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RBF Approximation

Notation

Data: Q c RY, X c Q, test function f
Xy ={Xq,....,xn} CQ
m f={fi,..., fn}, where fi = f(x;)
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RBF Approximation

Notation

Data: Q c RY, X c Q, test function f
B Xy ={Xq,....xn} CQ
m f={fi,..., fn}, where fi = f(x;)
Approximation setting: kernel K., N, (22), N, .(Xn) € N, (Q2)
m kernel K = K, Strictly Positive Definite (SPD) and radial
Examples:
m globally supported: K,(x,y) = e “x¥)* (gaussian),
B locally supported: K.(x,y) = (1 - £%lIx — yIP)%[4&?lIx — yII* + 1]
(C2(R?) Wendland )
m native space N, (Q2) (where K is the reproducing kernel)
m finite subspace N, (Xy) = span{K(-, x) : x € Xy} C N, (Q)
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RBF Approximation

Notation

Data: Q c RY, X c Q, test function f
B Xy ={Xq,....xn} CQ
m f={fi,..., fn}, where fi = f(x;)
Approximation setting: kernel K., N, (22), N, .(Xn) € N, (Q2)
m kernel K = K, Strictly Positive Definite (SPD) and radial
Examples:
m globally supported: K,(x,y) = e “x¥)* (gaussian),
B locally supported: K.(x,y) = (1 - £%lIx — yIP)%[4&?lIx — yII* + 1]
(C2(R?) Wendland )
m native space N, (Q2) (where K is the reproducing kernel)
m finite subspace N, (Xy) = span{K(-, x) : x € Xy} C N, (Q)

Aim

Find Py € N (Xn) st. Py~ f
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RBF Interpolation

Given Q, Xy, f

N
m Interpolant: Ps(x) = Z akK(x,xx), X €, xx € Xy. [Hardy and
k=1

Gofert 1975] used multiquadrics K(x, y) = /1 + €?[|x — yI[2.
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Given Q, Xy, f
N
m Interpolant: Ps(x) = Z akK(x,xx), X €, xx € Xy. [Hardy and
k=1

Gofert 1975] used multiquadrics K(x, y) = /1 + €2lIx — yll°.
Pf(x) _ 25:1 akK(x, Xk)

m Rescaled interpolant: P(x) = where Py

Pg(x) Skt BK (X, Xk
is the kernel based interpolant of g(x) = 1, ¥x € Q [Deparis at al
2014, DeM et al 2017]. Shepard’s PU method.
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RBF Interpolation

Given Q, Xy, f
N
m Interpolant: Ps(x) = Z akK(x,xx), X €, xx € Xy. [Hardy and
k=1

Gofert 1975] used multiquadrics K(x, y) = /1 + €?[|x — yI[2.
Pf(X) - 25:1 akK(X, Xk)
Po(x) SR BiK(x, )
is the kernel based interpolant of g(x) = 1, ¥x € Q [Deparis at al
2014, DeM et al 2017]. Shepard’s PU method.

RO(X) _ Zi k(% x0)

R(x) ¥, BeK(x. xc)
[Jackbsson et al. 2009, Sarra and Bai 2017].

m Rescaled interpolant: P(x) = where Py

m Rational interpolant: R(x) =
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Rational RBF

General framework

m polynomial case d = 1.

r(x) =

pi(x)  amx™+ -+ apx°
pa(x) X"+ by x4 by

M = m+ n+ 1 unknowns (Padé approximation). If N > M to get the
coefficients we may solve the LS problem

min Z |f(xk) = r(xi)|” |-
p1eMy.p2eM}
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Rational RBF

General framework

m polynomial case d = 1.
p1(x) amX™ + -+ + agx®

) = pa(X) X"+ byyx"1 -+ by’

M = m+ n+ 1 unknowns (Padé approximation). If N > M to get the
coefficients we may solve the LS problem

min [Z|ka ) = ()| ]

p1eMy.p2eM}

Xj+n—1} C Xn be non empty,

m Let Xpy = {Xk, ..o, Xkpm—1 1 Xn = (X5 ...,

suchthatm+n<N
YK 04 K(X, X3)
1A 15 (1)

R(x) = = Sh=k ,
R®)(x) Zl,;n, ' BuK(x. x3,)

provided R®)(x) # 0,x € Q.
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Rational RBF

Posedness

In the case m + n = N, asking R(x;) = f;

RM(x) - R@(x)f,=0= B&=0

with & = (a,) and B = By + B..
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Posedness

In the case m + n = N, asking R(x;) = f;

RM(x) - R@(x)f,=0= B&=0

with & = (a,) and B = By + B..

Obs: depending on X, X, and on the function values f, we might have
cancellations and B can be singular.
We must look for non-trivial solutions!
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Rational RBF

Posedness

In the case m + n = N, asking R(x;) = f;

RM(x) - R@(x)f,=0= B&=0

with & = (a,) and B = By + B..

Obs: depending on X, X, and on the function values f, we might have
cancellations and B can be singular.
We must look for non-trivial solutions!

Example

Given Xy and f. Let X;;, N X, # 0, with m + n = N. Suppose that f; = a,
i=1,...,N, a € R, then the system B¢ = 0 admits infinite solutions.
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N=26,m=n=13,Q = [0,1], fi = 1 (Left) or f be piecewise constant
(Right) .

Following [GolubReinsch1975] non-trivial solution by asking [|£]l. = 1 i.e.
solving constrained problem  min  ||Bé||> .
£ERN [|¢llo=1

Figure . The black dots represent the set of scattered data, the red solid line and the blue dotted one are the curves
reconstructed via the rational RBF and classical RBF approximation, by the Gaussian kernel.
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Rational RBF

Find the coefficients: |

[Jackobsson et al 2009] proved the well-posedness of

B RM(x) - SN aiK(x, x)
~ RO(x) SN BiK (X, xk)

B is now a sum of two squared blocks of order N i.e. B iis N x 2N

R(x)

K(X1,X1) K(X1,XN) —f1 K(X1,X1) —f1 K(X1,XN)
B=| s :
K(XN,X1) K(XN,XN) _fN K(XN, X1) _fN K(XN, XN)

The system B¢ = 0 can be written as (A — DA)(¢) = 0 with
D = diag(fy,...,fn), and A;; = K(x;, x;). But underdetermined!

s T
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Rational RBF

Find the coefficients: I

m Since R((x) = fR( )(x )f|ndq—( @)(xy),...,R®(xy))" and
then get p = (R (x)), ... R")(xn))" as p = Dq .
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Find the coefficients: I

m Since R((x;) = FRB®)(x), find q = (R®(x1),...,R®(xy))" and
then get p = (RM(x)), ... R (xy))" as p = Dq .

m If p, q are given then the rational interpolant is known by solving

Ao =p, AB=q. )
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Rational RBF

Find the coefficients: I

m Since R((x;) = FRB®)(x), find q = (R®(x1),...,R®(xy))" and
then get p = (RM(x)), ... R (xy))" as p = Dq .

m If p, q are given then the rational interpolant is known by solving

Ao =p, AB=q. (2)

m Existence+Uniqueness of (2) since K is SPD

Using the native space norms the above problem is equivalent

Problem 1

1

min —
RO R@ e, (IIfIIS
1/Ifl3lIplE+IqIE=1,
R(1)(Xk):fk R(Z) (Xk).

e Toorzr
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Rational RBF

Find the coefficients: IlI

IRMWIZ, =e"Ae, and [R®|E,_=BTAB.

Then, from (2) and symmetry of A

IRVI, =pTA™p, and IR®|Z, =q'A™q.

Therefore, the Problem 1 reduces to solve

Problem 2

(ufnqu AT AT q)

min
qeRV,
1/1IfI31IDqIB+qlE=1.

e Ttetzr
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Rational RBF

Find the coefficients: IV

[Jackbsson 2009] show that this is equivalent to solve the following
generalized eigenvalue problem

Problem 3

Yq=10q,
with 1 1
Y=—D'A'D+A", and ©=——D'D+ Iy,
1113 lI£ll

where Iy is the identity matrix.

e T2oet2r
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RRBF- PU interpolation

m Q= U].S:1Qi (can overlap): that is, each x €  belongs to a limited
number of subdomains, say sy < s.

m Then we consider, W, non-negative fncton ;, s.t. 32, Wy =1isa
partition of unity .

RRBF-PU interpolant

X) = Z Ri(x)W(x), ¥ x€Q (4)
=

where R; is a RRBF interpolant on € i.e.

R 3 adk(xX)
Rj(z)(X) Zk:ijk (X’Xk)’

N; = 1€y1,
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RRBF-PU interpolation

m The RRBF interpolant is constructed as the global one solving
Problem 3 on €; .

m The RRBF interpolants can suffer of instability problems, especially
for e — 0 like the classical one.
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RRBF-PU interpolation

m The RRBF interpolant is constructed as the global one solving
Problem 3 on €; .

m The RRBF interpolants can suffer of instability problems, especially
for e — 0 like the classical one.

(Some) Stability issues

Optimal shape parameter (Trial&Error, Cross Validation), stable bases
(RBF-QR, HS-SVD, WSVD) [Fornberg et al 2011, Fasshauer Mc Court
2012, DeM Santin 2013], Optimal shape parameters for PUM [Cavoretto
et al. 2016], Rescaled RBF [ Deparis 2015, DeM et al 2017], Variably
Scaled Kernels [Bozzini et al. 2015].

(Some) Computational issues

Fast WSVD bases [DeM Santin 2015], Fast algorithm for shape and
radius parameters [Cavoretto et al. 2016], Explicit formulas for the
optimal shape parameters 1d [Bos et al 2017].

e ————— st




Our approach: RRBF-PU via VSK

Definition
Lety : RY — (0, ) be a given scale function. A Variably Scaled Kernel
(VSK) K, on R is

Ku(x.y) = K((x9(). (v.¥(¥)).  Vx.y €R?.

where K is a kernel on R+,

Given Xy and the scale functions y; : RY — (0,00),j=1,..., s, the
RVSK-PU is J
L) = > Ry ()W (x), xeQ (5)
j=1

with Ry, (x) the RVSK-PU on €.

OBS: when ¢ is radial . .
(Ay)ic = (I = x 1P + (wi(x)) = wi(x,
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Computational steps

m PU construction: Q = U?_,€;. We choose €2; as d-dimensional balls
of radius ¢ and s « N. [Fassahuer2007] suggests

YN
s—|F , 6>60=+/1/s.
m Choice of VSK scaling functions y;, j =1,...,s.

m To compute the local rational fit, by solving on each Q; the
eigenvalue Problem 3, we use the Deflated Augumented Conjugate
Gradient (DACG) [Bergamaschi et al 2002].

m Construction of the RVSK-PU by finding q,, and py, (solving two
smaller linear systems (2)).

m Use then the PU weights to get the global rational VSK interpolant
TIy.
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Globally supported RBFs

d =2, fi(x1,x) = (tan(xz2 — x1) + 1)/(tan9 + 1), circular patches and
¢}1)(X1,X2) =05+ \/9 — [(X1 - )N(1j)2 + (Xg - )N(gl')2],

Figure : The approximate surface f; obtained with the SRBF-PU (left) and
RVSK-PU (right) methods with N = 1089 Halton data. Results are
computed using the Gaussian C™ kernel as local approximant.
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Globally supported RBFs

30 10 -
A o : - @ SRBF-PU
: - B - RVSK-PU (no DACG)
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Figure : Left: the number of points N versus the CPU times for the
SRBF-PU, RVSK-PU and RVSK-PU (no DACG), i.e. the RVSK-PU
computed with the IRLM (Implicit Restarted Lanczos) method. Right: the
number of points N versus the logarithmic scale of the RMSE for the
SRBF-PU, RVSK-PU and RVSK-PU (no DACG).
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Globally supported RBFs
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Figure : Comparison of RMSEs vs shape parameters for the SRBF-PUM,
RRBF-PUM and RBF-QR+PUM methods on f; on two sets of Halton
points, with Gaussian kernel




Compactly supported RBFs

f3(x1, X2) = sin(8x? + 6x2) — sin(2x2 + 4x, — 0.5). Noisy Halton data
(0.01 noise), s = 16 subdivisions, § = dy.
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Figure : The approximate surface f; obtained with the SRBF-PU (left) and
RVSK-PU (right) methods with N = 1089 noisy Halton data. Results are
computed using the Wendland’s C? function as local approximant. The
shape parameter equal to 6.
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Compactly supported RBFs

Figure : Typical sparsity pattern of the local interpolation matrices
obtained via the RVSK-PU method with 289 (left) and 4225 (right) noisy
Halton data. C? Wendland’s kernel.
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Future work

m Cardinal functions and barycentric form of the rational
interpolant.

m Error estimates, native spaces.
m Applications and extensions.
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