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Motivations

Motivations and aims

(Weakly) Admissible meshes, (W)AM: play a central role in the construction
of multivariate polynomial approximation processes on compact sets.

Theory vs computation: 2-dimensional and (simple) 3-dimensional (W)AMs
are easy to construct. What’s about more general domains such as
(truncated) cones or rotational sets such as toroidal domains?
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(Weakly) Admissible Meshes, (W)AM

(Weakly) Admissible Meshes, (W)AM

Given a polynomial determining compact set K ⊂ Rd .

Definition

An Admissible Mesh is a sequence of finite discrete subsets An ⊂ K such that

‖p‖K ≤ C‖p‖An , ∀p ∈ Pd
n(K ) (1)

holds for some C > 0 with card(An) ≥ N := dim(Pd
n(K )) that grows at most

polynomially with n.

A Weakly Admissible Mesh, or WAM, is a mesh for which the constant C
depends on n, i.e. C = C (An), growing also polynomially with n.

These sets and inequalities are also known as: (L∞) discrete norming sets,
Marcinkiewicz-Zygmund inequalities, stability inequalities (in more general
functional settings).

Optimal Admissible Meshes the ones with O(nd) cardinality and can be
constructed for some classes of compact sets (cf. [Kroó 2011],
[Piazzon/Vianello 2010]).
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(Weakly) Admissible Meshes, (W)AM

Admissible Meshes

In principle an AM of Markov compacts, i.e. K ⊂ Rd s.t.

‖∇p‖K ≤ Mnr‖p‖K , ∀ p ∈ Pd
n(K ) ,

where ‖∇p‖K = maxx∈K ‖∇p(x)‖2

Construction idea: take a uniform discretization of K with spacing O(n−r ). The
mesh will have cardinality of O(nrd) for real compacts or O(n2rd) for general
complex domains.

r = 2 for many (real convex) compacts: the construction and use of AM becomes
difficult even for d = 2, 3 already for small degrees.

TOO BIG!!
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(Weakly) Admissible Meshes, (W)AM

Weakly Admissible Meshes: properties

P1: C (An) is invariant for affine transformations.

P2: any sequence of unisolvent interpolation sets whose Lebesgue constant
grows at most polynomially with n is a WAM, C (An) being the Lebesgue
constant itself

P3: any sequence of supersets of a WAM whose cardinalities grow polynomially
with n is a WAM with the same constant C (An)

P4: a finite union of WAMs is a WAM for the corresponding union of compacts,
C (An) being the maximum of the corresponding constants

P5: a finite cartesian product of WAMs is a WAM for the corresponding product
of compacts, C (An) being the product of the corresponding constants

P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM for
πs(K ) with constants C (Ans) (cf. [Bos et al. 2009])
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(Weakly) Admissible Meshes, (W)AM

Weakly Admissible Meshes: properties

P8: any K satisfying a Markov polynomial inequality like ‖∇p‖K ≤ Mnr‖p‖K
has an AM with O(nrd) points (cf. [Calvi/Levenberg 2008])

P9: The least-squares polynomial LAn f on a WAM is such that

‖f − LAn f ‖K / C (An)
√

card(An) min {‖f − p‖K , p ∈ Pd
n(K )}

P10: The Lebesgue constant of Fekete points extracted from a WAM can be
bounded like Λn ≤ NC (An)

Moreover, their asymptotic distribution is the same of the continuum Fekete
points, in the sense that the corresponding discrete probability measures
converge weak-∗ to the pluripotential equilibrium measure of K (cf. [Bos et
al. 2009])
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2-dimensional WAMs

2-dimensional WAMS: disk, triangle, square

It was proved in [Bos at al. 2009] that, for the disk and the triangle there are
WAMs with approximately n2 points and the growth of C (An) is the same of an
AM.

Unit disk: a symmetric polar WAM (invariant by rotations of π/2) is made
by equally spaced angles and Chebyshev-Lobatto points along diameters.

Unit simplex: starting from the WAM of the disk for polynomials of degree
2n containing only even powers, by the standard quadratic transformation

(u, v) 7−→ (x , y) = (u2, v 2) .

Square: Chebyshev-Lobatto grid, Padua points.

Notice: by affine transformation these WAMs can be mapped to any other
triangle (P1) or polygon (P4).
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2-dimensional WAMs

Polar symmetric WAMs for the disk

Figure: Symmetric polar WAMs for the disk: (Left) for degree n = 11 with
144 = (n + 1)2 points, (Right) for n = 10 with 121 = (n + 1)2 points.
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2-dimensional WAMs

WAMs for the quadrant and the triangle

Figure: A WAM of the first quadrant for polynomial degree n = 16 (left) and the
corresponding WAM of the simplex for n = 8 (right).
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2-dimensional WAMs

Optimal Lebesgue Gauss–Lobatto points on the triangle

A new set of optimal Lebesgue Gauss-Lobatto points on the simplex has recently
been investigated by [Briani/Sommariva/Vianello 2011].
These points minimize the corresponding Lebesgue constant on the simplex, that
grows like O(n).

Figure: The optimal points for n = 14, cardinality (n + 1)(n + 2)/2).

Stefano De Marchi (DMPA-UNIPD) 3dimensional WAM Budapest, July 8, 2011 12 / 36



2-dimensional WAMs

WAMs for a quadrangle

Figure: A WAM for a quadrangular domain for n = 7 obtained by the bilinear
transformation of the Chebyshev–Lobatto grid of the square [−1, 1]2

1
4

[(1−u)(1−v)A+(1+u)(1−v)B+(1+u)(1+v)C+(1−u)(1+v)D]
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3-dimensional WAMs WAMs for (truncated) cones

WAMs for (truncated) cones

Starting from a 2-dimensional domain WAM, we ”repeat” the mesh along a
Chebsyhev-Lobatto grid of the z-axis, as shown here in my handwritten notes (on
my whiteboard).
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3-dimensional WAMs WAMs for (truncated) cones

Why these are WAMs?

From the previous picture

|p(x , y , z)| ≤ C (An)‖p‖A′
n(z) C (An) ≡ C (A′n(z))

‖p‖A′
n(z) = |p(x̂z , ŷz , z)| with (x̂z , ŷz , z) ∈ A′n(z)

≤ C (An)‖p‖`(ξ̂1,ξ̂2) where (ξ̂1, ξ̂2) ∈ An

≤ C (An) max
(x,y)∈An

‖p‖`(x,y)

≤ O(C (An) logn) max
(x,y)∈An

‖p‖Γn = O(C (An) logn)‖p‖Bn

where Γn are the Chebyshev-Lobatto points of l(x , y) and
Bn =

⋃
(x,y)∈An

Γn(`(x , y)).
Cardinality.

#Bn = (n + 1)#An −#An + 1 = 1 + n#An = O(n3)
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3-dimensional WAMs WAMs for (truncated) cones

WAMs for a cone

Figure: A WAM for the rectangular cone for n = 7

Here C (An) = O(log2 n) and the cardinality is O(n3)
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3-dimensional WAMs WAMs for (truncated) cones

A low dimension WAM for the cube

The cube can be considered as a cylinder with square basis. WAMs for the cube
with dimension O(n3/4) were studied in [DeMarchi/Vianello/Xu 2009] in the
framework of cubature and hyperinterpolation.
A WAM for the cube that for n even has (n + 2)3/4 points and for n odd
(n + 1)(n + 2)(n + 3)/4 points, is show here for a parallelpiped with n = 4 (here
#An = 54)
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3-dimensional WAMs WAMs for (truncated) cones

WAMs for a pyramid

Figure: A WAM for a non-rectangular pyramid and a truncated one, made by
using Padua points for n = 10. Notice the generating curve of Padua points that
becomes a spiral

In this case C (An) = O(log2 n) and the cardinality is O(n3/2)
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3-dimensional WAMs WAMs for toroidal sections

WAMs for toroidal sections

Starting from a 2-dimensional WAM, An, by rotation around a vertical axis
sampled at the 2n + 1 Chabyshev-Lobatto points of the arc of circumference, we
get WAMs for the torus, sections of the torus and in general toroids.
The resulting cardinality will be (2n + 1)×#An
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3-dimensional WAMs WAMs for toroidal sections

Why these are WAMs?

From the previous ”picture” Given a polynomial p(x , y , z) ∈ P3
n we can write it in

cylindrical coordinates getting

p(x , y , z) = q(r , z , φ) = s(x ′, y ′, φ) ∈ P2,(x′,y ′)
n ⊗ Tφn

since

x iy jxk = (r cosφ)i (r sinφ)jzk(r0 + x ′)i cosi φ(r0 + y ′)j sinj φ(r0 + y ′)k
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3-dimensional WAMs WAMs for toroidal sections

WAMs for toroidal sections: points on the disk

Figure: WAM for n = 5 on the torus centered in z0 = 0 of radius r0 = 3, with
−2/3π ≤ θ ≤ 2/3π.

In this case C (An) = O(log2 n) and the cardinality is O(2n3)
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3-dimensional WAMs WAMs for toroidal sections

WAMs for toroidal sections: Padua points

Figure: Padua points on the toroidal section with z0 = 0, r0 = 3 and opening
−2/3π ≤ θ ≤ 2/3π.

In this case C (An) = O(log2 n) and the cardinality is O(n3).
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3-dimensional WAMs WAMs for toroidal sections

WAMs for toroidal sections: simplex, GLL points

Figure: GLL points for n = 7 on the torus section

Cardinality is O(n3)
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3-dimensional WAMs WAMs for toroidal sections

WAMs for toroidal sections: equilateral triangle, GLL
points

Figure: GLL points for n = 7 on the torus section for an equilateral triangle
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Approximate Fekete Points (AFP) and Discrete Leja Points
(DLP)

Some notation

Let An be an AM or WAM of K ⊂ Rd(or Cd)

The rectangular Vandermonde-like matrix

V (a;p) = V (a1, . . . , aM ; p1, . . . , pN) = [pj(ai )] ∈ CM×N , M ≥ N

where a = (ai ) is the array of the points of An and p = (pj) the basis of Pd
n .
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Approximate Fekete Points (AFP) and Discrete Leja Points
(DLP)

AFP and DLP

A greedy maximization of submatrix volumes, implemented by the QR
factorization with column pivoting of V (a;p)t gives the so-called Approximate
Fekete points [Sommariva/Vianello 2009].

A greedy maximization of nested square submatrix determinants, implemented by
the LU factorization with row pivoting of V (a;p) gives the so-called Discrete Leja
points ([Bos/DeMarchi/et al. 2010] and already observed in [Schaback/De
Marchi 2009]).
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Multivariate Newton Interpolation

DLP and Multivariate Newton Interpolation

1 Consider the square Vandermonde matrix

V = V (ξ,p) = (P0V0)1≤i,j,≤N := LU

where V0 = V (a,p), L = (L0)1≤i,j≤N and U = U0.

2 The polynomial interpolating a function f at ξ, f = f (ξ) ∈ CN is

Lnf (x) = ctp(x) = (V−1f)tp(x) = (U−1L−1f)tp(x) = dtφ(x) (2)

where dt = (L−1f)t , φ(x) = U−tp(x).
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DLP and Multivariate Newton Interpolation
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Multivariate Newton Interpolation

Remarks

Formula (2) is indeed a Newton-type interpolant.

Since U−t is lower triangular, the basis φ is s.t.

span{φ1, . . . , φNs} = Pd
s , 0 ≤ s ≤ n

V (ξ;φ) = V (ξ;p)U−1 = LUU−1 = L

Hence, φj(ξj) = 1 and φj(xi ) = 0, i = 1, . . . , j − 1, when j > 1.

Case d = 1. Since φj ∈ P1
j−1, then

φj(x) = αj(x − x1) · · · (x − xj−1), 2 ≤ j ≤ N = n + 1 with
αj = ((xj − x1) · · · (xj − xj−1))−1, i.e. the classical Newton basis with dj the
classical divided differences up to 1/αj .

The connection between LU factorization and Newton Interpolation was
recognized by [de Boor 2004] and in a more general way by [R. Schaback et
al. 2008, 2009].
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Numerical results

Conic sections: disk

K is the cone. Given an n, then

The AFP are extracted from a WAM having O(n3) points

The polynomial basis is the tensor product Chebyshev polynomial basis.

The Lebesgue constant and the interpolation error has been computed on a
mesh of control points (consisting of the original WAM with 2n instead of n).

We also computed the

1 least-square operator norm, ‖LAn‖ = maxx∈K
∑M

i=1 |gi (x)| where
gi , i = 1, . . . ,M are a set of generators and M ≥ N = dimP3

n (cf. [Bos/De
Marchi et al. 2010])

2 interpolation error ‖f − pn(f )‖∞
3 least-square error ‖f − LAn(f )‖∞
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Numerical results

Runge function on the cone
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Numerical results

Cosine function on the rectangular cylinder

Notice: for polynomial interpolation on the cylinder a more stable basis is
the Wade’s basis [Wade 2010, De Marchi/Marchioro/Sommariva 2010].
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Numerical results

Toric sections: disk, square

K is now a toric section. Given n then

The AFP are extracted from a WAM having (n + 1)2(2n + 1) points in the

case of the disk and (n+1)(n+2)
2 (2n + 1) in the case of the square (by using

Padua points).

The polynomial basis is the tensor product Chebyshev polynomial basis.

The Lebesgue constant and the interpolation error has been computed on a
mesh of control points (the original WAM of degree 2n).

We computed as before least-square operator sup-norm, interpolation error

‖f − pn(f )‖∞ and least-square error ‖f − LAn(f )‖∞.
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Numerical results

Runge function on the toric section
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Numerical results

Cosine function on the toric section using Padua points
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Future works

Future works

investigate other (general) domains

correct polynomial basis for the domains

improve the cputime for extraction of AFP and DLP

applications: cubature, pdes, graphics and more

RBF setting?

...
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Future works

Dolomites Research Week on Approximation 2011, Alba di Canazei
5-9 September 2011

Dolomites Workshop on Constructive Approximation and
Applications 2012, Alba di Canazei 7-12(?) September 2012

Thank you for your attention

Stefano De Marchi (DMPA-UNIPD) 3dimensional WAM Budapest, July 8, 2011 36 / 36



Future works

Dolomites Research Week on Approximation 2011, Alba di Canazei
5-9 September 2011

Dolomites Workshop on Constructive Approximation and
Applications 2012, Alba di Canazei 7-12(?) September 2012

Thank you for your attention

Stefano De Marchi (DMPA-UNIPD) 3dimensional WAM Budapest, July 8, 2011 36 / 36


	Motivations
	(Weakly) Admissible Meshes, (W)AM
	2-dimensional WAMs
	3-dimensional WAMs
	WAMs for (truncated) cones
	WAMs for toroidal sections

	Approximate Fekete Points (AFP) and Discrete Leja Points (DLP)
	Multivariate Newton Interpolation
	Numerical results
	Future works

