On a new orthonormal basis for RBF native spaces and its fast computation

Stefano De Marchi and Gabriele Santin Torino: June 11, 2014

Università degli Studi di Padova

1 Introduction

- 2 Change of basis
- 3 WSVD Basis
- 4 The new basis
- 5 Numerical Results
- 6 Further work
- 7 References

1 Data: $\Omega \subset \mathbb{R}^n$, $X \subset \Omega$, test function f **a** $X = \{x_1, \dots, x_N\} \subset \Omega$ **b** f_1, \dots, f_N , where $f_i = f(x_i)$

1 Data: $\Omega \subset \mathbb{R}^n$, $X \subset \Omega$, test function *f*

- $\blacksquare X = \{x_1, \ldots, x_N\} \subset \Omega$
- f_1, \ldots, f_N , where $f_i = f(x_i)$

2 Approximation setting: kernel K_{ε} , $\mathcal{N}_{\kappa}(\Omega)$, $\mathcal{N}_{\kappa}(X) \subset \mathcal{N}_{\kappa}(\Omega)$

- kernel $K = K_{\varepsilon}$, positive definite and radial
- native space $\mathcal{N}_{\kappa}(\Omega)$ (where K is the reproducing kernel)
- finite subspace $N_{\kappa}(X) = \operatorname{span}\{K(\cdot, x) : x \in X\} \subset N_{\kappa}(\Omega)$

Data: Ω ⊂ ℝⁿ, X ⊂ Ω, test function f
 X = {x₁,...,x_N} ⊂ Ω
 f₁,...,f_N, where f_i = f(x_i)
 Approximation setting: kernel K_ε, N_κ(Ω), N_κ(X) ⊂ N_κ(Ω)
 kernel K = K_ε, positive definite and radial
 native space N_κ(Ω) (where K is the reproducing kernel)

finite subspace $\mathcal{N}_{\kappa}(X) = \operatorname{span}\{\mathcal{K}(\cdot, x) : x \in X\} \subset \mathcal{N}_{\kappa}(\Omega)$

Aim

Find $\mathbf{s}_{\mathbf{f}} \in \mathcal{N}_{\kappa}(X)$ s.t. $\mathbf{s}_{\mathbf{f}} \approx \mathbf{f}$

Problem setting and questions

Problem: the standard basis of translates (data-dependent) of $N_{\kappa}(X)$ is unstable and not flexible

Question 1

Is it possible to find a "better" basis \mathcal{U} of $\mathcal{N}_{\kappa}(X)$?

Question 2

How to embed information about *K* and Ω in the basis \mathcal{U} ?

Question 3

Can we extract $\mathcal{U}' \subset \mathcal{U}$ s.t. s'_t is as good as s_t ?

The "natural" basis

The "natural" (data-independent) basis for Hilbert spaces (Mercer's theorem, 1909)

Let *K* be a continuous, positive definite kernel on a bounded $\Omega \subset \mathbb{R}^n$. Then *K* has an eigenfunction expansion with non-negative coefficients, the eigenvalues, s.t.

$$K(x,y) = \sum_{j=0}^{\infty} \lambda_j \varphi_j(x) \varphi_j(y), \quad \forall x, y \in \Omega.$$

Moreover,

$$\lambda_{j}\varphi_{j}(x) = \int_{\Omega} K(x, y)\varphi_{j}(y)dy := \mathcal{T}[\varphi_{j}](x), \ \forall x \in \Omega, \ j \geq 0$$

$$\begin{array}{ll} \left\{\varphi_{j}\right\}_{j>0} & \text{orthonormal} \in \mathcal{N}_{\mathcal{K}}(\Omega) \\ \left\{\varphi_{j}\right\}_{j>0} & \text{orthogonal} \in L_{2}(\Omega), \ \left\|\varphi_{j}\right\|_{L_{2}(\Omega)}^{2} = \lambda_{j} \xrightarrow{\infty} 0, \\ \sum_{j>0} \lambda_{j} & = & \mathcal{K}(0,0) \ |\Omega|, \ \text{ (the operator is of trace-class)} \end{array}$$

Notice: to find the functions φ_i explicitly it is not

[Fasshauer.McCourt 2016

Change of basis

Notation

Letting
$$\Omega \subset \mathbb{R}^n$$
 and $X = \{x_1, \ldots, x_N\} \subset \Omega$

■ $T_X = \{K(\cdot, x_i), x_i \in X\}$: the standard basis of translates;

• $\mathcal{U} = \{u_i \in \mathcal{N}_{\mathcal{K}}(\Omega), i = 1, ..., N\}$: another basis s.t.

$$\operatorname{span}(\mathcal{U}) = \operatorname{span}(\mathcal{T}_X) := \mathcal{N}_{\mathcal{K}}(\Omega).$$

At $x \in \Omega$, \mathcal{T}_X and \mathcal{U} can be expressed as the row vectors

$$T(x) = [K(x, x_1), \dots, K(x, x_N)] \in \mathbb{R}^N$$
$$U(x) = [u_1(x), \dots, u_N(x)] \in \mathbb{R}^N.$$

we need also the scalar products

$$(f,g)_{L_2(\Omega)}^2 := \int_{\Omega} f(x)g(x)dx \approx \sum_{j=1}^N w_j f(x_j)g(x_j) =: (f,g)_{\ell_2^w(X)}^2.$$

Change of basis

General idea

Some useful results [Pazouki,Schaback 2011]

Change of basis

Let $A_{ij} = K(x_i, x_j) \in \mathbb{R}^{N \times N}$. Any basis \mathcal{U} arises from a factorization $A = V_{u} \cdot C_{u}^{-1}$, where $V_{u} = (u_j(x_i))_{1 \le i, j \le N}$ and C_{u} is the matrix of change of basis s.t. $U(x) = T(x) \cdot C_{u}$.

Some consequences of this factorization

Change of basis

General idea

Some useful results [Pazouki,Schaback 2011]

Change of basis

Let $A_{ij} = K(x_i, x_j) \in \mathbb{R}^{N \times N}$. Any basis \mathcal{U} arises from a factorization $A = V_u \cdot C_u^{-1}$, where $V_u = (u_j(x_i))_{1 \le i, j \le N}$ and C_u is the matrix of change of basis s.t. $U(x) = T(x) \cdot C_u$.

Some consequences of this factorization

1. The interpolant $P_{f,X}$ at x can be written as

$$P_{f,X}(x) = \sum_{j=1}^{N} \Lambda_j(f) u_j(x) = U(x) \Lambda(f), \quad \forall x \in \Omega$$

where $\Lambda(f) = [\Lambda_1(f), \dots, \Lambda_N(f)]^T \in \mathbb{R}^N$ is a column vector of values of linear functionals defined by

$$\Lambda(f) = C_{\mathcal{U}}^{-1} \cdot A^{-1} \cdot f_X = V_{\mathcal{U}}^{-1} \cdot f_X,$$

where f_X is the column vector give

Consequences

2. If \mathcal{U} is a $\mathcal{N}_{\kappa}(\Omega)$ -orthonormal basis, we get the stability estimate

$$\left|P_{f,X}(x)\right| \leqslant \sqrt{K(0,0)} \, ||f||_{\mathcal{K}} \quad \forall x \in \Omega \,. \tag{1}$$

In particular, for fixed $x \in \Omega$ and $f \in \mathcal{N}_K$ the values $||U(x)||_2$ and $||\Lambda(f)||_2$, are the same for all $\mathcal{N}_{\kappa}(\Omega)$ -orthonormal bases independently on X

$$||U(x)||_2 \leq \sqrt{K(0,0)}, \quad ||\Lambda(f)||_2 \leq ||f||_K.$$
 (2)

Other results [Pazouki,Schaback 2011]

Change of basis

Each $N_{\kappa}(\Omega)$ -orthonormal basis \mathcal{U} arises from an orthornormal decomposition $A = B^T \cdot B$ with $B = C_u^{-1}, V_u = B^T = (C_u^{-1})^T$.

■ Each $\ell_2(X)$ -orthonormal basis \mathcal{U} arises from a decomposition $A = Q \cdot B$ with $Q = V_u$, $Q^T Q = I$, $B = C_u^{-1} = Q^T A$.

Other results [Pazouki,Schaback 2011]

Change of basis

Each $\mathcal{N}_{\kappa}(\Omega)$ -orthonormal basis \mathcal{U} arises from an orthornormal decomposition $A = B^{T} \cdot B$ with $B = C_{u}^{-1}, V_{u} = B^{T} = (C_{u}^{-1})^{T}$.

■ Each $\ell_2(X)$ -orthonormal basis \mathcal{U} arises from a decomposition $A = Q \cdot B$ with $Q = V_u$, $Q^T Q = I$, $B = C_u^{-1} = Q^T A$.

Notice: the best bases in terms of stability are the $\mathcal{N}_{\kappa}(\Omega)$ -orthonormal ones!

Other results [Pazouki,Schaback 2011]

Change of basis

Each $\mathcal{N}_{\kappa}(\Omega)$ -orthonormal basis \mathcal{U} arises from an orthornormal decomposition $\mathbf{A} = \mathbf{B}^T \cdot \mathbf{B}$ with $\mathbf{B} = \mathbf{C}_u^{-1}, \ \mathbf{V}_u = \mathbf{B}^T = (\mathbf{C}_u^{-1})^T.$

■ Each $\ell_2(X)$ -orthonormal basis \mathcal{U} arises from a decomposition $A = Q \cdot B$ with $Q = V_{\mathcal{U}}, Q^T Q = I, B = C_{\mathcal{U}}^{-1} = Q^T A$.

Notice: the best bases in terms of stability are the $\mathcal{N}_{\kappa}(\Omega)$ -orthonormal ones!

Q1: It is possible to find a "better" basis? Yes, we can!

Main idea: I

Q2: How to embed information on *K* and Ω in \mathcal{U} ?

Symmetric Nyström method [Atkinson, Han 2001]

The main idea for the construction of our basis is to discretize the "natural" basis introduced in Mercer's theorem. To this aim, consider on Ω a cubature rule (X, \mathcal{W}) , that is a set of distinct points $X = \{x_j\}_{j=1}^N \subset \Omega$ and a set of positive weights $\mathcal{W} = \{w_j\}_{j=1}^N, N \in \mathbb{N}$, such that

$$\int_{\Omega} f(y) dy \approx \sum_{j=1}^{N} f(x_j) w_j \quad \forall f \in \mathcal{N}_{\mathcal{K}}(\Omega).$$
(3)

Main idea: II

Thus, the operator $\mathcal{T}_{\mathcal{K}}$ can be evaluated on X as

$$\lambda_j \varphi_j(x_i) = \int_{\Omega} K(x_i, y) \varphi_j(y) dy \quad i = 1, \dots, N, \ \forall j > 0,$$

and then discretized using the cubature rule by

$$\lambda_j \varphi_j(x_i) \approx \sum_{h=1}^N K(x_i, x_h) \varphi_j(x_h) w_h \quad i, j = 1, \dots, N.$$
 (4)

Letting $W = \text{diag}(w_j)$, it suffices to solve the following **discrete** eigenvalue problem in order to find the approximation of the eigenvalues and eigenfunctions (evaluated on *X*) of $\mathcal{T}_{K}[f]$:

$$\lambda \mathbf{v} = (\mathbf{A} \cdot \mathbf{W})\mathbf{v} \tag{5}$$

A solution is to rewrite (4) using the fact that the weights are positive as

$$\lambda_j(\sqrt{w_i}\varphi_j(x_i)) = \sum_{h=1}^N (\sqrt{w_i}\Phi(x_i, x_h)\sqrt{w_h})(\sqrt{w_h}\varphi_j(x_h)) \quad \forall i, j = 1, \dots, N,$$
(6)

and then to consider the corresponding scaled eigenvalue problem

$$\lambda\left(\sqrt{W}\cdot v\right) = \left(\sqrt{W}\cdot A\cdot \sqrt{W}\right)\left(\sqrt{W}\cdot v\right)$$

which is equivalent to the previous one, now involving the symmetric and positive definite matrix $A_W := \sqrt{W} \cdot A \cdot \sqrt{W}$.

Definition

 $\{\lambda_j, \varphi_j\}_{j>0}$ are then approximated by eigenvalues/eigenvectors of $A_W := \sqrt{W} \cdot A \cdot \sqrt{W}$. This matrix is normal, then a *singular value decomposition* of A_W is a unitary diagonalization.

Definition:

A weighted SVD basis \mathcal{U} is a basis for $\mathcal{N}_{\kappa}(X)$ s.t.

$$V_{u} = \sqrt{W^{-1}} \cdot Q \cdot \Sigma, \quad C_{u} = \sqrt{W} \cdot Q \cdot \Sigma^{-1}$$

since $A = V_u C_u^{-1}$, then $A_W = Q \cdot \Sigma^2 \cdot Q^T$ is the SVD.

Here $\Sigma_{jj} = \sigma_j$, j = 1, ..., N and $\sigma_1^2 \ge \cdots \ge \sigma_N^2 > 0$ are the singular values of A_W .

WSVD Basis

Properties

This basis is in fact an approximation of the "natural" one (provided $w_i > 0$, $\sum_{i=1}^{N} w_i = |\Omega|$)

WSVD Basis

Properties

This basis is in fact an approximation of the "natural" one (provided $w_i > 0$, $\sum_{i=1}^{N} w_i = |\Omega|$)

Properties of the new basis $\mathcal U$ (cf. [De Marchi-Santin 2013])

$$u_j(x) = \frac{1}{\sigma_j^2} \sum_{i=1}^N w_i u_j(x_i) \mathcal{K}(x, x_i) \approx \frac{1}{\sigma_j^2} \mathcal{T}_{\mathcal{K}}[u_j](x),$$

$$\forall \ 1 \leq j \leq N, \ \forall x \in \Omega;$$

• $\mathcal{N}_{\kappa}(\Omega)$ -orthonormal

• $\ell_2^w(X)$ -orthogonal, $||u_j||_{\ell_2^w(X)}^2 = \sigma_j^2 \quad \forall u_j \in \mathcal{U}$

$$\sum_{j=1}^{N} \sigma_j^2 = K(0,0) |\Omega|$$

Approximation

Interpolant:
$$s_f(x) = \sum_{i=1}^N (f, u_i)_K u_i(x) \quad \forall x \in \Omega$$

WDLS:
$$\mathbf{s}_{f}^{\mathsf{M}} := \operatorname{argmin} \left\{ \left\| f - g \right\|_{\ell_{2}^{\mathsf{W}}(X)} : g \in \operatorname{span}\{u_{1}, \ldots, u_{\mathsf{M}}\} \right\}$$

Weighted Discrete Least Squares as truncation:

Let $f \in \mathcal{N}_{\kappa}(\Omega)$, $1 \leq M \leq N$. Then $\forall x \in \Omega$

$$s_{t}^{M}(x) = \sum_{j=1}^{M} \frac{(f, u_{j})_{\ell_{2}^{W}(X)}}{(u_{j}, u_{j})_{\ell_{2}^{W}(X)}} u_{j}(x) = \sum_{j=1}^{M} \frac{(f, u_{j})_{\ell_{2}^{W}(X)}}{\sigma_{j}^{2}} u_{j}(x) = \sum_{j=1}^{M} (f, u_{j})_{K} u_{j}(x)$$

Approximation

Interpolant:
$$s_t(x) = \sum_{j=1}^{N} (f, u_j)_{\mathcal{K}} u_j(x) \quad \forall x \in \Omega$$

WDLS:
$$s_f^M := \operatorname{argmin} \left\{ \|f - g\|_{\ell_2^W(X)} : g \in \operatorname{span}\{u_1, \dots, u_M\} \right\}$$

Weighted Discrete Least Squares as truncation:

Let $f \in \mathcal{N}_{\kappa}(\Omega)$, $1 \leq M \leq N$. Then $\forall x \in \Omega$

$$s_{t}^{M}(x) = \sum_{j=1}^{M} \frac{(f, u_{j})_{\ell_{2}^{W}(X)}}{(u_{j}, u_{j})_{\ell_{2}^{W}(X)}} u_{j}(x) = \sum_{j=1}^{M} \frac{(f, u_{j})_{\ell_{2}^{W}(X)}}{\sigma_{j}^{2}} u_{j}(x) = \sum_{j=1}^{M} (f, u_{j})_{K} u_{j}(x)$$

Q3: Can we extract $\mathcal{U}' \subset \mathcal{U}$ s.t. s'_{t} is as good as s_{t} ? Yes we can: take $\mathcal{U}' = \{u_{1}, \ldots, u_{M}\}.$

Approximation II

If we define the pseudo-cardinal functions as $\tilde{\ell}_i = \mathbf{s}_{\ell_i}^{M}$, we get

$$s_i^M(x) = \sum_{i=1}^N f(x_i) \tilde{\ell}_i(x), \quad \tilde{\ell}_i(x) = \sum_{j=1}^M \frac{u_j(x_i)}{\sigma_j^2} u_j(x).$$

Generalized Power Function and Lebesgue constant:

If $f \in \mathcal{N}_{\kappa}(\Omega)$, $|f(x) - \mathbf{s}_{t}^{M}(x)| \leq \mathcal{P}_{\kappa,x}^{(M)}(x) ||f||_{\mathcal{N}_{\kappa}(\Omega)} \quad \forall x \in \Omega$, where

$$\left[P_{\kappa,x}^{(M)}(x)\right]^{2} = K(0,0) - \sum_{j=1}^{M} [u_{j}(x)]^{2}.$$

Moreover, $\|\boldsymbol{s}_{f}^{M}\|_{\infty} \leq \tilde{\Lambda}_{X} \|f\|_{X}$.

Sub-basis

How can we extract $\mathcal{U}' \subset \mathcal{U}$ s.t. s'_{t} is as good as s_{t} ? Idea.

- recall that $||u_j||_{\ell_2^w(X)} = \sigma_j^2 \to 0$ ■ we can choose *M* s.t.
 - $\sigma_{M+1}^2 < \text{tol}$
- we don't need u_j , j > M

WSVD Basis

An Example: I

Figure: The domains used in the numerical experiments with an example of the corresponding sample points.

From left to right: the lens Ω_1 (trigonometric-gaussian points), the disk Ω_2 (trigonometric-gaussian points) and the square Ω_3 (product Gauss-Legendre points).

	$\varepsilon = 1$	$\varepsilon = 4$	$\varepsilon = 9$
Gaussian	100	340	500
IMQ	180	580	580
Matern3	460	560	580

Table: Optimal *M* for different kernels and shape parameter that correspond to the indexes such that the weighted least-squares approximant s_i^M provides the best approximation of the function $f(x, y) = \cos(20(x + y))$ on the disk with center C = (1/2, 1/2) and radius R = 1/2

WSVD Basis

An Example: III

Figure: Franke's test function, *lens*, IMQ Kernel, $\varepsilon = 1$ and RMSE. Left: complete basis. Right: $\sigma_{M+1}^2 < 10^{-17}$.

WSVD Basis

An Example: III

Figure: Franke's test function, *lens*, IMQ Kernel, $\varepsilon = 1$ and RMSE. Left: complete basis. Right: $\sigma_{M+1}^2 < 10^{-17}$.

Problem: We have to compute the whole basis before truncation! Solution: Krylov methods.

Arnoldi iteration

Consider $A_{ij} = K(x_i, x_j)$ (which is symmetric), $b_i = f(x_i), 1 \le i, j \le N$

- define the Krylov subspace $\mathcal{K}_M(A, b) = \operatorname{span}\{b, Ab, \dots, A^{M-1}b\}, M \ll N.$
- compute an o.n. basis $\{\phi_1, \dots, \phi_M\}$ of $\mathcal{K}_M(A, b)$ and form $\Phi_M = [\phi_1, \dots, \phi_M], N \times M$

define the (tridiagonal) matrix $H_M = \Phi_M^T A \Phi_M$ which represents the projection of A into $\mathcal{K}_M(A, b)$

Arnoldi iteration gives $A\Phi_M = \Phi_{M+1}\overline{H}_M$ where $\overline{H}_M = \begin{bmatrix} H_M \\ h_{M+1,M}e_M^T \end{bmatrix}$ is $(M+1) \times M$. In practice $h_{M+1,M} \approx 0$ so that $\mathcal{K}_{M+1}(A,b) = \mathcal{K}_M(A,b)$.

Consider a SVD
$$\overline{H}_M = U_M \Sigma_M^2 V_M^T$$
, where $U_M \in \mathbb{R}^{(M+1) \times (M+1)}$, $V_M \in \mathbb{R}^{M \times M}$, $\Sigma_M^2 = \left[\tilde{\Sigma}_M^2, 0\right]^T$ and $\tilde{\Sigma}_M^2 = \operatorname{diag}(\sigma_{M,1}^2, \dots, \sigma_{M,M}^2)$.

Approximate SVD (Novati-Russo 2013:)

Let
$$\overline{U}_M = \Phi_{M+1}U_M$$
, $\overline{V}_M = \Phi_M V_M$, then

•
$$A\overline{V}_M = \overline{U}_M \Sigma_M^2, \ A\overline{U}_M = \overline{V}_M (\Sigma_M^2)^T$$

- the first *M* singular values of *A* are well approx. by $\sigma_{M,i}^2$
- If M = N, in exact arithmetic the triplet $(\Phi_{M+1} \tilde{U}_M, \tilde{\Sigma}_M, \Phi_M V_M)$ is a SVD of *A*, where \tilde{U}_M is U_M without the last column.

The new basis

Definition

Recall:

 $\begin{array}{l} \mathbf{A} \Phi_{M} = \Phi_{M+1} \overline{H}_{M} \\ \mathbf{\overline{H}}_{M} = U_{M} \Sigma_{M}^{2} V_{M}^{T} \\ \mathbf{\Sigma}_{M}^{2} = \left[\widetilde{\Sigma}_{M}^{2}, 0 \right]^{T} \\ \mathbf{\overline{U}}_{M} \text{ is } U_{M} \text{ without the last column.} \end{array}$

Definition:

The sub-basis \mathcal{U}_M is a set $\{u_1, \ldots, u_M\} \subset \mathcal{N}_{\kappa}(X)$ defined by

$$V_{u} = \Phi_{M+1} \tilde{U}_{M} \tilde{\Sigma}_{M}, \quad C_{u} = \Phi_{M} V_{M} \tilde{\Sigma}_{M}^{-1}.$$

Properties

Properties [De Marchi, Santin 2014]:

The sub-basis \mathcal{U}_M has the following properties for each $1 \leq M \leq N$:

- **1** it is $\ell_2(X)$ -orthogonal with $||u_j||_{\ell_2(X)} = \sigma_{M,j}^2$ $1 \le j \le M$
- **2** it is near-orthonormal in $\mathcal{N}_{\kappa}(\Omega)$
- **3** if M = N it is the SVD basis $\mathcal{U} (\Phi_M = I)$

About point 2: it means that $(u_i, u_j) = \delta_{ij} + r_{ij}^{(M)}$ where $(R^{(M)})_{ij} := r_{ij}^{(M)}$ is a rank one matrix for $1 \le M \le N$, and $r_{ij}^{(M)} = 0$ if M = N;

Properties

Using this basis we get $\forall f \in \mathcal{N}_{\kappa}(\Omega)$

$$s'_{f}(x) = \sum_{j=1}^{M} \frac{(f, u_{j})_{\ell_{2}(X)}}{\sigma_{M,j}^{2}} u_{j}(x) = \sum_{j=1}^{M} (f, u_{j})_{K} u_{j}(x) \quad \forall x \in \Omega$$

(and $P_{K,X}^{(M)}(x)$, $\tilde{\Lambda}_{X}$ as before)

Numerical Results

Stopping rule: I

Fix $\tau > 0$

$$\left(\overline{H}_{M}\right)_{M+1,M} pprox \sigma_{M,j}^{2} < \tau$$

or a better choice is the following

$$\sum_{j=1}^{M} (\overline{H}_{M})_{jj} - N \bigg| < \tau, \tag{7}$$

that works for functions lying in the native space of the kernel.

Numerical Results

Stopping rule: II

UNIVERSITÀ DEGLI STUDI DI PADOVA

The decay of the residual described in (7) compared to the corresponding RMSE goes as in the Figure below with $\tau = 1.e - 15$

Figure: Gaussian kernel, $\varepsilon = 1$, square $[-1, 1]^2$, N = 200 e.s. points, $f \in \mathcal{N}_{\kappa}(\Omega)$, with f(x) = K(x, y1) + 2K(x, y2) - 2K(x, y3) + 3K(x, y4), y1 = (0, -1.2), y2 = (-0.4, 0.5), y3 = (-0.4, 1.1), y4 = (1, 0, 1, 2)

For each *N* we compute the optimal *M* using the new algorithm with tolerance $\tau = 1e - 14$.

N	121	225	361	529	729	961	1225	1521
optimal M	100	110	113	114	114	115	115	116
RMSE new	5.0e-08	3.4e-10	1.0e-10	6.7e-11	6.4e-11	5.5e-11	4.7e-11	3.4e-11
RMSE WSVD	5.0e-08	3.3e-09	1.3e-09	1.1e-09	1.1e-09	8.3e-10	7.8e-10	7.9e-10
Time new	1.7e-01	3.4e-01	6.1e-01	1.0e+00	1.6e+00	2.6e+00	3.7e+00	6.5e+00
Time WSVD	3.3e-01	7.2e-01	1.5e+00	4.2e+00	1.0e+01	2.5e+01	5.5e+01	1.1e+02

Table: Comparison between the WSVD basis and the new basis. Computational time in seconds and corresponding RMSE, restricted to n = 49, ..., 1600 equally spaced points.

Approximated Power function and Lebesgue

Figure: Approximated power function (left, logarithmic plot) and approximated Lebesgue function (right) Ω_1

30 of 33

Numerical Results

Another example

Numerical Results

Lebesgue Constant and Power Function

Figure: IMQ kernel, $\varepsilon = 1$, cutted-disk, N = 1600 random points, M = 260, f(x, y) = exp(|x - y|) - 1. Left: Lebesgue function. Right: power function

More analysis has to be done

- a better stopping rule
- understand the decay rate of $P_{K,X}^{(M)}$
- understand the growing rate of $\tilde{\Lambda}_{\chi}$
- understand how X, ε influence s'_{t}

More analysis has to be done

- a better stopping rule
- understand the decay rate of $P_{K,X}^{(M)}$
- understand the growing rate of $\tilde{\Lambda}_{\chi}$
- understand how X, ε influence s'_{t}

Thank you for your attention!

References

R. K. BEATSON, J. B. CHERRIE, C. T. MOUAT .

Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. *Adv. Comp. Math.*, **11**: 253–270, 1999.

S. DE MARCHI, G. SANTIN.

A new stable basis for radial basis function interpolation. *J. Comput. Appl. Math.*, **253** : 1–13, 2013.

S. DE MARCHI, G. SANTIN.

Fast computation of orthonormal bases for RBF spaces through Krylov spaces methods preprint., 2014.

G. FASSHAUER, M. J. MCCOURT.

Stable evaluation of Gaussian radial basis functions interpolants. *SIAM J. Sci. Comput.*, **34**: A737–A762, 2012.

A. C. FAUL, M. J. D. POWELL.

Krylov subspace methods for radial basis function interpolation. Chapman & Hall/CRC Res. Notes Math., **420** : 115–141, 1999.

P. NOVATI, M. R. RUSSO.

A GCV based Arnoldi-Tikhonov regularization method. BIT Numerical Analysis, DOI: 10.1007/S10543-013-0447-Z, 2013.

M. PAZOUKI, R. SCHABACK.

Bases for kernel-based spaces. J. Comput. Appl. Math., 236 : 575–588, 2011.

M. VIANELLO AND G. DA FIES.

Algebraic cubature on planar lenses and bubbles. Dolomites Res. Notes Approx. DRNA 15, 7–12–20