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From cubic splines to RBF
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Cubic splines

Let S3(X) = {s ∈ C2[a, b] : s|[xi ,xi+1] ∈ P3, 1 ≤ i ≤
N − 1, s[a,x1], s[xN ,b] ∈ P1 } be the space of natural cubic splines.

S3(X) has the basis of truncated powers (· − xj)
3
+, 1 ≤ j ≤ N plus an

arbitrary basis for P3(R)

s(x) =
N∑

j=1

aj(x − xj)
3
+ +

3∑
j=0

bjx j , x ∈ [a, b] . (1)

Using the identity x3
+ =

(|x |3+x3)
2 and the fact that s[a,x1], s[xN ,b] ∈ P1

Every natural cubic spline s has the representation

s(x) =
N∑

j=1

ajφ(|x − xj |) + p(x), x ∈ R

where φ(r) = r3, r ≥ 0 and p ∈ P1(R) s.t.
N∑

j=1

aj =
N∑

j=1

ajxj = 0 . (2)
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Extension to Rd

Going to Rd is straightforward: ”radiality” becomes more evident

s(x) =
N∑

i=1

ajφ(‖x − xj‖2) + p(x), x ∈ Rd , (3)

where φ : [0,∞)→ R is a univariate fixed function and p ∈ Pl−1(Rd) is a
low degree d-variate polynomial. The additional conditions in (??)
become

N∑
i=1

ajq(xj) = 0, ∀ q ∈ Pl−1(Rd) . (4)

Obs:
We can omit the side conditions on the coefficients (??) (like using
“B-splines”) and consider approximants of the form

s(x) =
N∑

i=1

ajφ(‖x − xj‖2)

and also omit the 2-norm symbol
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Scattered data fitting:I

Setting
Given data X = {xj , j = 1, . . . ,N}, with xj ∈ Ω ⊂ Rd and values
Y = {yj ∈ R, j = 1, ...,N} (yj = f(xj)), find a (continuous) function
Pf ∈ span{φ(· − xi), xi ∈ X} s.t.

Pf =
N∑

j=1

αjφ(‖ · −xi‖), s.t .. (Pf )|X = Y (interpolation)

Figure: Data points, data values and data function

Obs: Pf =
∑n

i=j uj fj , with uj(xi) = δji .
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Scattered data fitting:II

Problem
For which functions φ : [0,∞)→ R such that for all d,N ∈ N and all
pairwise distrinct x1, . . . , xn ∈ R

d the matrix det(Aφ,X ) , 0? When the
matrix Aφ,X := (φ(‖xi − xj‖2)1≤i,j≤N , is invertible?

Answer
The functions φ should be positive definite or conditionally positive
definite of some order.
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General kernel-based approximation

φ, Conditionally Positive Definite (CPD) of order ` or Strictly Positive
Definite (SPD) and radial

globally supported:
name φ `

Gaussian C∞ (GA) e−ε
2 r2

0
Generalized Multiquadrics C∞ (GM) (1 + r2/ε2)3/2 2

locally supported:
name φ `

Wendland C2 (W2) (1 − εr)4
+ (4εr + 1) 0

Buhmann C2 (B2) 2r4 log r − 7/2r4 + 16/3r3 − 2r2 + 1/6 0

we often consider φ(ε·), with ε called shape parameter

kernel notation K(x, y)(= Kε(x, y)) = Φε(x − y) = φ(ε‖x − y‖2)

native space NK (Ω) (where K is the reproducing kernel)

finite subspace NK (X) = span{K(·, x) : x ∈ X} ⊂ NK (Ω).
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Error estimates, conditioning and stability
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Separation distance, fill-distance and power function

qX :=
1
2

min
i,j
‖xi − xj ‖2 , (separation distance) hX ,Ω := sup

x∈Ω
min
xj∈X

‖x − xj ‖2 , (fill − distance)

PΦε,X (x) :=

√
Φε(0) − (u∗(x))TAu∗(x) , (power function) u∗ vector of cardinal functions

Figure: The fill-distance of 25 Halton points h ≈ 0.2667

Figure: Power function for the Gaussian kernel with ε = 6 on a grid of 81 uniform, Chebyshev and Halton points,
respectively. 10 of 41



Pointwise error estimates

Theorem
Let Ω ⊂ Rd and K ∈ C(Ω × Ω) be PD on Rd . Let X = {x1, . . . , , xn} be a
set of distinct points. Take a function f ∈ NΦ(Ω) and denote with Pf its
interpolant on X. Then, for every x ∈ Ω

|f(x) − Pf (x)| ≤ PΦε,X (x)‖f‖NK (Ω) . (5)

Theorem

Let Ω ⊂ Rd and K ∈ C2κ(Ω × Ω) be symmetric and positive definite,
X = {x1, . . . , , xN} a set of distinct points. Consider f ∈ NK (Ω) and its
interpolant Pf on X. Then, there exist positive constants h0 and C
(independent of x, f and Φ), with hX ,Ω ≤ h0, such that

|f(x) − Pf (x)| ≤ C hκX ,Ω

√
CK (x)‖f‖NK (Ω) . (6)

and CK (x) = max|β|=2κ maxw,z∈Ω∪B(x,c2hX ,Ω) |D
β
2Φ(w, z)| .
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Reducing the interpolation error

Obs:
The choice of the shape parameter ε in order to get the smallest
(possible) interpolation error is crucial.

Trial and Error

Power function minimization

Leave One Out Cross Validation (LOOCV)

Trial and error strategy:
interpolation of the 1-d sinc
function with Gaussian for
ε ∈ [0, 20], taking 100 values of ε
and different equispaced data
points.
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Trade-off principle
Consider the errors (RMSE and MAXERR) and the condition number µ2

of A = (Φε(‖xi − xj‖))N
i,j=1

Figure: RMSE, MAXERR and Condition Number, µ2 , with 30 values of ε ∈ [0.1, 20], for interpolation of the Franke
function on a grid of 40 × 40 Chebyshev points

Trade-off or uncertainty principle [Schaback 1995]

Accuracy vs Stability

Accuracy vs Efficiency

Accuracy and stability vs Problem size 13 of 41



Accuracy vs stability

The error bounds for non-stationary interpolation using
infinitely smooth basis functions show that the error
decreases (exponentially) as the fill distance decreases.

For well-distributed data a decrease in the fill distance also
implies a decrease of the separation distance

But now the condition estimates above imply that the
condition number of A grows exponentially

This leads to numerical instabilities which make it virtually
impossible to obtain the highly accurate results promised by
the theoretical error bounds.
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Stable basis approaches
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Problem setting and questions

Obs:
the standard basis of translates (data-dependent) of NK (X) is unstable
and not flexible

Question 1
Is it possible to find a “better” basisU of NK (X)?

Question 2
How to embed information about K and Ω in the basisU?

Question 3
Can we extractU′ ⊂ U s.t. s′

f
is as good as sf ?
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The “natural” basis

The “natural” (data-independent) basis for Hilbert spaces
(Mercer’s theorem,1909)
Let K be a continuous, positive definite kernel on a bounded Ω ⊂. Then K has an
eigenfunction expansion with non-negative coefficients, the eigenvalues, s.t.

K(x, y) =
∞∑

j=0

λjϕj(x)ϕj(y), ∀ x, y ∈ Ω .

Moreover,

λjϕj(x) =

∫
Ω

K(x, y)ϕj(y)dy := T [ϕj ](x) , ∀x ∈ Ω, j ≥ 0

{ϕj }j>0 orthonormal ∈ NK (Ω)

{ϕj }j>0 orthogonal ∈ L2(Ω), ‖ϕj‖
2
L2(Ω)

= λj
∞
−→ 0,∑

j>0

λj = K(0, 0) |Ω|, (the operator is of trace-class)

Notice: the functions ϕi are explicitely in very few cases [Fasshauer,McCourt 2012, for GRBF].
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Notation

TX = {K(·, xi), xi ∈ X}: the standard basis of translates;

U = {ui ∈ NK (Ω), i = 1, . . . ,N}: another basis s.t.

span(U) = span(TX ) .

Change of basis [Pazouki,Schaback 2011]
Let Aij = K(xi , xj) ∈ R

N×N . Any other basisU arises from a factorization
A · C

U
= V

U
or A = V

U
· C

U

−1, where V
U

= (uj(xi))16i,j6N and C
U

is the
matrix of change of basis.

Each NK (Ω)-orthonormal basisU arises from an orthonormal
decomposition A = BT · B with B = C

U

−1, V
U

= BT = (C
U

−1)T .

Each `2(X)-orthonormal basisU arises from a decomposition
A = Q · B with Q = V

U
, QT Q = I, B = C

U

−1 = QT A . Notice: the
best bases in terms of stability are the NK (Ω)-orthonormal ones!

Q1: Yes, we can!
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WSVD Basis
construction

Q2: How to embed information on K and Ω inU?

Symmetric Nyström method [Atkinson,Han 2001]
Idea: discretize the “natural” basis (Mercer’s theorem) by a convergent
cubature rule (X ,W), with X = {xj}

N
j=1 ⊂ Ω and positive weights

W = {wj}
N
j=1

λjϕj(xi) =

∫
Ω

K(xi , y)ϕj(y)dy i = 1, . . . ,N, ∀j > 0,

applying the cubature rule

λjϕj(xi) ≈
N∑

h=1

K(xi , xh)ϕj(xh)wh i, j = 1, . . . ,N. (7)

Letting W = diag(wj), we reduce to solve the eigen-problem

λv = (A ·W)v (8)
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WSVD basis
Cont’

Rewrite (??) (using the fact that the weights are positive) as

λj(
√

wiϕj(xi)) =
N∑

h=1

(
√

wi K(xi , xh)
√

wh)(
√

whϕj(xh)) ∀i, j = 1, . . . ,N ,

(9)
and then to consider the corresponding scaled eigenvalue problem

λ
(√

W · v
)

=
(√

W · A ·
√

W
) (√

W · v
)

which is equivalent to the previous one, now involving the symmetric and
positive definite matrix

AW :=
√

W · A ·
√

W (10)
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WSVD Basis
Definition

{λj , ϕj}j>0 are then approximated by eigenvalues/eigenvectors of AW .
This matrix is normal, then a singular value decomposition of AW is a
unitary diagonalization.

Definition
A weighted SVD basis U is a basis for NK (X) s.t.

V
U

=
√

W−1 · Q · Σ, C
U

=
√

W · Q · Σ−1

since A = V
U

C
U

−1, then Q · Σ2 · QT is the SVD of AW .

Here Σjj = σj , j = 1, . . . ,N and σ2
1 ≥ · · · ≥ σ

2
N > 0 are the singular values

of AW .
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WSVD Basis
Properties

This basis is in fact an approximation of the “natural” one
(provided wi > 0,

∑N
i=1 wi = |Ω|)

Properties of the new basisU (cf. [De Marchi-Santin 2013])

TN[uj](x) = σjuj(x), ∀ 1 6 j 6 N, ∀x ∈ Ω;

NK (Ω)-orthonormal;

`w
2 (X)-orthogonal, ‖uj‖

2
`w

2 (X)
= σ2

j , ∀uj ∈ U;

N∑
j=1

σ2
j = K(0, 0) |Ω|.
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WSVD Basis
Approximation

Interpolant: sf (x) =
∑N

j=1(f , uj)K uj(x) ∀x ∈ Ω

WDLS: s
M

f
:= argmin

{
‖f − g‖

`w2 (X)
: g ∈ span{u1, . . . , uM}

}
Weighted Discrete Least Squares as truncation
Let f ∈ NK (Ω), 1 6 M 6 N. Then ∀x ∈ Ω

s
M

f
(x) =

M∑
j=1

(f , uj)`w
2 (X)

(uj , uj)`w
2 (X)

uj(x) =
M∑

j=1

(f , uj)`w
2 (X)

σ2
j

uj(x) =
M∑

j=1

(f , uj)K uj(x)

Q3: Can we extractU′ ⊂ U s.t. s′
f

is as good as sf ?

Yes we can! TakeU′ = {u1, . . . , uM}.
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WSVD Basis
Approximation II

If we define the pseudo-cardinal functions as ˜̀i = s
M

`i
, we get

s
M

f
(x) =

N∑
i=1

f(xi)˜̀i(x), ˜̀i(x) =
M∑

j=1

uj(xi)

σ2
j

uj(x).

Generalized Power Function and Lebesgue constant

If f ∈ NK (Ω),
∣∣∣∣f(x) − s

M

f
(x)

∣∣∣∣ 6 P
(M)

K ,X
(x)‖f‖

NK (Ω)
∀x ∈ Ω, where

[
P

(M)

K ,X
(x)

]2
= K(0, 0) −

M∑
j=1

[uj(x)]2, (generalized PF)

‖s
M

f
‖
∞
6 Λ̃X ‖f‖X ,

where Λ̃X = max
x∈Ω

N∑
i=1

|˜̀i(x)| is the “pseudo-Lebesgue constant”.
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WSVD Basis
Sub-basis

How can we extractU′ ⊂ U s.t. s′
f

is as good as sf ?

0 100 200 300 400 500 600 700 800 900
10−20

10−15

10−10

10−5

100

105

 ← ε = 1

 ← ε = 4

 ← ε = 9

Figure: Gaussian kernel, σ2
j on equispaced

points of the square

recall that
‖uj‖`w

2 (X) = σ2
j → 0

we can choose M s.t.
σ2

M+1 < τ

we don’t need uj , j > M
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WSVD Basis
Example

ε = 1 ε = 4 ε = 9
Gaussian 100 340 500
IMQ 180 580 580
Matern3 460 560 580

Table: Optimal M for different kernels and shape parameter that
correspond to the indexes such that the weighted least-squares
approximant s

M

f
provides the best approximation of the function

f(x, y) = cos(20(x + y)) on the disk with center C = (1/2, 1/2) and
radius R = 1/2
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WSVD Basis
Example, cont’

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure: Franke’s test function, lens, IMQ Kernel, ε = 1 and RMSE.
Left: complete basis. Right: σ2

M+1 < 10−17.

Problem: We have to compute the whole basis before truncation!
Solution: Krylov methods, approximate SVD [Novati, Russo 2013]
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Solution: Krylov methods, approximate SVD [Novati, Russo 2013]
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New fast basis [De Marchi-Santin, BIT15]: a comparison

N 225 529 961 1521
M 110 114 115 116

RMSE 3.4 · 10−10 6.7 · 10−11 5.5 · 10−11 3.4 · 10−11

new
RMSE 3.3 · 10−9 1.1 · 10−9 8.3 · 10−10 7.9 · 10−10

WSVD

Time 3.4 · 10−1 1.0 · 100 2.6 · 100 6.5 · 100

new
Time 7.2 · 10−1 4.2 · 100 2.5 · 101 1.1 · 102

WSVD

Table: Comparison of the WSVD basis and the new basis. Computational
time in seconds and corresponding RMSE for the example consisting of
interpolation of a function sum of gaussians by GRBF, restricted to
N = 152, 232, 312, 392 equally spaced points on [−1, 1]2.

Notice: for each N we computed the optimal M using the new
algorithm with tolerance τ = 10−4. 28 of 41



Rescaled, Rational RBF and some applications
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Rescaled RBF Interpolation

Classical interpolant: Pf (x) =
N∑

k=1

αk K(x, xk ), x ∈ Ω, xk ∈ X .

[Hardy and Gofert 1975] used multiquadrics
K(x, y) =

√
1 + ε2‖x − y‖2.

Rescaled interpolant: P̂f (x) =
Pf (x)

Pg(x)
=

∑N
k=1 αk K(x, xk )∑N
k=1 βk K(x, xk )

where Pg

is the kernel interpolant of g(x) = 1, ∀x ∈ Ω.

Obs:
• Rescaled Localized RBF (RL-RBF) based on CSRBF introduced in
[Deparis et al, SISC 2014]: they are smoother even for small radii of the
support
• In [DeM et al 2017] it is shown that it is a Shepard’s PU method:
exacteness on constants.
• Linear convergence of localized rescaled interpolants is still an open
problem [DeM and Wendland, draft 2017].
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Example

Take, f(x) = x on [0, 1] by using W2 at the points set
X = {0, 1/6, 1/3, 1/2, 2/3, 5/6, 1}, ε = 5 (ε = 1/r).

Figure: (left) interpolants and (right) the abs error

For more results see [Deparis et al 14, Idda’s master thesis 2015].

31 of 41



RBF- PU interpolation

Ω = ∪s
j=1Ωi (can overlap): that is, each x ∈ Ω belongs to a limited

number of subdomains, say s0 < s.

Then we consider, Wj non-negative functions on Ωj , s.t.∑s
j=1 Wj = 1 is a partition of unity . A possibile choice is

Wj(x) =
W̃j(x)∑s

k=1 W̃k (x)
, j = 1, . . . , s (11)

where W̃j are compactly supported functions on Ωj .

RBF-PU interpolant

I(x) =
s∑

j=1

Rj(x)Wj(x), ∀ x ∈ Ω (12)

where Rj is a RBF interpolant on Ωj i.e. Rj(x) =

Nj∑
i=1

α
j
iK(x, xj

i) , Nj = |Ωj |

xj
k ∈ XNj , k = 1, . . . ,Nj . 32 of 41



Rescaling gives a Shepard method
We start by writing the interpolant of a function f ∈ NK using the

cardinals uj(xi) = δi,j , Pf =
N∑

j=1

f(xj)uj , so that for g ≡ 1 we get

Pg =
N∑

j=1

uj .

The rescaled interpolant is then

P̂f =

∑N
j=1 f(xj)uj∑N

k=1 uk
=

N∑
j=1

f(xj)
uj∑N

k=1 uk
=:

N∑
j=1

f(xj)ûj ,

where we introduced the (new) cardinal functions ûj :=
uj∑N

k=1 uk
.

Corollary
The rescaled interpolation method is a Shepard-PU method, where the
weight functions are defined as ûj = uj/

(∑N
k=1 uk

)
, {uj}j being the

cardinal basis of span{K(·, x), x ∈ X}.
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uj∑N

k=1 uk
.

Corollary
The rescaled interpolation method is a Shepard-PU method, where the
weight functions are defined as ûj = uj/
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Variably Scaled Kernels (VSK)

Definition

Let ψ : Rd → (0,∞) be a given scale function. A Variably Scaled Kernel
(VSK) Kψ on Rd is

Kψ(x, y) := K((x, ψ(x)), (y, ψ(y))), ∀ x, y ∈ Rd .

where K is a kernel on Rd+1.

Given X and the scale functions ψj : Rd → (0,∞), j = 1, . . . , s, the
RVSK-PU is

Iψ(x) =
s∑

j=1

Rψj (x) Wj (x) , x ∈ Ω, (13)

with Rψj (x) the RVSK-PU on Ωj .

Obs: (if Φ is radial)

(Aψj )ik = Φ(‖xj
i − xj

k ‖
2 + (ψj(x

j
i) − ψj(x

j
k ))2), i, k = 1, . . . ,Nj .
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Rational RBF (RRBF)
definition

R(x) =
R(1)(x)

R(2)(x)
=

∑N
k=1 αk K(x, xk )∑N
k=1 βk K(x, xk )

[Jackbsson et al. 2009, Sarra and Bai 2017]

=⇒ RRBFs well approximate data with steep gradients or
discontinuites [rational with PU+VSK in DeM et al. 2017].
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Rational RBF
Learning from rational functions, d = 1

polynomial case.

r(x) =
p1(x)

p2(x)
=

amxm + · · ·+ a0x0

xn + bn−1xn−1 · · ·+ b0
.

M = m + n + 1 unknowns (Padé approximation). If M < N to get the
coefficients we may solve the LS problem

min
p1∈Π1

m ,p2∈Π1
n

 N∑
k=1

∣∣∣f(xk ) − r(xk )
∣∣∣2 .

RBF case. Let Xm = {xk , . . . , xk+m−1},Xn = {xj , . . . , xj+n−1} ⊂ X be
non empty, such that m + n ≤ N

R(x) =
R(1)(x)

R(2)(x)
=

∑k+m−1
i1=k αi1 K(x, xi1 )∑j+n−1
i2=j βi2 K(x, xi2 )

, (14)

provided R(2)(x) , 0, for all x ∈ Ω.
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Rational RBF
Find the coefficients

[Jackbsson 2009] show that this is equivalent to solve the following
generalized eigenvalue problem

Problem 3

Σq = λΘq,

with
Σ =

1
||f ||22

DT A−1D + A−1, and Θ =
1
||f ||22

DT D + IN ,

where IN is the identity matrix.

↪→ q is the eigenvector associated to the smallest eigenvalue! ←↩
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New class of rational RBF [Buhmann, DeM, Perracchione 2018]

P̂f (x) =

∑N
i=1 αiK(x, xi) +

∑L
m=1 γmpm (x)∑N

k=1 βk K̄(x, xk )
:=

Pg(x)

Ph(x)
(15)

Ratio of a CPD K of order ` and an associate PD K̄ .... =⇒ two kernel
matrices, ΦK and ΦK̄ .

Obs:

1 Once we know the function values Ph(x i) = hi , i = 1, . . . ,N, we can
construct Pg, i.e. it interpolates g = (f1h1, . . . , fNhN)T . Hence P̂f

interpolates the given function values f at the nodes XN .

2 If K is PD, we fix K̄ = K so that we deal with the same kernel matrix
for both numerator and denominator.

3 We can prove well-posedness, find cardinal functions and give
stability analysis.
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Lectures Notes on RBF

Lectures on
Radial Basis Functions

by Stefano De Marchi and Emma Perracchione
Department of Mathematics “Tullio Levi-Civita”

University of Padua (Italy)

February 16, 2018

1 Learning from splines

2 Positive definite functions

3 Conditionally positive
definite functions

4 Error estimates

5 Stable bases for RBFs

6 Rational RBFs

7 The Partition of unity
method

8 Collocation method via
RBF

9 Financial applications

10 Exercises
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