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From cubic splines to RBF
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Cubic splines

m Let S3(X) = {s € C?[a,b] : S, €Ps, 1<i <
N =1, S[ax]: Si.b) € P11 be the space of natural cubic splines.

m S3(X) has the basis of truncated powers (- —x;)3, 1 <j < Nplus an
arbitrary basis for P3(R)

N 3
Za,x x)3 +ijxj, x € [a,b]. (1)
= =

m Using the identity x® M

and the fact that S[a x,], Sixy.b] € P1




m TIMEN
MATEMATICA

Cubic splines

m Let S3(X) = {s € C?[a,b] : S, €Ps, 1<i <
N =1, S[ax]: Si.b) € P11 be the space of natural cubic splines.

m S3(X) has the basis of truncated powers (- —x;)3, 1 <j < Nplus an
arbitrary basis for P3(R)

N 3
Za,x x)3 +ijxj, x € [a,b]. (1)
=0

=1

_ = +x )

m Using the identity x and the fact that S[a x,], Sixy.b] € P1

m Every natural cubic spline s has the representation

(x) = > as(ix - xl) + p(x). xR

=
where ¢(r) = r, r > 0and p € P;(R) s.t

N N
Zaj:Zajxj:O. (2)
j=1 j=1
a4l
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Extension to R

Going to RY is straightforward: “radiality” becomes more evident

N
s(x) = > a(lx - xill.) + p(x). x € R, (3)
i=1
where ¢ : [0, ) — R is a univariate fixed function and p € P,_(R%) is a
low degree d-variate polynomial. The additional conditions in (?2?)
become

N
> ajq(x) =0, VgeP(RY). (4)

i=1
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Extension to R

Going to RY is straightforward: “radiality” becomes more evident

N
s(x) = D" a(lix - xll) + p(x), x € R, 3)
i=1

=

where ¢ : [0, ) — R is a univariate fixed function and p € P,_(R%) is a
low degree d-variate polynomial. The additional conditions in (?2?)
become

N
> ajq(x) =0, VgeP(RY). (4)
i=1
Obs:

We can omit the side conditions on the coefficients (??) (like using
“B-splines”) and consider approximants of the form

N
s(x) = > ap(lix - k)
i=1

and also omit the 2-norm symbol




Scattered data fitting:I

Setting

Givendata X = {x;, j=1,..., N}, with x; € Q RY and values
Y ={y;eR, j=1,..,N} (y; = f(x;)), find a (continuous) function
Ps € span{#(- — x;), x;€ X} s.t.

N
[Br = Zaqu(ll -=xill), s.t. (Pfx =Y (interpolation)
j=1
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Scattered data fitting:I

Setting

Givendata X = {x;, j=1,..., N}, withx; € Q RY and values
Y ={y;eR, j=1,..,N} (y; = f(x;)), find a (continuous) function
Ps € span{#(- — x;), x;€ X} s.t.

N
[Br = Zaqu(ll -=xill), s.t. (Pfx =Y (interpolation)
j=1
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Scattered data fitting:ll

Problem

For which functions ¢ : [0, ) — R such that for all d, N € N and all
pairwise distrinct xy, .. ., x, € RY the matrix det(As x) # 0? When the
matrix A¢!X = (¢(||X, — Xj||2)15,"j5N , is invertible ?
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Scattered data fitting:ll

Problem

For which functions ¢ : [0, ) — R such that for all d, N € N and all
pairwise distrinct xy, .. ., x, € RY the matrix det(As x) # 0? When the
matrix A¢!X = (¢(||X, — Xj||2)15,"j5N , is invertible ?

Answer

The functions ¢ should be positive definite or conditionally positive
definite of some order.




General kernel-based approximation

m ¢, Conditionally Positive Definite (CPD) of order ¢ or Strictly Positive
Definite (SPD) and radial

name ¢ 14
m globally supported: Gavssion O OR) s 0
Generalized Multiquadrics C® (GM) (1 +r2/&2)3/2 2

name ¢ ¢

m locally supported: —wendiand c2 w2) (1—er)t (4er +1) 0

Buhmann C2 (B2)  2r*logr—7/2r* +16/3r3 —2r2 +1/6 0

m we often consider ¢(&-), with & called shape parameter
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Definite (SPD) and radial
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General kernel-based approximation

¢, Conditionally Positive Definite (CPD) of order ¢ or Strictly Positive
Definite (SPD) and radial

name ¢ ¢
m globally supported: Gavssion O OR) s 0
Generalized Multiquadrics C® (GM) (1 +r2/&2)3/2 2

name ¢ l

m locally supported: —wendiand c2 w2) (1—er)t (4er +1) 0

Buhmann C2 (B2)  2r*logr—7/2r* +16/3r3 —2r2 +1/6 0

m we often consider ¢(&-), with & called shape parameter

kernel notation K(x,y)(= Kc(x,y)) = ®.(x —y) = #(ellx - yll2)

native space N, (2) (where K is the reproducing kernel)
finite subspace N, (X) = span{K(-, x) : x € X} € N, (Q).

e sofdl




Error estimates, conditioning and stability
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Separation distance, fill-distance and power function

qx = 5 minlix; - xjll2, (separation distance) hx o :=sup min [x - x;ll2,  (fill - distance)
2 iz i xeQXj€X

Po. x(X) := 4/®4(0) — (u*(x))TAu*(x), (power function)  u* vector of cardinal functions

Figure: The fill-distance of 25 Halton points h ~ 0.2667

Pt Funsion 0 ot

PaawerFuncin 20 o 31 ot pac P Furcton 7D or 64 hnpsh

Figure: Power function for the Gaussian kernel with &
respectively.

= 6 on a grid of 81 uniform, Chebyshev an
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Pointwise error estimates

Theorem
LetQcRYand K € C(Q2 x Q) be PDonRY. Let X = {x4,...,,Xy} be a
set of distinct points. Take a function f € N(2) and denote with P its
interpolant on X. Then, for every x € Q2

() = Pr(X)| < Po, x (X)IIfllnk(e) - ()

Theorem

Let Q c RY and K € C*(Q2 x Q) be symmetric and positive definite,
X ={x4,...,,Xn} a set of distinct points. Consider f € Nk () and its
interpolant Ps on X. Then, there exist positive constants hy and C
(independent of x, f and ®), with hx o < hg, such that

If(X) = Pr(x)| < C h¥ g v/ Ck (X)IIfllny () (6)

and Cx(X) = Maxpg_zc MaXwzeQuB(x.chya) D P(W, 2)].

s O U
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Reducing the interpolation error

Obs:

The choice of the shape parameter ¢ in order to get the smallest
(possible) interpolation error is crucial.

m Trial and Error

m Power function minimization
m Leave One Out Cross Validation (LOOCV)
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Reducing the interpolation error

Obs:

The choice of the shape parameter ¢ in order to get the smallest
(possible) interpolation error is crucial.

m Trial and Error
m Power function minimization

m Leave One Out Cross Validation (LOOCV)

Trial and error strategy:
interpolation of the 1-d sinc
function with Gaussian for

€ € [0, 20], taking 100 values of &
and different equispaced data
points.




Trade-off principle

Consider the errors (RMSE and MAXERR) and the condition number p»

of A = (P.(IIx; = x;l1))N_,

1010
0

Figure: RMSE, MAXERR and Condition Number, 1o, with 30 values of & € [0.1,20], for interpolation of the Franke
function on a grid of 40 x 40 Chebyshev points

Trade-off or uncertainty principle [Schaback 1995]

m Accuracy vs Stability

m Accuracy vs Efficiency




Accuracy vs stability

m The error bounds for non-stationary interpolation using
infinitely smooth basis functions show that the error
decreases (exponentially) as the fill distance decreases.

m For well-distributed data a decrease in the fill distance also
implies a decrease of the separation distance

m But now the condition estimates above imply that the
condition number of A grows exponentially

m This leads to numerical instabilities which make it virtually
impossible to obtain the highly accurate results promised by
the theoretical error bounds.

e 4ol




Stable basis approaches
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Problem setting and questions

Obs:

the standard basis of translates (data-dependent) of N, (X) is unstable
and not flexible
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Problem setting and questions

Obs:
the standard basis of translates (data-dependent) of N, (X) is unstable
and not flexible

Question 1
Is it possible to find a “better” basis U of N, (X)?

Question 2
How to embed information about K and Q in the basis U?

Question 3
Can we extract U’ ¢ U s.t. s/ is as good as s,?
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The “natural” basis

The “natural” (data-independent) basis for Hilbert spaces
(Mercer’s theorem,1909)

Let K be a continuous, positive definite kernel on a bounded 2 c. Then K has an
eigenfunction expansion with non-negative coefficients, the eigenvalues, s.t.

K(xy) = D igi()¢i(y), YxyeQ.
j=0

Moreover,
Ye() = [ K(xpha)dy == Thal(x). ¥x €. 20

{0 orthonormal € N, ()

{9j}0 orthogonal € L(2), ”"Ojllfz(n) =10,
Z 4 = K(0,0)Ql, (the operator is of trace-class)
>0

Notice: the functions ¢; are explicitely in very few cases [Fasshauer,McCourt 2012, for GRBF].

S 17ot4T
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Notation

m 7x = {K(-, x;), x; € X}: the standard basis of translates;

B U= {uje Nk(Q), i=1,...,N}: another basis s.t.

span(U) = span(Tx).
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Notation

B 7x = {K(-,x;), xi € X}: the standard basis of translates;

B U={u e Nk(Q), i=1,...,N}: another basis s.t.

span(U) = span(Tx) .

Change of basis [Pazouki,Schaback 2011]

Let Aj = K(x;, ;) € RVN. Any other basis U arises from a factorization
A-C,=V,orA=V,-C, ", where V, = (uj(xi))i<ijcn and C, is the
matrix of change of basis.

m Each N, (Q)-orthonormal basis U arises from an orthonormal
decomposition A = BT -BwithB=C,”", V, =B" = (C,”")".

m Each £;(X)-orthonormal basis U arises from a decomposition
A=Q-BwithQ=V,,Q"Q=1,8B=C,”" = QTA. Notice: the
best bases in terms of stability are the N, (Q)-orthonormal ones!

S 18ot4T
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Notation

B 7x = {K(-,x;), xi € X}: the standard basis of translates;

B U={u e Nk(Q), i=1,...,N}: another basis s.t.

span(U) = span(Tx) .

Change of basis [Pazouki,Schaback 2011]

Let Aj = K(x;, ;) € RVN. Any other basis U arises from a factorization
A-C,=V,orA=V,-C, ", where V, = (uj(xi))i<ijcn and C, is the
matrix of change of basis.

m Each N, (Q)-orthonormal basis U arises from an orthonormal
decomposition A = BT -BwithB=C,”", V, =B" = (C,”")".

m Each £;(X)-orthonormal basis U arises from a decomposition
A=Q-BwithQ=V,,Q"Q=1,8B=C,”" = QTA. Notice: the
best bases in terms of stability are the N, (Q)-orthonormal ones!

Q1: Yes, we can! g
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WSVD Basis

construction

Q2: How to embed information on K and Q in U?

Symmetric Nystrdom method [Atkinson,Han 2001]

Idea: discretize the “natural” basis (Mercer’s theorem) by a convergent
cubature rule (X, W), with X = {x}}, c Q and positive weights
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WSVD Basis

construction

Q2: How to embed information on K and Q in U?

Symmetric Nystrdom method [Atkinson,Han 2001]

Idea: discretize the “natural” basis (Mercers theorem) by a convergent
cubature rule (X, W), with X = {x}*.. ¢ Q and positive weights

1 j=1

Xigi(x) = fﬂ KO y)ei(y)dy i =1... N, Vj >0,

applying the cubature rule

N
(%) = > KX Xb)gi(xn)wn ij=1,...,N. 7)
h=1

Letting W = diag(w;), we reduce to solve the eigen-problem

v =(A-W)v | ®)

e 1gordl
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WSVD basis

Cont’

Rewrite (??) (using the fact that the weights are positive) as

N
(VWi (35)) = > (VWi K (X X0) NWa) (VWi (xn)) - ¥iij = 1,..., N,

h=1
9)
and then to consider the corresponding scaled eigenvalue problem

A(NW - v) = (VW A VW) (YW - )

which is equivalent to the previous one, now involving the symmetric and
positive definite matrix

Aw = VW-A- VW (10)

e 2oor4l
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WSVD Basis

Definition

{45, ;}., are then approximated by eigenvalues/eigenvectors of Ay .
This matrix is normal, then a singular value decomposition of Ay is a
unitary diagonalization.

A weighted SVD basis U is a basis for N, (X) s.t.
V,=VW-.Q-%, C,=VW.Q- -3
since A = V,,C, ", then Q-2 - QT is the SVD of Ay .

Here ¥j =0y, j=1,....,Nand o > --- > o > 0 are the singular values
of Awy.

S 2lotdT
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WSVD Basis

Properties

This basis is in fact an approximation of the “natural” one
(provided w; > 0, Z{L w; = [Q])
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WSVD Basis

Properties

This basis is in fact an approximation of the “natural” one
(provided w; > 0, Z,Nﬁ w; = [Q])

Properties of the new basis U (cf. [De Marchi-Santin 2013])

B Tnu](x) = ojui(x), Y1<j<N, Vxe;

m N, (Q)-orthonormal;

m ((X)-orthogonal, ||ujl| Yu; € U,;

2 _ 2
wx) =9
N

m > 0?2 =K(0,0) 1.

=

S 22ot4T




WSVD Basis

Approximation
Interpolant: s,(x) = X, (f, u)kui(x) Vx € Q

WDLS: s := argmin{llf gl : g€ spanfur...., uM}}

n
X

Weighted Discrete Least Squares as truncation
Letfe N, (2),1 <M<N. ThenVx € Q
L up)er () 4 (f ) fW(X) §
] uj(x Z ] () = Y- (F, u)kuy(x)

o (

= e,

= (uj. uj) & (X)




WSVD Basis

Approximation
Interpolant: s,(x) = X, (f, u)kui(x) Vx € Q

WDLS: s := argmin{llf gl : g€ spanfur...., uM}}

n
X

Weighted Discrete Least Squares as truncation
Letfe N, (2),1 <M<N. ThenVx € Q
4 (

f, Uj)es (x) () 500, $
Z uji(x Z () = > (F, k()

= (uj. uj) & (X)

Q3: Can we extract U’ c U s.t. s/ is as good as s,?

Yes we can! Take U’ = {uy, ..., uy}.

S 23ot4T
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WSVD Basis

Approximation Il

If we define the pseudo-cardinal functions as ¢ = s:_ﬂ, we get

M . .
Zf x)li(x (x) = Z U’O(_):)uj(x).

i=1 = Y

Generalized Power Function and Lebesgue constant

If f e N (), 'f(x) - sfM(x)' < PQ”X)(X)HfIlNK(m Vx € Q, where

[ng)(x)]z = K(0,0) - ZM:[U,'(X)]Z, (generalized PF)
=

" -
lIs, Il < Aliflly s

N
where A, = max Z |Zi(x)| is the “pseudo-Lebesgue constant”.
xeQ) 4

i=1 m




WSVD Basis

Sub-basis

How can we extract U’ c U s.t. s/ is as good as s,?

m recall that
i 2
luilley(x) = o5 — 0
m we can choose M s.t.
(T%/IH <7

107 m we don't need u;, j > M

0 100 200 300 400 500 600 700 800 900

Figure: Gaussian kernel, 0'12 on equispaced
points of the square

RS sotdT
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WSVD Basis

Example

‘ e=1|e=4 =9
Gaussian | 100 340 500
IMQ 180 580 580
Matern3 460 560 580

Table: Optimal M for different kernels and shape parameter that
correspond to the indexes such that the weighted least-squares
approximant s:” provides the best approximation of the function
f(x,y) = cos(20(x + y)) on the disk with center C = (1/2,1/2) and
radius R =1/2

e 26ofdl




WSVD Basis

Example, cont’

1o ' ' ' ' ' ' ' . . . . . . . . . d
-08 06 -04 02 0 02 04 06 08 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Figure: Franke’s test function, lens, IMQ Kernel, e = 1 and RMSE.
Left: complete basis. Right: 0%, , < 107"7.

S 27ot4T




WSVD Basis

Example, cont’

1o ' ' ' ' ' ' ' . . . . . . . . . d
-08 06 -04 02 0 02 04 06 08 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Figure: Franke’s test function, lens, IMQ Kernel, e = 1 and RMSE.
Left: complete basis. Right: 0%, , < 107"7.

Problem: We have to compute the whole basis before truncation!
Solution: Krylov methods, approximate SVD [Novati, Russo 2013]

S 27ot4T




New fast basis [De Marchi-Santin, BIT15]: a comparison

N 225 529 961 1521

M 110 114 115 116
RMSE | 34-107% | 6.7-10°" | 55-107"" | 3.4-107"
new

RMSE | 3.3-107° 1.1-10° [ 83-107"% | 7.9.107°
WSVD

Time 3.4-107" 1.0-10° 2.6-10° 6.5-10°
new

Time 7.2-107" 42-10° 2.5-10' 1.1-10°
WSVD

Table: Comparison of the WSVD basis and the new basis. Computational
time in seconds and corresponding RMSE for the example consisting of
interpolation of a function sum of gaussians by GRBF, restricted to

N = 152, 232, 312, 392 equally spaced points on [-1, 1]2.

Notice: for each N we computed the optimal M using the new

algorithm with tolerance r = 10-%




Rescaled, Rational RBF and some applications




Rescaled RBF Interpolation

N
m Classical interpolant: Ps(x) = Z akK(x,xk), xe, xxeX.

k=1
[Hardy and Gofert 1975] used multiquadrics

K(x,y) = 41+ €llx —y|[°.
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Rescaled RBF Interpolation

N
m Classical interpolant: Ps(x) = Z akK(x,xk), xe, xxeX.

k=1
[Hardy and Gofert 1975] used multiquadrics

K(x,y) = 1+ elx -yl
. Pr(x N akK(x,x
m Rescaled interpolant: P(x) = (%) _ Xy KX X,

Po(X) ~ Shs Bk (x. Xi)
is the kernel interpolant of g(x) = 1, ¥x € Q.

where Py

Obs:

e Rescaled Localized RBF (RL-RBF) based on CSRBF introduced in
[Deparis et al, SISC 2014]: they are smoother even for small radii of the
support

e In [DeM et al 2017] it is shown that it is a Shepard’s PU method:
exacteness on constants.

e Linear convergence of localized rescaled interpolants is still an open
problem [DeM and Wendland, draft 2017].




Take, f(x) = x on [0, 1] by using W2 at the points set
X =1{0,1/6,1/3,1/2,2/3,5/6,1}, e =5 (e = 1/r).

Figure: (left) interpolants and (right) the abs error

For more results see [Deparis et al 14, [dda’s master thesis 2015].

s
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RBF- PU interpolation

m Q= U].S:1Q,- (can overlap): that is, each x € Q belongs to a limited
number of subdomains, say sy < s.

m Then we consider, W, non-negative functions on €}, s.t.
]-5:1 W, = 1 is a partition of unity . A possibile choice is

)
Yooy Wi(x)’

where W, are compactly supported functions on €.

RBF-PU interpolant

I(x) = zs: Ri(x)W;(x), ¥ xeQ (12)
=1

W;(x) j=1,....s (11)

N;
where R; is a RBF interpolant on Q; i.e. Ri(x) =

X, € Xy, k=1,...,N,.
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Rescaling gives a Shepard method

We start by writing the interpolant of a function f € Nk using the

N
cardinals uj(x;) = 6ij, | Pr = Z f(x;)u; |, so that for g = 1 we get
=1

N
Pg = ZU] .
j=1
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Rescaling gives a Shepard method

We start by writing the interpolant of a function f € Nk using the

N
cardinals uj(x;) = 6ij, | Pr = Z f(x;)u; |, so that for g = 1 we get
=1

N
Py = Z u; | The rescaled interpolant is then
j=1

where we introduced the (new) cardinal functions {j; :=

5 )
k=1 Uk
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Rescaling gives a Shepard method

We start by writing the interpolant of a function f € Nk using the

N

cardinals uj(x;) = 9, | Pr = f(x;)u; |, so that for g = 1 we get
j J j)Yj

J=1

N
Py = Z u; | The rescaled interpolant is then

A XJ Uy
f Z f(x = Z f(Xj)U],
Zk 1 Uk = Zk*1 Ue 5
. . . ~ uj
where we introduced the (new) cardinal functions U; := —; .
_4 Uk
k=1

Corollary

The rescaled interpolation method is a Shepard-PU method, where the
weight functions are defined as U; = u;/ (2,’:’:1 uk), {u;}j being the

cardinal basis of span{K(-,x),x € X}. —




Variably Scaled Kernels (VSK)

Lety : RY — (0, ) be a given scale function. A Variably Scaled Kernel
(VSK) K, on R is

Ky(x.y) == K((x.w(x)). (y.¥(¥))). VY xyeR

where X is a kernel on RA*1,




Variably Scaled Kernels (VSK)

Definition

Lety : RY — (0, ) be a given scale function. A Variably Scaled Kernel
(VSK) K, on R is

Ky(x.y) == K((x.w(x)). (y.¥(¥))). VY xyeR

where X is a kernel on RA*1,

Given X and the scale functions ¢; : R? — (0,00), j=1,...,s, the
RVSK-PU is .
I,(x) =Y Ry, ()W (x), xeQ, (13)
j=1

with Ry, (x) the RVSK-PU on ;.

S Bot4T




Variably Scaled Kernels (VSK)

Definition

Lety : RY — (0, ) be a given scale function. A Variably Scaled Kernel
(VSK) K, on R is

Ky(x.y) == K((x.w(x)). (y.¥(¥))). VY xyeR

where X is a kernel on RA*1,

Given X and the scale functions ¢; : R? — (0,00), j=1,...,s, the
RVSK-PU is .
I,(x) =Y Ry, ()W (x), xeQ, (13)
j=1

with Ry, (x) the RVSK-PU on ;.

Obs: (if @ is radial)
(A )ik = S(Ix] =X, 2 + (X)) = ¥;(%,))?). ik =1,.... N,

e d4ordl




Rational RBF (RRBF)

definition

R(x) = R(x)  Zp; arK (% xy)
R@(x) TR, BkK(X,Xk)
[Jackbsson et al. 2009, Sarra and Bai 2017]

= RRBFs well approximate data with steep gradients or
discontinuites [rational with PU+VSK in DeM et al. 2017].
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Rational RBF

Learning from rational functions, d = 1

m polynomial case.

_pi(x) . amX" 4+ agX’
pg(X) Xn+bn71Xn71 "'+b0'

r(x)

M = m+ n+ 1 unknowns (Padé approximation). If M < N to get the
coefficients we may solve the LS problem

N
min [Z |f(xk) - r(xk)|2].
k=1

pien} .poen}
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Rational RBF

Learning from rational functions, d = 1

m polynomial case.

_pi(x)
) = P2(X) X"+ by X" by

M = m+ n+ 1 unknowns (Padé approximation). If M < N to get the
coefficients we may solve the LS problem

N
min [Z |f(xk) - r(xk)|2].
k=1

p1eNy,.peM}

amx™ + -+ + agx°

m RBF case. Let Xiy = {Xk, ..., Xkem—1}, Xp = {Xj, ..., Xj1n-1} C X be

non empty, such that m+n <N
RM(x) KMo K(x,x;,)
R(X) _ (2)( ) _ I};l;71 Iy Iy i (14)

R (X) Zig:j IBizK(x’ xiz)

provided R®)(x) # 0,for all x € Q.
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Rational RBF

Find the coefficients

[Jackbsson 2009] show that this is equivalent to solve the following
generalized eigenvalue problem

Problem 3

Yq=10q,

with ’ :
—D'AT'D+ A", and ©= —D'D + Iy,

Y =
1113 1113

where Iy is the identity matrix.
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Rational RBF

Find the coefficients

[Jackbsson 2009] show that this is equivalent to solve the following
generalized eigenvalue problem

Problem 3

Yq=10q,
with 1 1
Y=—D'A'D+A", and ©=——D'D+ Iy,
1113 lI£ll

where Iy is the identity matrix.

— q is the eigenvector associated to the smallest eigenvalue! <

eSS 8rot4T
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New class of rational RBF [Buhmann, DeM, Perracchione 2018]

Zl!\i‘l CVI‘K(X’ Xi) + 251:1 YmPm (X) — Pg(X)
S BrK(x. xk) "~ Pa(x)

Pi(x) = (15)

Ratio of a CPD K of order ¢ and an associate PD K .... = two kernel
matrices, ®x and ®r.




m TIMENTO
MATEMATICA

New class of rational RBF [Buhmann, DeM, Perracchione 2018]

Zl!\i‘l aiK(x’ Xi) + 251:1 YmPm (X) — Pg(X) (15)
Sk BiK (%, Xic) Pr(x)

Ratio of a CPD K of order ¢ and an associate PD K .... = two kernel

matrices, ®x and ®r.

Obs:

Once we know the function values Pn(x;) = hi,i=1,...,N, we can
construct Py, i.e. it interpolates g = (fihy, ..., fyhy)". Hence Py
interpolates the given function values f at the nodes Xy.

Pi(x) =

If K is PD, we fix K = K so that we deal with the same kernel matrix
for both numerator and denominator.

We can prove well-posedness, find cardinal functions and give
stability analysis.

S ssotdT
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Lectures Notes on RBF

Learning from splines
Positive definite functions

Conditionally positive
definite functions
Redia B Penctions Error estimates
Stable bases for RBFs
B Rational RBFs
The Partition of unity
method

B Collocation method via
RBF

El Financial applications
Exercises
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