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Motivations

Known things and aim

Known

Michael S. Floater and Kai Hormann, Barycentric rational interpolation with
no poles and high rates of approximation, Numer. Math. 107(2) (2007),
315–331.

Floater and Hormann rational interpolants, FHRI, is a family of rational
interpolants that perform rational interpolations on equispaced and
non-equispaced points .

From their paper... “it seems to be perfectly stable in practice”... but
nothing was proved about its stability.

The Lebesgue constant measures the stability of an interpolation process.

FHRI is also on Numerical Recepies, section 3.4.1

Aim

What’s about the growth of the Lebesgue constants for the FHRI?
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The interpolant

Lagrange form of the interpolant

Given a function f : [a, b]→ R, let g be its interpolant at the n + 1 (equispaced)
interpolation points

a = x0 < x1 < · · · < xn = b.

Given a set of basis functions bi which satisfy the Lagrange property

bi (xj) = δij =

{
1, if i = j ,

0, if i 6= j ,

the interpolant g can be written as g(x) =
n∑

i=0

bi (x)f (xi ) =
n∑

i=0

bi (x)yi .
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The interpolant

Barycentric form of the interpolant

Interpolation of 2 data points x0, x1,

g(x) =

∑1
i=0 λi (x)yi∑1
i=0 λi (x)

, λi (x) =
(−1)i

x − xi
i = 0, 1

and

bi (x) =
λi (x)∑1
i=0 λi (x)

.

Interpolation of n + 1 data points

g(x) =

∑n
i=0 λi (x)yi∑n
i=0 λi (x)

, λi (x) =
(−1)i

(x − xi )
.

n∑
i=0

λi (x) =
1

x − x0︸ ︷︷ ︸
>0

+
−1

x − x1
+

1

x − x2︸ ︷︷ ︸
>0

+
−1

x − x3
+ · · ·︸ ︷︷ ︸

>0

x0 < x < x1
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The interpolant

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, is very simple.

Let 0 ≤ d ≤ n.

For each i = 0, 1, . . . , n− d let pi denote the unique polynomial of degree at
most d that interpolates a function f at d + 1 pts xi , . . . , xi+d

Then

g(x) =

n−d∑
i=0

λi (x)pi (x)

n−d∑
i=0

λi (x)

(1)

where λi (x) =
(−1)i

(x − xi ) · · · (x − xi+d)
.

Thus, g is a local blending of the polynomial interpolants p0, . . . , pn−d with λ0, . . . , λn−d acting as the blending functions.

Notice: for d = n we get the classical polynomial interpolation.
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The interpolant

Basis functions

Assume [a, b] = [0, 1] and equispaced interpolation pts xi = i/n, i = 0, . . . , n.

As basis functions we take

bi (x) =
(−1)iβi
x − xi

/ n∑
j=0

(−1)jβj
x − xj

, i = 0, . . . , n (2)

with β0, . . . , βn positive weights defined as

βj =


∑j

k=0

(
d
k

)
, if j ≤ d ,

2d , if d ≤ j ≤ n − d ,

βn−j , if j ≥ n − d .

(3)

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 7 / 47



The interpolant

Basis functions

Assume [a, b] = [0, 1] and equispaced interpolation pts xi = i/n, i = 0, . . . , n.
As basis functions we take

bi (x) =
(−1)iβi
x − xi

/ n∑
j=0

(−1)jβj
x − xj

, i = 0, . . . , n (2)

with β0, . . . , βn positive weights defined as

βj =


∑j

k=0

(
d
k

)
, if j ≤ d ,

2d , if d ≤ j ≤ n − d ,

βn−j , if j ≥ n − d .

(3)

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 7 / 47



The interpolant

The weights βs

d = 0† 1, 1, . . . , 1, 1

d = 1‡ 1, 2, 2 . . . , 2, 2, 1

d = 2 1, 3, 4, 4, . . . , 4, 4, 3, 1

d = 3 1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1

d = 4 1, 5, 11, 15, 16, 16, . . . , 16, 16, 15, 11, 5, 1

†Berrut’s rational interpolant
‡d ≥ 1 Floater-Hormann’s rational interpolant
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The interpolant

Some plots of the basis functions

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 9 / 47



The interpolant

Basis functions
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The interpolant

Interpolation

Figure: FHRI compared with a cubic spline on 11 equispaced points for the
function |x |, x ∈ [−1, 1]
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The interpolant

Properties of the FHRI (cf. [FH, NumMath2007])

1. The FHRI can be written in barycentric form.

Indeed, in (1), letting wi = (−1)iβi , for the numerator we have

n−d∑
i=0

λi (x)pi (x) =
n∑

k=0

wk

x − xk
f (xk)

where

wk =
∑
i∈Ik

(−1)i
i+d∏

j 6=k,j=i

1

xk − xj

Ik = {i ∈ J, k − d ≤ i ≤ k}, J := {0, ..., n − d}.
Similarly for the denominator

n−d∑
i=0

λi (x) =
n∑

k=0

wk

x − xk

It is a rational function of degree (n,n-d)
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The interpolant

Properties of the FHRI (continue)

2. The rational interpolant g(x) has no real poles. For d = 0 was proved by
Berrut in 1998.

3. The interpolant reproduces polynomials of degree at most d , while does not
reproduce rational functions (like Runge function)

4. Approximation error order O(hd+1) (for f ∈ Cd+2[0, 1]), also for
non-equispaced points.
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The Lebesgue Constant The case d = 0

Lebesgue constant when d = 0

Remember: when d = 0, βj = 1, ∀j .
We will derive upper and lower bounds for the Lebesgue function

Λn(x) =
n∑

i=0

|bi (x)| =
n∑

i=0

βi
|x − xi |

/∣∣∣∣ n∑
j=0

(−1)jβj
x − xj

∣∣∣∣. (4)

so that we can estimate

Λ = max
x∈[0,1]

Λn(x) (Lebesgue constant) .

Theorem (BDeMH, JCAM11)

For any n ≥ 1, we have

cn log(n + 1) ≤ Λ ≤ 2 + log(n).

where cn = 2n/(4 + nπ) (limn→∞ cn = 2/π).
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The Lebesgue Constant The case d = 0

Case d = 0: lower bound

We assume that the interpolation interval is [0, 1], so that the nodes are equally
spaced xj = jh = j · 1/n, j = 0, . . . , n.

Our goal is bounding below

Λn(x) =

n∑
j=0

1

|x − j/n|∣∣∣∣∣
n∑

j=0

(−1)j

x − j/n

∣∣∣∣∣
=

n∑
j=0

1

|2nx − 2j |∣∣∣∣∣
n∑

j=0

(−1)j

2nx − 2j

∣∣∣∣∣
:=

N(x)

D(x)
. (5)

by bounding N(x) from below and D(x) from above
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The Lebesgue Constant The case d = 0

The Lebesgue function for d = 0 on equispaced points

Figure: Lebesgue functions on [0,1]: n=10 (11 pts) (left) and n=11 (right).
The black and red signs indicate the points where the max is taken
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The Lebesgue Constant The case d = 0

Case d = 0: lower and upper bounds for N(x) and D(x)

Assume n = 2k and let x∗ = (n + 1)/2n = 1/2 + 1/(2n).

Bounds [JCAM2011]

N(x∗) ≥ 1

2
(ln(2k + 3) + ln(2k + 1)) ≥ ln(2k + 1) = ln(n + 1)

D(x∗) ≤ π

2
+

2

2k + 1
=
π

2
+

2

n + 1
.

Hence,

Λn(x∗) ≥ 2 ln(n + 1)

π + 4
n+1

.
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The Lebesgue Constant The case d = 0

Case d = 0. Lower bound for Λ

The same is true when n is odd considering x∗ = 1/2, instead.

In summary, for any n ∈ N

Λ = max
0≤x≤1

Λn(x) ≥ 2 ln(n + 1)

π + 4
n+1

≥ 2 ln(n + 1)

π + 4
n

= cn ln(n + 1) .

where cn = 2 n
4+πn .
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The Lebesgue Constant The case d = 0

Case d = 0: upper and lower bounds for N(x) and D(x)

Let xk < x < xk+1 for some k and let Nk(x) and Dk(x), N,D on the interval.

Bounds on the k-th interval [JCAM2011]

Nk(x) ≤ 1

n
+

1

2n
ln(n)

Dk(x) ≥ 1

2n
.

These bounds hold regardless the parity of n and k .

Combining the bounds for
numerator and denominator yields

Λ = max
k=0,...,n

(
max

xk<x<xk+1

Λk(x)

)
≤

1
n + 1

2n log(n)
1
2n

= 2 + log(n).
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The Lebesgue Constant The case d = 0

The Lebesgue constant for d = 0 on uniform pts

Figure: Lebesgue constant compared with its lower and upper bounds.
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The Lebesgue Constant The case d ≥ 1

Lebesgue constant: case d ≥ 1

Notice that

βj ≤ 2d , ∀ j

For xk < x < xk+1 the numerator can be bound as follows

Nk(x) = (x − xk)(xk+1 − x)
n∑

j=0

βj
|x − xj |

≤ 2d(x − xk)(xk+1 − x)
n∑

j=0

1

|x − xj |

≤ 2d

(
1

n
+

1

2n
log(n)

)
,

(6)

=⇒ that holds for any k .
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The Lebesgue Constant The case d ≥ 1

The denominator

Fundamental observation

(−1)jβj = wj d! hd (7)

Then,

Dk(x) = (x − xk)(xk+1 − x)

∣∣∣∣∣∣
n∑

j=0

wj

x − xj

∣∣∣∣∣∣ d!hd .

Since [FH, NumerMath2007],

n∑
j=0

wj

x − xj
=

n−d∑
i=0

λi (x) =⇒

∣∣∣∣∣∣
n∑

j=0

wj

x − xj

∣∣∣∣∣∣ ≥ |λk(x)| .

Then,

Dk(x) = (x−xk)(xk+1−x)|λk(x)|d!hd =
d!hd∏k+d

l=k+2(xl − x)
≥ d!hd∏k+d

l=k+2(xl − xk)
=

1

n
.
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The Lebesgue Constant The case d ≥ 1

The lower bound

Theorem (Klein, Dec. 2010)

Let d ≥ 2 then,

Λ ≥ (2d + 1)!!

4(d + 1)!
log
(n
d
− 1
)
.

Theorem (Bos, Dec. 2010)

Let d ≥ 1 then,

Λ ≥ 2

π
log(n + 2− 2d).

Note: this latter is better for d = 1.
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The Lebesgue Constant The case d ≥ 1

The Lebesgue constant bounds for d ≥ 1

Theorem

Let d > 1 Then,

(2d + 1)!!

4(d + 1)!
log
( n
d
− 1
)
≤ Λ ≤ 2d−1(2 + log(n)

)
.

while for d = 1
2

π
log(n) ≤ Λ ≤ 2 + log(n).
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The Lebesgue Constant Numerical results

Lebesgue functions

Figure: Lebesgue function for d = 1 (left) and d = 3 (right).
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The Lebesgue Constant Numerical results

Lebesgue constants growth: I

Figure: Lebesgue constant growth d = 1 (left) and d = 3 (right).

Stefano De Marchi (DM-UNIPD) Lebesgue constants of rat. interp. Fribourg, November 3, 2015 26 / 47



The Lebesgue Constant Numerical results

Lebesgue constant growth: II

Figure: Lebesgue constant growth d = 8 (left) and d = 16 (right).
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Quasi-equispaced case

Quasi-equidistant nodes

Equispaced nodes perturbed by a randomly chosen δ ∈ (0, 1/2), that is

xj = j + δj , j = 0, . . . , n .

We also assume that there exist M ≥ 1 (independent on n) s.t. set
h := max0≤j≤n−1(xj+1 − xj) and h∗ := min0≤j≤n−1(xj+1 − xj) then

h

h∗
≤ M .
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Quasi-equispaced case

Quasi-equidistant nodes

Lemma (Bounds on the weights, HKDeM2012)

Wk ≤ |wk | ≤ MdWk

where

Wk =
1

hdd!

∑
i∈Jk

(
d

k − i

)
, k = 0, 1, . . . , n

Moreover

Wk ≤
2d

hdd!
:= W

with equality iff d ≤ k ≤ n − d .
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Quasi-equispaced case

Quasi-equidistant nodes

Theorem (Bounds on the Λn, HKDeM2012)

Λn ≥
1

2d+2Md+1

(
2d + 1

d

)
·

 (2 + log(2n + 1)) d=0

log( n
d − 1) d ≥ 1

Λn ≤ (2 + M log(n)) ·


3
4M, d=0

2d−1Md , d ≥ 1
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Quasi-equispaced case

Lebesgue functions for quasi-equidistant points

Figure: Lebesgue functions for 30 quasi-equidistant points perturbed at first,
central, 5th and central points respectively, for d = 2
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Well-spaced nodes

Definition

The set X = (Xn)n≥0 is a family of well-spaced nodes, if there exist R,C ≥ 1
(independent on n) so that

xk+1 − xk
xk+1 − xj

≤ C

k + 1− j
, j = 0, ..., k k = 0, ..., n − 1,

xk+1 − xk
xj − xk

≤ C

j − k
, j = k + 1, ..., n k = 0, ..., n − 1,

1

R
≤ xk+1 − xk

xk − xk−1
≤ R, k = 1, ..., n − 1,

hold for each set Xn.

Note. When the nodes are equispaced R = C = 1. The definition include also
Chebyshev and extended Chebyshev nodes.
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Well-spaced nodes

Lebesgue constant growth for d = 0

Theorem (Bounds on the Λ and d = 0, BDeMHS2013)

If X = (Xn)n≥0 is a family of well-spaced nodes then

Λ(Xn) ≤ (R + 1)(1 + 2C log(n)) = c log(n), n ≥ 2 .
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Well-spaced nodes

How to get well-spaced nodes?

Definition

We say that a function F ∈ C[0, 1] is a distribution function if it is a strictly
increasing bijection on the interval [0, 1]

Given F we may associate the node sets

xk := F (k/n), k = 0, . . . , n .

=⇒ To generate points that realize the bound of the previous Theorem, F has to
be as follows

Definition

We say that a distribution is regular, if F ∈ C′[0, 1] and F ′ has a finite number of
zeros T = {t1, . . . , tl} ⊂ [0, 1] with finite multiplicities.
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Well-spaced nodes

Properties of regular distributions

Proposition

Let F be a regular distribution function. Then there exists a constant C > 0 such
that

F [x , y ]

F [x , z ]
≤ C

for all x , y , z ∈ [0, 1] s.t. x > y ≥ z .

Proposition

Let F be a regular distribution function. Then there exist an ε > 0 and R > 0
such that

1

R
≤ F [x , x + s]

F [x − s, x ]
≤ R

for all s ∈ [0, ε] and x ∈ [s, 1− s].
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Well-spaced nodes

Examples of regular distributions

1 F1(x) = x , that generates equispaced points.

2 F2(x) = log(1 + x(e − 1)), that generates logarithmically distributed points.
Note that F2 is regular since F ′2 > 0.

3 F3(x) = (1− cos(πx))/2, that is regular since F ′3 has 2 simple zeros at
x1 = 0, x2 = 1. This generates the Chebyshev extrema (or
Chebyshev-Lobatto points) mapped in [0, 1].

In this case, for δ = 1/2, ε = 1/4, we get C = 2π and R = 9π/2 and

Λ(Xn) ≤ (9π/2 + 1)(1 + 4π log(n))) .
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Well-spaced nodes

Non-regular distributions

1

F4(x) =

{
0 x = 0
exp(1− 1/x) 0 < x ≤ 1

which is non-regular since C∞ at x = 0

2

F5(x) =
1

2

 1− exp(1 + 1/(2x − 1)) 0 ≤ x < 1/2
1 x = 1/2
1 + exp(1− 1/(2x − 1)) 1/2 ≤ x ≤ 1

F ′(x) = 0 in x = 1/2 with infinite multiplicity.

The last is non regular for odd n while for even n seems to growth
logaritmically
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Well-spaced nodes

Other non-regular nodes

We can also verify directly if a given family of nodes is well-spaced even if it is
not generated by a distribution.
Extended Chebyshev nodes (on [0,1])

xk =
1

2

1−
cos
(

2k+1
2n+2π

)
cos
(

π
2n+2

)
 , k = 0, . . . , n

Proposition

For extended Chebyshev nodes we have

xk+1 − xk
xk+1 − xj

≤ π2/2

k + 1− j
, j = 0, . . . , k, k = 0, . . . , n − 1, ∀n .

1

2
≤ xk+1 − xk

xk − xk−1
≤ 2, k = 0, . . . , n − 1, ∀n .

=⇒ they satisfy the Definition of well-spaceness with C = π2/2 and R = 2
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Well-spaced nodes

Lebesgue constant growth for EC nodes

Figure: Lebesgue constant for Berrut’s rational interpolant at n + 1 extended
Chebyshev nodes for n = 1, . . . , 50.

giving the bound
Λ(Xn) ≤ 3 + 3π2 log(n) .
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An application

Numerical quadrature

On I = [−1, 1]

1 we computed integrals with the quadrature based on the FHRI, on
equispaced points at different values of n and d

2 to speed up the quadrature, the quadrature weights were computed by a
Gaussian quadrature rule (Gautschi software in Matlab)

3 For d = 0 we have proven that [BDeM, EJA2011]

(a) bi (x) = sinc(n(x − xi )) normalized so that
∑

i bi (x) = 1
(b)

lim
n→∞

nαi = 1, αi =

∫ 1

0

bi (x)dx .

that is the quadrature process asymptotically converges.
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An application

bi e sinc

Figure: Comparison of bn−1 and sinc(n(x − xn−1)) for n = 10

err = 0.0101
nw =(0.4899,1.1007, 0.9388,1.0475,0.9582,1.0402,0.9582,1.0475,0.9388,1.1007,0.4899)
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An application

Numerical quadrature

The table below shows the quadrature relative errors for d = 0 (left) and d = 3
(right) at different n, for the Runge function. errS=quadrature relative error by
using cubic splines

n err (d=0) err (d=3) errS
10 3.5e-3 1.1e-2 7.2e-3
30 1.1e-4 1.6e-6 5.9e-5
50 7.6e-6 2.6e-8 3.2e-7
100 3.6e-7 7.9e-10 2.4e-8
150 4.9e-7 1.0e-10 1.5e-9
200 5.4e-7 2.4e-11 6.4e-11
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An application

Numerical quadrature: an open problem

About the quadrature weights: Klein and Berrut have proven numerically that the
weights are all positive at least for d ≤ n ≤ 1250 and 0 ≤ d ≤ 5. For other values
of d and n, there might be a few negative weights, the number of which increases
slowly with d and n.
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An application

A Matlab package

C. Bandiziol in her degree thesis (University of Padova, Feb. 2015) have
organized all these results and applications in a Matlab package (to be available
soon) that allows

Compute FHRI

Compute the Lebesgue constants

Compute integrals by the Direct and Indirect Rational Quadrature method
(BK, BIT 2012)

Compute the Least-Square approximation by the FHRI
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