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Motivations and aims

@ (Weakly) Admissible meshes, (W)AM: play a central role in the construction
of multivariate polynomial approximation processes on compact sets.
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Motivations and aims

@ (Weakly) Admissible meshes, (W)AM: play a central role in the construction
of multivariate polynomial approximation processes on compact sets.

@ Theory vs computation: 2-dimensional and (simple) 3-dimensional (W)AMs
are easy to construct. What's about more general domains such as
(truncated) cones or rotational sets such as toroidal domains?
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(Weakly) Admissible Meshes, (W)AM

(Weakly) Admissible Meshes, (W)AM

Given a polynomial determining compact set K C R9.
Definition

An Admissible Mesh is a sequence of finite discrete subsets A, C K such that

Ipllk < Clip|

4,5 Vp € PH(K) (1)

holds for some C > 0 with card(A,) > N := dim(P¢(K)) that grows at most
polynomially with n.
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Ipllk < Clip|

4,5 Vp € PH(K) (1)

holds for some C > 0 with card(A,) > N := dim(P¢(K)) that grows at most
polynomially with n.

@ A Weakly Admissible Mesh, or WAM, is a mesh for which the constant C
depends on n, i.e. C = C(A,), growing also polynomially with n.
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(Weakly) Admissible Meshes, (W)AM

Given a polynomial determining compact set K C R9.

Definition

An Admissible Mesh is a sequence of finite discrete subsets A, C K such that
lpllx < Cllplla, , Yp € P(K) (1)

holds for some C > 0 with card(A,) > N := dim(P4(K)) that grows at most
polynomially with n.

@ A Weakly Admissible Mesh, or WAM, is a mesh for which the constant C
depends on n, i.e. C = C(A,), growing also polynomially with n.

@ These sets and inequalities are also known as: (L) discrete norming sets,

Marcinkiewicz-Zygmund inequalities, stability inequalities (in more general
functional settings).
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(Weakly) Admissible Meshes, (W)AM

Given a polynomial determining compact set K C R9.
Definition

An Admissible Mesh is a sequence of finite discrete subsets A, C K such that

Ipllk < Clip|

4,5 Vp € PH(K) (1)

holds for some C > 0 with card(A,) > N := dim(P4(K)) that grows at most
polynomially with n.

@ A Weakly Admissible Mesh, or WAM, is a mesh for which the constant C
depends on n, i.e. C = C(A,), growing also polynomially with n.

@ These sets and inequalities are also known as: (L) discrete norming sets,

Marcinkiewicz-Zygmund inequalities, stability inequalities (in more general
functional settings).

@ Optimal Admissible Meshes the ones with O(n9) cardinality and can be
constructed for some classes of compact sets (cf. [Kroé 2011],
[Piazzon/Vianello 2010]).
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(Weakly) Admissible Meshes, (W)AM

Admissible Meshes

In principle an AM of Markov compacts, i.e. K C RY s.t.
IVplk < Mn"|lplik, ¥pePR(K),
where ||Vpl||k = maxxex [|Vp(x)||2
Construction idea: take a uniform discretization of K with spacing O(n~"). The

mesh will have cardinality of O(n") for real compacts or O(n?) for general
complex domains.
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(Weakly) Admissible Meshes, (W)AM

Admissible Meshes

In principle an AM of Markov compacts, i.e. K C RY s.t.
IVplix < Mn||pllx, ¥ p € PH(K),
where ||Vpl||k = maxxex [|Vp(x)||2

Construction idea: take a uniform discretization of K with spacing O(n~"). The
mesh will have cardinality of O(n") for real compacts or O(n?) for general
complex domains.

r = 2 for many (real convex) compacts: the construction and use of AM becomes
difficult even for d = 2,3 already for small degrees.

TOO BIG!!
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Weakly Admissible Meshes: properties

P1:

P2:

P3:

P4:

P5:

P7:

C(A,) is invariant for affine transformations.

any sequence of unisolvent interpolation sets whose Lebesgue constant
grows at most polynomially with nis a WAM, C(A,) being the Lebesgue
constant itself

any sequence of supersets of a WAM whose cardinalities grow polynomially
with nis a WAM with the same constant C(A,)

a finite union of WAMs is a WAM for the corresponding union of compacts,
C(A,) being the maximum of the corresponding constants

a finite cartesian product of WAMs is a WAM for the corresponding product
of compacts, C(.A,) being the product of the corresponding constants

given a polynomial mapping 75 of degree s, then 74(A,s) is a WAM for
ms(K) with constants C(A,s) (cf. [Bos et al. 2009])
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Weakly Admissible Meshes: properties

P8: any K satisfying a Markov polynomial inequality like ||Vp|x < Mn"||p|lk
has an AM with O(n") points (cf. [Calvi/Levenberg 2008])

P9: The least-squares polynomial £4,f on a WAM is such that
If = La,fllk £ C(An)V/card(A,) min{||f — pllx, p € PF(K)}

P10: The Lebesgue constant of Fekete points extracted from a WAM can be
bounded like A, < NC(A,)
Moreover, their asymptotic distribution is the same of the continuum Fekete
points, in the sense that the corresponding discrete probability measures

converge weak-* to the pluripotential equilibrium measure of K (cf. [Bos et
al. 2000])
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2-dimensional WAMS: disk, triangle, square

It was proved in [Bos at al. 2009] that, for the disk and the triangle there are
WAMs with approximately n? points and the growth of C(A,) is the same of an
AM.
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2-dimensional WAMS: disk, triangle, square

It was proved in [Bos at al. 2009] that, for the disk and the triangle there are
WAMs with approximately n? points and the growth of C(A,) is the same of an
AM.

@ Unit disk: a symmetric polar WAM (invariant by rotations of 7/2) is made
by equally spaced angles and Chebyshev-Lobatto points along diameters.
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2-dimensional WAMS: disk, triangle, square

It was proved in [Bos at al. 2009] that, for the disk and the triangle there are
WAMs with approximately n? points and the growth of C(A,) is the same of an
AM.

@ Unit disk: a symmetric polar WAM (invariant by rotations of 7/2) is made
by equally spaced angles and Chebyshev-Lobatto points along diameters.

@ Unit simplex: starting from the WAM of the disk for polynomials of degree
2n containing only even powers, by the standard quadratic transformation

(u,v) — (x,y) = (v3,v?).
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2-dimensional WAMS: disk, triangle, square

It was proved in [Bos at al. 2009] that, for the disk and the triangle there are
WAMs with approximately n? points and the growth of C(A,) is the same of an
AM.

@ Unit disk: a symmetric polar WAM (invariant by rotations of 7/2) is made
by equally spaced angles and Chebyshev-Lobatto points along diameters.

@ Unit simplex: starting from the WAM of the disk for polynomials of degree
2n containing only even powers, by the standard quadratic transformation

(u,v) — (x,y) = (v*,v?).
@ Square: Chebyshev-Lobatto grid, Padua points.

Notice: by affine transformation these WAMs can be mapped to any other
triangle (P1) or polygon (P4).
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Polar symmetric WAMs for the disk
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Figure: Symmetric polar WAMs for the disk: (Left) for degree n = 11 with
144 = (n + 1)? points, (Right) for n = 10 with 121 = (n + 1)? points.
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WAMs for the quadrant and the triangle
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Figure: A WAM of the first quadrant for polynomial degree n = 16 (left) and the
corresponding WAM of the simplex for n = 8 (right).
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2-dimensional WAMs

Optimal Lebesgue Gauss—Lobatto points on the triangle

A new set of optimal Lebesgue Gauss-Lobatto points on the simplex has recently
been investigated by [Briani/Sommariva/Vianello 2011].

These points minimize the corresponding Lebesgue constant on the simplex, that
grows like O(n).

Figure: The optimal points for n = 14, cardinality (n+ 1)(n+2)/2).
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WAMs for a quadrangle

Figure: A WAM for a quadrangular domain for n = 7 obtained by the bilinear
transformation of the Chebyshev—Lobatto grid of the square [—1, 1]

H(1—u)(1—v)A+(14+u)(1—v) B+ (1+u)(1+v) C+(1—u)(14v)D]
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B
WAMs for (truncated) cones

Starting from a 2-dimensional domain WAM, we "repeat” the mesh along a
Chebsyhev-Lobatto grid of the z-axis, as shown here in my handwritten notes (on
my whiteboard).
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B
Why these are WAMs?

From the previous picture

Py, 2)| < C(Ad)llpllayz) C(An) = C(AL(2))

Stefano De Marchi (DMPA-UNIPD) 3dimensional WAM Budapest, July 8, 2011 15 / 36



B
Why these are WAMs?

From the previous picture

IpCy, )l < C(An)lIPllayz) C(An) = C(AL(2))
IPlayzy = |p(%e: 9z, 2) with (%, 2, 2) € AL(2)
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B
Why these are WAMs?

From the previous picture

lp(x,y,2)|
||P||A;(z)

ININ

IN

C(ANPllayz) C(An) = C(AL(2))
|p(%z, 9z, 2)| with (X, 9z, 2) € AL(2)
C(A,,)HpHZ(& &) where (51’52) € An
C(An) m)anA ||P||ny
O(C(An)log,) max ||p|lr, = O(C(A)log,)lpls,
(X,y)GA,,

where T, are the Chebyshev-Lobatto points of /(x, y) and
By = Uxyyea, Fn(l(x, ¥))-
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B
Why these are WAMs?

From the previous picture

Ip(x,y,2)l < C(ADlIPllayz) C(An) = C(AL(2))
IPllagz) = [P(%, 20 2)| with (%, 32,2) € AL(2)
< C(A)Pllyg, ¢, where (61.8) € A,
< clan) max, ol
< O(C(An)log,) max |lpllr, = O(C(An)log,)lplls,
(x.y)€A,

where T, are the Chebyshev-Lobatto points of /(x, y) and
By = Upeyyea, Mnlt(x: y))-
Cardinality.

#By = (n+ 1)#A, — #A, + 1 = 14 n#A, = O(n’)

Stefano De Marchi (DMPA-UNIPD) 3dimensional WAM Budapest, July 8, 2011
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B
WAMs for a cone

A i .
-

Figure: A WAM for the rectangular cone for n =7
Here C(A,) = O(log? n) and the cardinality is O(n3)
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B
A low dimension WAM for the cube

The cube can be considered as a cylinder with square basis. WAMs for the cube
with dimension O(n3/4) were studied in [DeMarchi/Vianello/Xu 2009] in the
framework of cubature and hyperinterpolation.

A WAM for the cube that for n even has (n+ 2)3/4 points and for n odd
(n+1)(n+ 2)(n+ 3)/4 points, is show here for a parallelpiped with n = 4 (here
#A, = 54)
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B
WAMs for a pyramid
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Figure: A WAM for a non-rectangular pyramid and a truncated one, made by
using Padua points for n = 10. Notice the generating curve of Padua points that
becomes a spiral

In this case C(A,) = O(log? n) and the cardinality is O(n3/2)
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WAMs for toroidal sections

Starting from a 2-dimensional WAM, A,,, by rotation around a vertical axis
sampled at the 2n + 1 Chabyshev-Lobatto points of the arc of circumference, we
get WAMs for the torus, sections of the torus and in general toroids.

The resulting cardinality will be (2n+ 1) x #A,

(x&,%):("ltw 42
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Why these are WAMs?

From the previous " picture” Given a polynomial p(x,y,z) € P we can write it in
cylindrical coordinates getting

p(x,y,2) = q(r,z,¢) = s(x',y',¢) € PZY) @ T}
since

X'y x* = (rcos ) (rsin gy z*(ro + x') cos’ ¢(ro + y'Y sin’ ¢(ro + y')*
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WAMs for toroidal sections: points on the disk
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Figure: WAM for n =5 on the torus centered in zg = 0 of radius rp = 3, with
—2/37 <6 <2/3m.

In this case C( ) O(log? n) and the cardinality is O(2n%)
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3-dimensional WAMs WAMs for toroidal sections

WANMs for toroidal sections: Padua points

s 13
- %f
" "g*m:;‘ﬁ, i oﬁ“;;‘g‘;f{
LeS e T @.ng Tk
Kt Fes 3 ’\,;ﬁ"!‘*é:t""’ 3
PN 10 AR B I R
PSRRI T Y Fliea
¥, s
bralireR mhygit
ot I
2 SR
ghaM i
3 + 4.‘“,0
MR RO
o 5%
aadiii e
W ted
4

Figure: Padua points on the toroidal section with zy = 0, rp = 3 and opening
—2/3r <6 <2/3n.

In this case C(A,) = O(log? n) and the cardinality is O(n?).
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3-dimensional WAMs WAMs for toroidal sections

WAMs for toroidal sections: simplex, GLL points

Figure: GLL points for n = 7 on the torus section

Cardinality is O(n®)
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3-dimensional WAMs WAMs for toroidal sections

WAMs for toroidal sections: equilateral triangle, GLL

points
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Figure: GLL points for n = 7 on the torus section for an equilateral triangle
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Some notation

@ Let A, be an AM or WAM of K C R?(or C9)
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Some notation

@ Let A, be an AM or WAM of K C R?(or C9)

@ The rectangular Vandermonde-like matrix
V(a;p) = V(a1,...,am;p1,-- -, pn) = [pj(ai)] € C""N, M >N

where a = (a;) is the array of the points of A, and p = (p;) the basis of P{.
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AFP and DLP

A greedy maximization of submatrix volumes, implemented by the QR
factorization with column pivoting of V/(a; p)* gives the so-called Approximate
Fekete points [Sommariva/Vianello 2009].
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AFP and DLP

A greedy maximization of submatrix volumes, implemented by the QR
factorization with column pivoting of V/(a; p)* gives the so-called Approximate
Fekete points [Sommariva/Vianello 2009].

A greedy maximization of nested square submatrix determinants, implemented by
the LU factorization with row pivoting of V/(a;p) gives the so-called Discrete Leja
points ([Bos/DeMarchi/et al. 2010] and already observed in [Schaback/De
Marchi 2009]).
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Multivariate Newton Interpolation

DLP and Multivariate Newton Interpolation

@ Consider the square Vandermonde matrix
V =V(p) = (PoVo)i<ij<n = LU

where VO = V(a, p), L= (LO)lgi,jSN and U = Uo.
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Multivariate Newton Interpolation

DLP and Multivariate Newton Interpolation

@ Consider the square Vandermonde matrix
V =V(p) = (PoVo)i<ij<n = LU

where VO = V(a, p), L= (LO)lgi,jSN and U = Uo.
@ The polynomial interpolating a function f at &, f = f(¢) € CV is

L,F(x) = ¢'p(x) = (V" ')'p(x) = (UL H)'p(x) = d'6(x)  (2)

where d* = (L71)t, ¢(x) = U~tp(x).
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Multivariate Newton Interpolation
Remarks

@ Formula (2) is indeed a Newton-type interpolant.
Since U™* is lower triangular, the basis ¢ is s.t.

span{¢1,...,¢n,} =P, 0<s<n
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Multivariate Newton Interpolation
Remarks

@ Formula (2) is indeed a Newton-type interpolant.
Since U™* is lower triangular, the basis ¢ is s.t.

span{¢1,...,¢n,} =P, 0<s<n

V(€ o)=V(&p) U =LUU T =1L
Hence, ¢;(¢;) =1 and ¢j(x;) =0, i=1,...,/—1, whenj > 1.
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Multivariate Newton Interpolation
Remarks

@ Formula (2) is indeed a Newton-type interpolant.
Since U™* is lower triangular, the basis ¢ is s.t.

span{¢1,...,¢n,} =P, 0<s<n

V(€ o)=V(&p) U =LUU T =1L
Hence, ¢;(¢;) =1 and ¢j(x;) =0, i=1,...,/—1, whenj > 1.

@ Case d = 1. Since ¢; € ]P’}fl, then
oi(x) = aj(x —x1) - (x = xj—1), 2<j < N=n+1 with
aj = ((x; —x1) - (x — xj—1)) "}, i.e. the classical Newton basis with d; the
classical divided differences up to 1/¢;.
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Multivariate Newton Interpolation
Remarks

@ Formula (2) is indeed a Newton-type interpolant.
Since U™* is lower triangular, the basis ¢ is s.t.

span{¢1,...,¢n,} =P, 0<s<n

V(&)= V(&p)U T =LUUT =1L
Hence, ¢;(¢;) =1 and ¢j(x;)) =0, i=1,...,j—1, whenj > 1.
@ Case d = 1. Since ¢; € P}_,, then
oi(x) = aj(x —x1) - (x = xj—1), 2<j < N=n+1 with
aj = ((x; —x1) - (x — xj—1)) "}, i.e. the classical Newton basis with d; the
classical divided differences up to 1/¢;.

@ The connection between LU factorization and Newton Interpolation was
recognized by [de Boor 2004] and in a more general way by [R. Schaback et
al. 2008, 2009].
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Conic sections: disk

K is the cone. Given an n, then
@ The AFP are extracted from a WAM having O(n®) points
@ The polynomial basis is the tensor product Chebyshev polynomial basis.

@ The Lebesgue constant and the interpolation error has been computed on a
mesh of control points (consisting of the original WAM with 2n instead of n).
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Conic sections: disk

K is the cone. Given an n, then
@ The AFP are extracted from a WAM having O(n®) points
@ The polynomial basis is the tensor product Chebyshev polynomial basis.

@ The Lebesgue constant and the interpolation error has been computed on a
mesh of control points (consisting of the original WAM with 2n instead of n).

We also computed the

@ least-square operator norm, ||La,|| = maxxex Z,Ail |gi(x)| where
g, i=1,...,M are a set of generators and M > N = dimP3 (cf. [Bos/De
Marchi et al. 2010])

@ interpolation error ||f — pp(f)|lco

@ least-square error ||f — La, (f)| oo
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Numerical results

Runge function on the cone

Lebesgue constant far a conical mesh Least-squares norm far a conical mesh
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Numerical results

Cosine function on the rectangular cylinder

Lebesgue constant for  cylinder mesh Least-squares norm for  cylinder mesh
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Numerical results

Toric sections: disk, square

K is now a toric section. Given n then

@ The AFP are extracted from a WAM having (n+ 1)?(2n + 1) points in the

case of the disk and WQn + 1) in the case of the square (by using
Padua points).

@ The polynomial basis is the tensor product Chebyshev polynomial basis.

@ The Lebesgue constant and the interpolation error has been computed on a
mesh of control points (the original WAM of degree 2n).

We computed as before least-square operator sup-norm, interpolation error
IIf = pn(f)|loo and least-square error ||f — La,(f)||oo-
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Runge function on the toric section

Lebesgue constant for a toroidal mesh Least-squares nerm for  toroidal mesh
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Numerical results

Cosine function on the toric section using Padua points

Lebesgue const.: toric section, Padua pte Least-gguares norm
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Future works

investigate other (general) domains
correct polynomial basis for the domains
improve the cputime for extraction of AFP and DLP

°
°
°
@ applications: cubature, pdes, graphics and more
o RBF setting?

°
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Dolomites Research Week on Approximation 2011, Alba di Canazei
5-9 September 2011 J

Dolomites Workshop on Constructive Approximation and
Applications 2012, Alba di Canazei 7-12(?) September 2012 J
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Dolomites Research Week on Approximation 2011, Alba di Canazei
5-9 September 2011 J

Dolomites Workshop on Constructive Approximation and
Applications 2012, Alba di Canazei 7-12(?) September 2012 J

Thank you for your attention ]
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