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m Integrate functions on manifolds by QMC method: low-discrepancy
points (Sobol, Hammersley, Fibonacci lattices,...)

N
1
j;(f(x)dx N ; f(xi), xieX

m Low-discrepancy points are uniformly distributed w.r.t. Lebegsue
measure dx

m Take ’

FHa0M) j:w f(x)dHa(x)

where M is a d-dimensional manifold and Hj is the d-dimensional
Hausdorff measure. Here we can again use QMC
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m Integrate functions on manifolds by QMC method: low-discrepancy
points (Sobol, Hammersley, Fibonacci lattices,...)

N
1
j;(f(x)dx N ; f(xi), xieX

m Low-discrepancy points are uniformly distributed w.r.t. Lebegsue
measure dx

m Take ’

FHaM) j:w f(x)dHq(x)

where M is a d-dimensional manifold and Hj is the d-dimensional
Hausdorff measure. Here we can again use QMC

m Poppy-seed Bagel Theorem (PsB) [Hardin, Saff 2004]: “minimal
Riesz s-energy points, under some assumptions, are uniformly

distributed with respect to the Hausdorff measure (Hi ”
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Observe that from the (PsB)-Theorem, the Riesz s-energy points
can be useful for a QMC method when using the Hausdorff
measure




Observe that from the (PsB)-Theorem, the Riesz s-energy points
can be useful for a QMC method when using the Hausdorff
measure

Ideas

m Find a measure preserving map so that we can map low
discrepancy poins to points nearly uniformly distributed wrt
the Hausdorff measure on the manifold

m Extract approximate minimal Riesz s-energy points from a
suitable discretization of the manifold

m Compare results

e Bof33
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Error bound on bounded domains and
discrepancy

Theorem (Zaremba 1970)

Let B  [0,1)? be a convex d-dimensional subset and f a function with
bounded variation V(f) on [0,1)? in the sense of Hardy and Krause.
Then, for any points set P = {x4,...,xn} C [0,1)?, we have that

M=

W
o=

820100 = [ #00ax < (V) + NP, (1)

I
X

where1 = (1,...,1).
| ——
d

where Jy(P) is the isotropic discrepancy of the points set P defined as
Jn(P) = Dn(C; P) with C a family of all convex subsets of [0, 1)¢ and
Dn(C; P) the classical discrepancy of the set P.

e Tot33




DIMna
Error bound on manifolds and discrepancy

Theorem (Brandolini et al. JoC 2013)

Let M be a smooth compact manifold with a normalized measure dx. Fix
a family of local charts {x}f_,, ¢ : [0,1)% = M, and a smooth partition
of unity {y}X_, subordinate to these charts. Then, there exists ¢ > 0
depending only on the local charts ( not on the function f and the

measure ),

|£\4 f(y)du(y)| < cD()lIfllwa (ay (2)
where D(u) = supyex | [, du(y)|. A is the collection of all intervals in M
and

O e () (x)))

ox«

p 1/p
dx) .

Ifllweepy = (f
15!%( \;sn [0.1)¢
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Error bound on manifolds and discrepancy

Theorem (Brandolini et al. JoC 2013)

Let M be a smooth compact manifold with a normalized measure dx. Fix
a family of local charts {x}f_,, ¢ : [0,1)% = M, and a smooth partition
of unity {y}X_, subordinate to these charts. Then, there exists ¢ > 0
depending only on the local charts ( not on the function f and the

measure ),

|£\4 f(y)du(y)| < cD()lIfllwa (ay (2)
where D(u) = supyex | [, du(y)|. A is the collection of all intervals in M
and

O e () (x)))

p 1/p
dx .
ox« )

Ifllweepy = (f
15!%( \;sn [0.1)¢

Notice: if du = 1N 2.xexy Ox — dx in (2), we have the analogue of the
Koksma-Hlawka inequality for manifolds

e ————  Bof33




m [t is not easy to compute an estimate of the error using the previous
inequality

m If M = S? [Marques et al. 2013] observed that minimizing the
spherical cap discrepancy (s.c.d.) is equivalent to minimize the
w.c.e. (worst case error)

1N S (x) - %T f 1(x)dor(x)

xeXn

sup
feH

s

with H a normed function space (Cy are ok! polynomials — sperical
design). By using the Stolarsky’s invariance principle [Stolarsky ‘73,
Brauchard&Dick 2013], the w.c.e is propotional to the
distance-based energy metric

1/2
4 1
g—m Z |X,'—Xj|] .
Then we can maximize the term 3, , cx, |Xi — Xj| instead of the s.c.d.

e 9of3s
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distance-based energy metric

1/2
4 1
§_W Z |X,'—Xj|] .
Then we can maximize the term 3, , cx, |Xi — Xj| instead of the s.c.d.

On different mani
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Preserving measure maps on 2-manifolds

construct a sequence which is uniformly distributed w.r.t. Hausdorff
measure on M, by a preserving measure map.
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Preserving measure maps on 2-manifolds

construct a sequence which is uniformly distributed w.r.t. Hausdorff
measure on M, by a preserving measure map.

Letting S = (Xn)n=1 uniformly distributed w.r.t. the Lebesgue measure 1
on a rectangle U c R?, M a regular manifold of dimension 2 and ¢ an
invertible map from U to M.

Let us consider A c M. We define the measure ue(A) as

1o(A) = A7 (A)) = f ar @)

®-1(A)
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Preserving measure maps on 2-manifolds

construct a sequence which is uniformly distributed w.r.t. Hausdorff
measure on M, by a preserving measure map.

Letting S = (Xn)n=1 uniformly distributed w.r.t. the Lebesgue measure 1
on a rectangle U c R?, M a regular manifold of dimension 2 and ¢ an
invertible map from U to M.

Let us consider A c M. We define the measure ue(A) as

1o(A) = A7 (A)) = f ar @)

®-1(A)

— Hence the sequence of points ®(S) is uniformly distributed with
respect to the measure u¢ (by definition!).

e 10033
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(cont)

Take the measure H> on the manifold M which, by means of the area formula [Folland, p. 353] is of the type

ﬁ 90 @

with g a density function (that depends on the parametrization ® of M).
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(cont)

Take the measure H> on the manifold M which, by means of the area formula [Folland, p. 353] is of the type

[ atax. @
u
with g a density function (that depends on the parametrization ® of M).
Consider the change of variables from another rectangle U’ c R?
v: U — U
, ()

X e wX)=x,

so that

gV (XN (X)) =g(x) =1, (6)
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(cont)

Take the measure H> on the manifold M which, by means of the area formula [Folland, p. 353] is of the type

ﬁ 90 @

with g a density function (that depends on the parametrization ® of M).
Consider the change of variables from another rectangle U’ c R?
v: U — U

X - W) =x,

so that
gV (XN (X)) =g(x) =1, (6)

Equating the “natural” measure ugoy (Which comes from the parametrization) and the Hausdorff measure Hs on
the manifold M we get

areaformula
—_—

HaM) = [ aaax= [ oW = [ ax = oM.

JU
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Preserving measure maps on 2-manifolds

(cont)

Take the measure H> on the manifold M which, by means of the area formula [Folland, p. 353] is of the type

ﬁ 90 @

with g a density function (that depends on the parametrization ® of M).
Consider the change of variables from another rectangle U’ c R?
v: U — U

X - W) =x,

(5)

so that
gV (XN (X)) =g(x) =1, (6)

Equating the “natural” measure ugoy (Which comes from the parametrization) and the Hausdorff measure Hs on
the manifold M we get

areaformula

HaM) = [ aaax= [ oW = [ ax = oM.

|
Hence, by using (5), the sequence ®(V(S")) (S’ is a sequence uniformly
distributed w.r.t. the Lebesgue meas on U’ c R?), will be uniformly

distributed wrt the measure H> on M. —
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Practically

Examples: cylinder, cone, sphere

In order to determine the Lebesgue preserving measure’s map we look
for a nondecreasing function ¢ : [ — I, I, with ¢(I) = I

®(u,0) = (p(u) cos(0), p(u) sin(0), ¢(u))
will preserve the Lebesgue measure. The reparametrization (5) is

V(u,0) = (4(u),0). @)

cylinder: U = [-1,1] x [0, 27] and (¢(u) = u, V)
cone: U = [0,1] x [0,2x], (¢(u) = Vu, V)
sphere: U = [-1,1] x [0, 2x], (¢(u) = arcsin (u), v)

s sss e O




Minimal Riesz-energy points




s-Riesz energy and points [Hardin&Saff, 2 021]

Definition (minimal s-Riesz energy points)

Let Xy = {Xq,..., xn} € A CRY be a set of N distinct points. For each
real s > 0, the s-Riesz energy of Xy is given by

EOwm =Y m, ®)

yeXy xeXy
X#y
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s-Riesz energy and points [Hardin&Saff, 2004]

Definition (minimal s-Riesz energy points)

Let Xy = {x1,...,xn} € A CRY be a set of N distinct points. For each
real s > 0, the s-Riesz energy of Xy is given by

E00= 3 3 e ©

yeXy xeXy
X#y
Points that have
Es(A,N) := inf Eg(Xy) 9)
XNCA

are minimal s-energy N-points over A.
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s-Riesz energy and points [Hardin&Saff, 2004]

Definition (minimal s-Riesz energy points)

Let Xy = {x1,...,xn} € A CRY be a set of N distinct points. For each
real s > 0, the s-Riesz energy of Xy is given by

BN = ), ) y||S’ &

yeXy xeXy
X#y
Points that have
Es(A,N) := inf Eg(Xy) 9)
XNCA

are minimal s-energy N-points over A.

Definition

Let A c R be an infinite compact set whose d-dimensional Hausdorff
measure Hy(A) is finite. A symmetric functionw : A X A — [0, +) is
called a CPD (Continuous and Positive on the Diagonal)-weight function
on A X A if w is continuous at Hy-almost every point of the diagonal
D(A) ={(x,x) : x€ A},




Weighted Riesz s-energy

Definition (weighted Riesz s-energy)

Lets > 0. Given N points Xy = {Xy,...,xn} € A CRY, the

weighted Riesz s-energy of Xy is E{(Xn) := Z1<izj<n ”Z‘X'XX;@ with

w: A XA — [0,00) a CPD-function while the N-point weighted
Riesz s-energy of A is

EY(A,N) = inflE¥(Xy) : Xy C Al.

and their weighted Hausdorff measure H j""’ on Borel sets B C A is

H(B) = [ (w(x. ) %dHo(x)

e 15033
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Weighted Poppy-seed Bagel Theorem

The connection between the Riesz energy and a sequence uniformly
distributed w.r.t. the Hausdorff measure is given by

Theorem (Hardin & Saff 2004, Borodachov et al. 2008)

Let A c R be a a compact subset of a d-dimensional C'-manifold
(immersed) inRY, d < d’, and w is a CDP-weight function on A x A.

Then
EY(AN)  Vol(B?)

with 89 the unit ball.
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Greedy algorithm

General greedy algorithm

Let k : X x X — R U {oo} be a symmetric kernel on a locally compact
Hausdorff space X, and let A ¢ X be a compact set. A sequence
(an)y_4 C A such that

(i) aq is selected arbitrarily on A;

(i) anyt, N> 1
n n
Z; k(ant1, ai) = )I(I;]; Z: k(x,aj), foreveryn=>1.
= =

is called a greedy minimal k-energy sequence on A.

S 18033
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Greedy minimal ks and (w, s)-energy points

The Riesz kernel in X = R, which depends on a parameter s € [0, +0)
Ks(IIx = yll2),  x,y € R, with

t° ifs>0
Ks(t) := {—Iog(t) ifs=0, (1)

For k = Ks we get the greedy minimal ks-energy points.

Taking k = w K we get the so-called greedy minimal (w, s)-energy
points.




m MATEMATI(;;

Remarks and questions

[Lopez-Garcia&Saff 2010] then proved

m Greedy kg-energy points, say Xy ;, on S9 are asymptotically
d-energy minimizing . This results does not hold for s > d.

m If A c RY is a compact subset of a C' manifold and w is CPD on

A x A, then a (w, d)-energy sequence X\ 4 is dense in A.

m Taking w = 1, the same conclusion holds for greedy ks-energy
points.
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Remarks and questions

[Lopez-Garcia&Saff 2010] then proved

m Greedy kg-energy points, say Xy ;, on S9 are asymptotically

d-energy minimizing . This results does not hold for s > d.

m If A c RY is a compact subset of a C' manifold and w is CPD on

A x A, then a (w, d)-energy sequence X\ 4 is dense in A.

m Taking w = 1, the same conclusion holds for greedy ks-energy
points.

Questions

Can greedy (w, d)-energy points can be used for integration on
manifolds wrt to H ?

Are they preferable to mapped low-discrepancy points on the
manifold?

e 20033
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Integration

Compute the integral

1
Wd(M)Lf(X)de(X)’

by a QMC method with

(a) low discrepancy points mapped on the manifolds,

(b) greedy minimal ks-energy points.
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Integration

Compute the integral

1
Wd(M)Lf(X)de(X)’

by a QMC method with
(a) low discrepancy points mapped on the manifolds,
(b) greedy minimal ks-energy points.

About (b): we start from a uniform mesh on a rectangle of R? consisting
of N?/2 points and we map them to the manifold - if available by using the
corresponding preserving measure map - and then we extract N greedy
minimal ks-energy points from this mapped mesh.

e 22of3y
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Functions and 2-manifolds

X y z
f(x,y.2) = +J(1 1- (___),
1(X,Y,2) (1+2)(1-2)cos 2+3+5
_ {cos(30xyz) ifz< 3

fo(X,y,2) = {(Xz +y2+ 228302 ifz> 5 (12)
f5(x,y,2) = e—sin(2x2+3y2+522)’

e~ Vs 2\ ai 2y 4zl
fa(x,y,z) = EEFEE cos(1 + x)sin(1 — y=)e”.

Manifolds: cylinder, cone, sphere and torus.




DI NAtEmanca

Functions and 2-manifolds

X y z
fi(x.y.2) == /(1 1- (‘ 3 _)’
(X, Y, 2) (14 2)(1 - 2z)cos 2+3+5

_ [cos(30xyz) ifz<1
b(x,y,z) = {(x2 +y2 4+ 2232 itz > § (12)

fy(x, y, z) 1= e SIn@¢+3y*+52%)
o~ V+y+z
fa(x.y.2) = =~z —cos(1 + x®)sin(1 — y2)e".

Manifolds: cylinder, cone, sphere and torus.

for the torus we do not know a preserving Lebesgue measure map, but
we used simply

x = (2 4 cos(u)) cos(v)
[0,27] x [0,27] > (u,v) — {y = (2 + cos(u))sin(v) (13)
z = sin(u)

e 280133
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Points and integral values

We compare the results with the greedy minimal k»-energy points,

m QMC method using Halton points and Fibonacci lattice mapped on
the manifolds.

m Fibonacci sequence from 144 (12-th Fibonacci number) up to 2584
(18-thFibonacci number)

m In the tables we present the results only for 144, 610 and 2584
points.

The exact value of the integrals taken by the built-in Matlab function
dblquad with a tollerance of order 10~

e 240f33
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The cone

function f;

(b) Greedy minimal k,- (c) Fibonacci points

energy points

(a) Halton points

Figure: 610 points on the cone

N Halton Fibonacci GM ko

144 1.215e-02 | 5.352e-03 | 2.097e-01
610 4.939e-03 | 1.270e-03 | 1.470e-01
2584 || 1.241e-03 | 3.029e-04 | 9.817e-02

e 2503

Relative errors for f; on the cone




The cone

functions f,, f3 and f

m MATEMATI(;;

N Halton Fibonacci GM ko
144 9.101e-03 | 6.250e-03 | 2.366e-01
610 5.277e-03 | 1.173e-03 | 1.764e-01
2584 || 6.766e-04 | 3.678e-04 | 1.212e-01
Relative errors for f, on the cone
N Halton Fibonacci GM ko
144 1.059e-02 | 1.416e-03 | 7.048e-02
610 3.763e-04 | 3.389e-04 | 7.172e-02
2584 || 1.289e-04 | 8.026e-05 | 3.790e-02
Relative errors for f3 on the cone
N Halton Fibonacci GM ko
144 2.767e-02 | 1.384e-02 | 2.333e-01
610 9.623e-03 | 3.230e-03 | 1.782e-01
2584 || 3.068e-03 | 7.594e-04 | 1.313e-01

e 260133

Relative errors for f, on the cone
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The torus

function f;

(a) Halton points (b) Greedy minimal ko-  (c) Fibonacci points
energy points

Figure: 610 points on the torus

N Halton Fibonacci GM ks
144 2.152e-01 | 1.777e-01 | 6.894e-02
610 1.888e-01 | 1.780e-01 | 5.367e-02
2584 || 1.788e-01 | 1.780e-01 | 4.014e-02

Relative errors for f; on the torus
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The torus

functions f,, f; and f;

N Halton Fibonacci GM ko
144 1.218e-01 | 1.690e-01 | 3.081e-02
610 1.453e-01 | 1.410e-01 | 4.728e-02
2584 || 1.414e-01 | 1.411e-01 | 2.297e-02
Relative errors for f, on the torus

N Halton Fibonacci GM ko
144 3.033e-02 | 3.426e-02 | 4.949e-03
610 2.716e-03 | 8.821e-03 | 1.349e-02
2584 || 8.763e-03 | 6.453e-03 | 1.673e-03
Relative errors for f3 on the torus

N Halton Fibonacci GM ko

144 6.015e-01 | 5.339e-01 | 2.435e-01
610 5.109e-01 | 5.237e-01 | 1.874e-01
2584 || 5.252e-01 | 5.238e-01 | 1.319e-01

Relative errors for f, on the torus
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Computational time for extracting greedy points

N Cone Cylinder Torus Sphere |
144 0.217 0.218 0.248 0.208
610 20.067 21.046 19.340 19.284
2584 || 1519.112 | 1513.211 | 1571.449 | 1511.768

Time in seconds to compute the greedy minimal kp-energy points




Final remarks

m From numerical experiments we show the importance of
knowing a measure preserving map (torus docet!)

m Adding more and more greedy points the error does not
change significantly

m From experiments the time to extract the greedy minimal
ks-energy points grows: a good compromise, error vs
computational time, is to use 610 points.

m By tuning the parameter s we have seen that, in the stationary
case the bets choice is s < 2 (2=manifold dimension) ...
except for the sphere.

e 300f33
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Happy birthday Henryk!
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