density function (that depends on the parametrization Φ ofM).

2 Consider the change of variables from another rectangleU′ ⊂ R2

Ψ : U′ −→ U

x′ 7→ Ψ(x′) = x ,
(5)

so that
g(Ψ(x′))|JΨ(x′)| = g(x) = 1 , (6)

3 Equating the “natural” measure µΦ◦Ψ (which comes from the parametrization) and the Hausdorff measure H2 on
the manifoldM we get

H2(M)

areaformula︷︸︸︷
=

∫
U

g(x)dx =

∫
U′

g(Ψ(x′))|JΨ(x′)|dx′ =

∫
U′

dx′ = µΦ◦Ψ(M) .

Hence, by using (5), the sequence Φ(Ψ(S′)) (S′ is a sequence uniformly
distributed w.r.t. the Lebesgue meas onU′ ⊂ R2), will be uniformly
distributed wrt the measure H2 onM.
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Practically
Examples: cylinder, cone, sphere

In order to determine the Lebesgue preserving measure’s map we look
for a nondecreasing function φ : I → I′, I , with φ(I) = I′

Φ̃(u, θ) = (φ(u) cos(θ), φ(u) sin(θ), φ(u))

will preserve the Lebesgue measure. The reparametrization (5) is

Ψ(u, θ) = (φ(u), θ). (7)

1 cylinder: U = [−1, 1] × [0, 2π] and (φ(u) = u, v)

2 cone: U = [0, 1] × [0, 2π], (φ(u) =
√

u, v)

3 sphere: U = [−1, 1] × [0, 2π], (φ(u) = arcsin (u), v)

12 of 33



Minimal Riesz-energy points
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s-Riesz energy and points [Hardin&Saff, 2004]

Definition (minimal s-Riesz energy points)

Let XN = {x1, . . . , xN} ⊂ A ⊆ Rd be a set of N distinct points. For each
real s > 0, the s-Riesz energy of XN is given by

Es(XN) :=
∑

y ∈XN

∑
x ∈XN
x,y

1
‖x − y‖s2

, (8)

Points that have
Es(A ,N) := inf

XN⊂A
Es(XN) (9)

are minimal s-energy N-points over A.

Definition
Let A ⊂ Rd be an infinite compact set whose d-dimensional Hausdorff
measure Hd(A) is finite. A symmetric function w : A × A → [0,+∞) is
called a CPD (Continuous and Positive on the Diagonal)-weight function
on A × A if w is continuous at Hd-almost every point of the diagonal
D(A) = {(x, x) : x ∈ A },
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Weighted Riesz s-energy

Definition (weighted Riesz s-energy)

Let s > 0. Given N points XN = {x1, . . . , xN} ⊂ A ⊆ Rd , the
weighted Riesz s-energy of XN is Ew

s (XN) :=
∑

1≤i,j≤N
w(xi ,xj)

‖xi−xj‖
s
2
, with

w : A × A → [0,∞) a CPD-function while the N-point weighted
Riesz s-energy of A is

Ew
s (A ,N) = inf{Ew

s (XN) : XN ⊂ A }.

and their weighted Hausdorff measureHs,w
d on Borel sets B ⊂ A is

H
s,w
d (B) =

∫
B

(w(x, x))−d/sdHd(x).

15 of 33



Weighted Poppy-seed Bagel Theorem

The connection between the Riesz energy and a sequence uniformly
distributed w.r.t. the Hausdorff measure is given by

Theorem (Hardin & Saff 2004, Borodachov et al. 2008)

Let A ⊂ Rd′ be a a compact subset of a d-dimensional C1-manifold
(immersed) in Rd′ , d < d′, and w is a CDP-weight function on A × A.
Then

lim
N→∞

Ew
d (A ,N)

N2 log N
=

Vol(Bd)

H
d,w
d (A)

, (10)

with Bd the unit ball.
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Greedy minimal Riesz-energy points
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Greedy algorithm

General greedy algorithm

Let k : X × X → R ∪ {∞} be a symmetric kernel on a locally compact
Hausdorff space X , and let A ⊂ X be a compact set. A sequence
(an)∞n=1 ⊂ A such that

(i) a1 is selected arbitrarily on A ;

(ii) an+1, n ≥ 1

n∑
i=1

k(an+1, ai) = inf
x∈A

n∑
i=1

k(x, ai), for every n ≥ 1.

is called a greedy minimal k -energy sequence on A .

18 of 33



Greedy minimal ks and (w, s)-energy points

The Riesz kernel in X = Rd′ , which depends on a parameter s ∈ [0,+∞)
Ks(‖x − y‖2), x, y ∈ Rd′ , with

Ks(t) :=

{
t−s if s > 0
− log(t) if s = 0, (11)

For k = Ks we get the greedy minimal ks-energy points.

Taking k = w Ks we get the so-called greedy minimal (w, s)-energy
points.
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Remarks and questions

[Lopez-Garcia&Saff 2010] then proved

Greedy kd-energy points, say Xw
N,d , on Sd are asymptotically

d-energy minimizing . This results does not hold for s > d.

If A ⊂ Rd is a compact subset of a C1 manifold and w is CPD on
A × A , then a (w, d)-energy sequence Xw

N,d , is dense in A .

Taking w = 1, the same conclusion holds for greedy ks-energy
points.

Questions

1 Can greedy (w, d)-energy points can be used for integration on
manifolds wrt to Hw

d ?

2 Are they preferable to mapped low-discrepancy points on the
manifold?
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Numerical results
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Integration

Compute the integral

1
Hd(M)

∫
M

f(x)dHd(x),

by a QMC method with

(a) low discrepancy points mapped on the manifolds,

(b) greedy minimal ks-energy points.

About (b): we start from a uniform mesh on a rectangle of R2 consisting
of N2/2 points and we map them to the manifold - if available by using the
corresponding preserving measure map - and then we extract N greedy
minimal ks-energy points from this mapped mesh.
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Functions and 2-manifolds

f1(x, y, z) :=
√

(1 + z)(1 − z) cos
(x
2

+
y
3

+
z
5

)
,

f2(x, y, z) :=

{
cos(30xyz) if z < 1

2
(x2 + y2 + z2)3/2 if z ≥ 1

2 ,

f3(x, y, z) := e− sin(2x2+3y2+5z2),

f4(x, y, z) :=
e−
√

x2+y2+z2

1 + x2 cos(1 + x2) sin(1 − y2)e |z|.

(12)

Manifolds: cylinder, cone, sphere and torus.

for the torus we do not know a preserving Lebesgue measure map, but
we used simply

[0, 2π] × [0, 2π] 3 (u, v) →


x = (2 + cos(u)) cos(v)
y = (2 + cos(u)) sin(v)
z = sin(u)

(13)
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f4(x, y, z) :=
e−
√

x2+y2+z2

1 + x2 cos(1 + x2) sin(1 − y2)e |z|.

(12)

Manifolds: cylinder, cone, sphere and torus.

for the torus we do not know a preserving Lebesgue measure map, but
we used simply

[0, 2π] × [0, 2π] 3 (u, v) →


x = (2 + cos(u)) cos(v)
y = (2 + cos(u)) sin(v)
z = sin(u)

(13)
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Points and integral values

We compare the results with the greedy minimal k2-energy points,

QMC method using Halton points and Fibonacci lattice mapped on
the manifolds.

Fibonacci sequence from 144 (12-th Fibonacci number) up to 2584
(18-thFibonacci number)

In the tables we present the results only for 144, 610 and 2584
points.

The exact value of the integrals taken by the built-in Matlab function
dblquad with a tollerance of order 10−11
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The cone
function f1

(a) Halton points (b) Greedy minimal k2-
energy points

(c) Fibonacci points

Figure: 610 points on the cone

N Halton Fibonacci GM k2

144 1.215e-02 5.352e-03 2.097e-01
610 4.939e-03 1.270e-03 1.470e-01
2584 1.241e-03 3.029e-04 9.817e-02

Relative errors for f1 on the cone
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The cone
functions f2, f3 and f4

N Halton Fibonacci GM k2

144 9.101e-03 6.250e-03 2.366e-01
610 5.277e-03 1.173e-03 1.764e-01
2584 6.766e-04 3.678e-04 1.212e-01

Relative errors for f2 on the cone

N Halton Fibonacci GM k2

144 1.059e-02 1.416e-03 7.048e-02
610 3.763e-04 3.389e-04 7.172e-02
2584 1.289e-04 8.026e-05 3.790e-02

Relative errors for f3 on the cone

N Halton Fibonacci GM k2

144 2.767e-02 1.384e-02 2.333e-01
610 9.623e-03 3.230e-03 1.782e-01
2584 3.068e-03 7.594e-04 1.313e-01

Relative errors for f4 on the cone
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The torus
function f1

(a) Halton points (b) Greedy minimal k2-
energy points

(c) Fibonacci points

Figure: 610 points on the torus

N Halton Fibonacci GM k2

144 2.152e-01 1.777e-01 6.894e-02
610 1.888e-01 1.780e-01 5.367e-02
2584 1.788e-01 1.780e-01 4.014e-02

Relative errors for f1 on the torus
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The torus
functions f2, f3 and f4

N Halton Fibonacci GM k2

144 1.218e-01 1.690e-01 3.081e-02
610 1.453e-01 1.410e-01 4.728e-02
2584 1.414e-01 1.411e-01 2.297e-02

Relative errors for f2 on the torus

N Halton Fibonacci GM k2

144 3.033e-02 3.426e-02 4.949e-03
610 2.716e-03 8.821e-03 1.349e-02
2584 8.763e-03 6.453e-03 1.673e-03

Relative errors for f3 on the torus

N Halton Fibonacci GM k2

144 6.015e-01 5.339e-01 2.435e-01
610 5.109e-01 5.237e-01 1.874e-01
2584 5.252e-01 5.238e-01 1.319e-01

Relative errors for f4 on the torus
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Computational time for extracting greedy points

N Cone Cylinder Torus Sphere
144 0.217 0.218 0.248 0.208
610 20.067 21.046 19.340 19.284
2584 1519.112 1513.211 1571.449 1511.768

Time in seconds to compute the greedy minimal k2-energy points
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Final remarks

From numerical experiments we show the importance of
knowing a measure preserving map (torus docet!)

Adding more and more greedy points the error does not
change significantly

From experiments the time to extract the greedy minimal
ks-energy points grows: a good compromise, error vs
computational time, is to use 610 points.

By tuning the parameter s we have seen that, in the stationary
case the bets choice is s ≤ 2 (2=manifold dimension) ...
except for the sphere.
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Happy birthday Henryk!
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