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Introduction
RBF Approximation

1 Data: Ω ⊂ Rn, X ⊂ Ω, test function f
X = {x1, . . . , xN} ⊂ Ω
f1, . . . , fN , where fi = f(xi)

2 Approximation setting: kernel Kε, NK (Ω), NK (X) ⊂ NK (Ω)

kernel K = Kε, positive definite and radial
native space NK (Ω) (where K is the reproducing kernel)
finite subspace NK (X) = span{K(·, x) : x ∈ X} ⊂ NK (Ω)

Aim
Find sf ∈ NK (X) s.t. sf ≈ f
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Introduction
Problem setting and questions

Problem: the standard basis of translates (data-dependent) of
NK (X) is unstable and not flexible

Question 1

Is it possible to find a “better” basisU of NK (X)?

Question 2

How to embed information about K and Ω in the basisU?

Question 3

Can we extractU′ ⊂ U s.t. s′
f

is as good as sf ?
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The “natural” basis

The “natural” (data-independent) basis for Hilbert spaces
(Mercer’s theorem,1909)
Let K be a continuous, positive definite kernel on a bounded Ω ⊂ Rn . Then K has an
eigenfunction expansion with non-negative coefficients, the eigenvalues, s.t.

K(x, y) =
∞∑

j=0

λjϕj(x)ϕj(y), ∀ x, y ∈ Ω .

Moreover,

λjϕj(x) =

∫
Ω

K(x, y)ϕj(y)dy := T [ϕj ](x) , ∀x ∈ Ω, j ≥ 0

{ϕj }j>0 orthonormal ∈ NK (Ω)

{ϕj }j>0 orthogonal ∈ L2(Ω), ‖ϕj‖
2
L2(Ω)

= λj
∞
−→ 0,∑

j>0

λj = K(0, 0) |Ω|, (the operator is of trace-class)

Notice: to find the functions ϕi explicitely it is not always possible
[Fasshauer,McCourt 2012, for GRBF]. 5 of 33



Change of basis
Notation

Letting Ω ⊂ Rn and X = {x1, . . . , xN} ⊂ Ω

TX = {K(·, xi), xi ∈ X}: the standard basis of translates;

U = {ui ∈ NK (Ω), i = 1, . . . ,N}: another basis s.t.

span(U) = span(TX ) := NK (Ω) .

At x ∈ Ω, TX andU can be expressed as the row vectors

T(x) = [K(x, x1), . . . ,K(x, xN)] ∈ RN

U(x) = [u1(x), . . . , uN(x)] ∈ RN .

we need also the scalar products

(f , g)2
L2(Ω) :=

∫
Ω

f(x)g(x)dx ≈
N∑

j=1

wj f(xj)g(xj) =: (f , g)2
`w

2 (X) .
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Change of basis
General idea

Some useful results [Pazouki,Schaback 2011]

Change of basis

Let Aij = K(xi , xj) ∈ R
N×N . Any basisU arises from a factorization

A = V
U
· C

U

−1, where V
U

= (uj(xi))16i,j6N and C
U

is the matrix of change
of basis s.t. U(x) = T(x) · C

U
.

Some consequences of this factorization

1. The interpolant Pf ,X at x can be written as

Pf ,X (x) =
N∑

j=1

Λj(f)uj(x) = U(x)Λ(f), ∀x ∈ Ω

where Λ(f) = [Λ1(f), . . . ,ΛN(f)]T ∈ RN is a column vector of values
of linear functionals defined by

Λ(f) = C
U

−1
· A−1 · fX = V

U

−1 · fX ,

where fX is the column vector given by the evaluations of f at X .
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Change of basis
Consequences

2. IfU is a NK (Ω)-orthonormal basis, we get the stability estimate∣∣∣Pf ,X (x)
∣∣∣ 6 √

K(0, 0) ‖f‖K ∀x ∈ Ω . (1)

In particular, for fixed x ∈ Ω and f ∈ NK the values ‖U(x)‖2 and
‖Λ(f)‖2, are the same for all NK (Ω)-orthonormal bases
independently on X

‖U(x)‖2 6
√

K(0, 0), ‖Λ(f)‖2 6 ‖f‖K . (2)
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Change of basis

Other results [Pazouki,Schaback 2011]

Change of basis

Each NK (Ω)-orthonormal basisU arises from an
orthornormal decomposition A = BT · B with
B = C

U

−1, V
U

= BT = (C
U

−1)T .

Each `2(X)-orthonormal basisU arises from a decomposition
A = Q · B with Q = V

U
, QT Q = I, B = C

U

−1 = QT A .

Notice: the best bases in terms of stability are the
NK (Ω)-orthonormal ones!

Q1: It is possible to find a “better” basis? Yes, we can!
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WSVD Basis
Main idea: I

Q2: How to embed information on K and Ω inU?

Symmetric Nyström method [Atkinson,Han 2001]

The main idea for the construction of our basis is to discretize the
“natural” basis introduced in Mercer’s theorem.
To this aim, consider on Ω a cubature rule (X ,W), that is a set of
distinct points X = {xj}

N
j=1 ⊂ Ω and a set of positive weights

W = {wj}
N
j=1, N ∈ N, such that∫

Ω
f(y)dy ≈

N∑
j=1

f(xj)wj ∀f ∈ NK (Ω) . (3)
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WSVD Basis
Main idea: II

Thus, the operator TK can be evaluated on X as

λjϕj(xi) =

∫
Ω

K(xi , y)ϕj(y)dy i = 1, . . . ,N, ∀j > 0,

and then discretized using the cubature rule by

λjϕj(xi) ≈
N∑

h=1

K(xi , xh)ϕj(xh)wh i, j = 1, . . . ,N. (4)

Letting W = diag(wj), it suffices to solve the following discrete
eigenvalue problem in order to find the approximation of the
eigenvalues and eigenfunctions (evaluated on X ) of TK [f ]:

λv = (A ·W)v (5)
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WSVD basis
Main idea: III

A solution is to rewrite (4) using the fact that the weights are
positive as

λj(
√

wiϕj(xi)) =
N∑

h=1

(
√

wiΦ(xi , xh)
√

wh)(
√

whϕj(xh)) ∀i, j = 1, . . . ,N ,

(6)
and then to consider the corresponding scaled eigenvalue problem

λ
(√

W · v
)

=
(√

W · A ·
√

W
) (√

W · v
)

which is equivalent to the previous one, now involving the
symmetric and positive definite matrix AW :=

√
W · A ·

√
W .
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WSVD Basis
Definition

{λj , ϕj}j>0 are then approximated by eigenvalues/eigenvectors of
AW :=

√
W · A ·

√
W . This matrix is normal, then a singular value

decomposition of AW is a unitary diagonalization.

Definition:

A weighted SVD basis U is a basis for NK (X) s.t.

V
U

=
√

W−1 · Q · Σ, C
U

=
√

W · Q · Σ−1

since A = V
U

C
U

−1, then AW = Q · Σ2 · QT is the SVD .

Here Σjj = σj , j = 1, . . . ,N and σ2
1 ≥ · · · ≥ σ

2
N > 0 are the singular

values of AW .
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WSVD Basis
Properties

This basis is in fact an approximation of the “natural” one
(provided wi > 0,

∑N
i=1 wi = |Ω|)

Properties of the new basisU (cf. [De Marchi-Santin 2013])

uj(x) =
1
σ2

j

N∑
i=1

wiuj(xi)K(x, xi) ≈
1
σ2

j

TK [uj](x),

∀ 1 6 j 6 N, ∀x ∈ Ω;

NK (Ω)-orthonormal

`w
2 (X)-orthogonal, ‖uj‖

2
`w

2 (X)
= σ2

j ∀uj ∈ U

N∑
j=1

σ2
j = K(0, 0) |Ω|
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WSVD Basis
Approximation

Interpolant: sf (x) =
∑N

j=1(f , uj)K uj(x) ∀x ∈ Ω

WDLS: s
M

f
:= argmin

{
‖f − g‖

`w2 (X)
: g ∈ span{u1, . . . , uM}

}
Weighted Discrete Least Squares as truncation:

Let f ∈ NK (Ω), 1 6 M 6 N. Then ∀x ∈ Ω

s
M

f
(x) =

M∑
j=1

(f , uj)`w
2 (X)

(uj , uj)`w
2 (X)

uj(x) =
M∑

j=1

(f , uj)`w
2 (X)

σ2
j

uj(x) =
M∑

j=1

(f , uj)K uj(x)

Q3: Can we extractU′ ⊂ U s.t. s′
f

is as good as sf ? Yes we can:
takeU′ = {u1, . . . , uM}.
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WSVD Basis
Approximation II

If we define the pseudo-cardinal functions as ˜̀i = s
M

`i
, we get

s
M

f
(x) =

N∑
i=1

f(xi)˜̀i(x), ˜̀i(x) =
M∑

j=1

uj(xi)

σ2
j

uj(x).

Generalized Power Function and Lebesgue constant:

If f ∈ NK (Ω),
∣∣∣∣f(x) − s

M

f
(x)

∣∣∣∣ 6 P
(M)

K ,X
(x)‖f‖

NK (Ω)
∀x ∈ Ω, where

[
P

(M)

K ,X
(x)

]2
= K(0, 0) −

M∑
j=1

[uj(x)]2.

Moreover, ‖s
M

f
‖
∞
6 Λ̃X ‖f‖X .
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WSVD Basis
Sub-basis

How can we extractU′ ⊂ U s.t. s′
f

is as good as sf ? Idea.

0 100 200 300 400 500 600 700 800 900
10−20

10−15

10−10

10−5

100

105

 ← ε = 1

 ← ε = 4

 ← ε = 9

Figure: Gaussian kernel, σ2
j on equispaced

points of the square

recall that
‖uj‖`w

2 (X) = σ2
j → 0

we can choose M s.t.
σ2

M+1 < tol

we don’t need uj , j > M
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WSVD Basis
An Example: I
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Figure: The domains used in the numerical experiments with an example
of the corresponding sample points.
From left to right: the lens Ω1 (trigonometric-gaussian points), the disk Ω2

(trigonometric-gaussian points) and the square Ω3 (product
Gauss-Legendre points).
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WSVD Basis
An Example: II

ε = 1 ε = 4 ε = 9
Gaussian 100 340 500
IMQ 180 580 580
Matern3 460 560 580

Table: Optimal M for different kernels and shape parameter that
correspond to the indexes such that the weighted least-squares
approximant s

M

f
provides the best approximation of the function

f(x, y) = cos(20(x + y)) on the disk with center C = (1/2, 1/2) and
radius R = 1/2
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WSVD Basis
An Example: III

Figure: Franke’s test function, lens, IMQ Kernel, ε = 1 and RMSE.
Left: complete basis. Right: σ2

M+1 < 10−17.

Problem: We have to compute the whole basis before truncation!
Solution: Krylov methods.
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The new basis
Arnoldi iteration

Consider Aij = K(xi , xj) (which is symmetric), bi = f(xi), 1 6 i, j 6 N

define the Krylov subspace KM(A , b) = span{b ,Ab , . . . ,AM−1b},
M � N.

compute an o.n. basis {φ1, . . . , φM} of KM(A , b) and form
ΦM = [φ1, . . . , φM], N ×M

define the (tridiagonal) matrix HM = ΦT
MAΦM which represents the

projection of A into KM(A , b)

Arnoldi iteration gives AΦM = ΦM+1HM where HM =

[
HM

hM+1,MeT
M

]
is

(M + 1) ×M. In practice hM+1,M ≈ 0 so that KM+1(A , b) = KM(A , b).
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The new basis
Approximation of the SVD

Consider a SVD HM = UMΣ2
MVT

M , where UM ∈ R
(M+1)×(M+1)

,

VM ∈ R
M×M

, Σ2
M =

[
Σ̃2

M , 0
]T

and Σ̃2
M = diag(σ2

M,1, . . . , σ
2
M,M).

Approximate SVD (Novati-Russo 2013:)

Let UM = ΦM+1UM , VM = ΦMVM , then

AVM = UMΣ2
M , AUM = VM(Σ2

M)T

the first M singular values of A are well approx. by σ2
M,j

If M = N, in exact arithmetic the triplet
(
ΦM+1ŨM , Σ̃M ,ΦMVM

)
is a SVD of A , where ŨM is UM without the last column.
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The new basis
Definition

Recall:

AΦM = ΦM+1HM

HM = UMΣ2
MVT

M

Σ2
M =

[
Σ̃2

M , 0
]T

ŨM is UM without the last column.

Definition:

The sub-basisUM is a set {u1, . . . , uM} ⊂ NK (X) defined by

V
U

= ΦM+1ŨMΣ̃M , C
U

= ΦMVMΣ̃−1
M .
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The new basis
Properties

Properties [De Marchi, Santin 2014]:

The sub-basisUM has the following properties for each
1 6 M 6 N:

1 it is `2(X)-orthogonal with ‖uj‖`2(X) = σ2
M,j 1 6 j 6 M

2 it is near-orthonormal in NK (Ω)

3 if M = N it is the SVD basisU (ΦM = I)

About point 2: it means that (ui , uj) = δij + r(M)
ij where

(R(M))ij := r(M)
ij is a rank one matrix for 1 6 M 6 N, and r(M)

ij = 0 if
M = N;
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The new basis
Properties

Using this basis we get ∀f ∈ NK (Ω)

s′
f
(x) =

M∑
j=1

(f , uj)`2(X)

σ2
M,j

uj(x) =
M∑

j=1

(f , uj)K uj(x) ∀x ∈ Ω

(and P
(M)

K ,X
(x), Λ̃X as before)
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Numerical Results
Stopping rule: I

Fix τ > 0 (
HM

)
M+1,M

≈ σ2
M,j
< τ

or a better choice is the following∣∣∣∣∣∣∣∣
M∑

j=1

(HM )jj − N

∣∣∣∣∣∣∣∣ < τ, (7)

that works for functions lying in the native space of the kernel.
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Numerical Results
Stopping rule: II

The decay of the residual described in (7) compared to the
corresponding RMSE goes as in the Figure below with τ = 1.e − 15
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Figure: Gaussian kernel, ε = 1, square [−1, 1]2, N = 200 e.s. points,
f ∈ NK (Ω), with f(x) = K(x, y1) + 2K(x, y2) − 2K(x, y3) + 3K(x, y4),
y1 = (0,−1.2), y2 = (−0.4, 0.5), y3 = (−0.4, 1.1), y4 = (1.2, 1.3).
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Numerical Results
CPU time comparison

For each N we compute the optimal M using the new algorithm with
tolerance τ = 1e − 14.

N 121 225 361 529 729 961 1225 1521
optimal M 100 110 113 114 114 115 115 116

RMSE 5.0e-08 3.4e-10 1.0e-10 6.7e-11 6.4e-11 5.5e-11 4.7e-11 3.4e-11
new
RMSE 5.0e-08 3.3e-09 1.3e-09 1.1e-09 1.1e-09 8.3e-10 7.8e-10 7.9e-10
WSVD

Time 1.7e-01 3.4e-01 6.1e-01 1.0e+00 1.6e+00 2.6e+00 3.7e+00 6.5e+00
new
Time 3.3e-01 7.2e-01 1.5e+00 4.2e+00 1.0e+01 2.5e+01 5.5e+01 1.1e+02
WSVD

Table: Comparison between the WSVD basis and the new basis.
Computational time in seconds and corresponding RMSE, restricted to
n = 49, . . . , 1600 equally spaced points.
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Approximated Power function and Lebesgue
function

Figure: Approximated power function (left, logarithmic plot) and
approximated Lebesgue function (right) Ω1
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Numerical Results
Another example
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Figure: IMQ kernel, ε = 1, cutted-disk, N = 1600 random points,
M = 260, f(x, y) = exp(|x − y |) − 1
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Numerical Results
Lebesgue Constant and Power Function
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Figure: IMQ kernel, ε = 1, cutted-disk, N = 1600 random points,
M = 260, f(x, y) = exp(|x − y |) − 1. Left: Lebesgue function. Right:
power function
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Further work

More analysis has to be done

a better stopping rule

understand the decay rate of P
(M)

K ,X

understand the growing rate of Λ̃X

understand how X , ε influence s′
f

Thank you for your attention!
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