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Motivations

Stability is very important in numerical analysis: desirable in
numerical computations; it depends on the accuracy of
algorithms [3, Higham’s book].

In polynomial interpolation, the stability of the process can be
measured by the so-called Lebesgue constant, i.e the norm of
the projection operator from C(K ) (equipped with the uniform
norm) to Pn(K ) or itselfs (K ⊂ R

d), which also estimates the
interpolation error.

The Lebesgue constant depends on the interpolation points
(via the fundamental Lagrange polynomials).

Are these ideas applicable also in the context of
RBF interpolation?
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Notations

X = {x1, ..., xN} ⊆ Ω ⊆ R
d , distinct; data sites;

{f1, ..., fN}, data values;

Φ : Ω × Ω → R symmetric (strictly) positive definite kernel

the RBF interpolant

sf ,X :=

N∑

j=1

αjΦ(·, xj) , (1)

Letting VX = span{Φ(·, x) : x ∈ X}, sf ,X can be written in terms
of cardinal functions, uj ∈ VX , uj(xk) = δjk , i.e.

sf ,X =
N∑

j=1

f (xj)uj . (2)
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Error estimates

Take VΩ = span{Φ(·, x) : x ∈ Ω} on which Φ is the
reproducing kernel: VΩ := NΦ(Ω), the native Hilbert space
associated to Φ.

f ∈ NΦ(Ω), using (2) and the reproducing kernel property of
Φ on VΩ, applying the Cauchy-Schwarz inequality, we get the
generic pointwise error estimate (cf. e.g., Fasshauer’s book, p.
117-118):

|f (x) − sf ,X (x)| ≤ PΦ,X (x) ‖f ‖NΦ(Ω) (3)

PΦ,X : power function.
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A power function expression

Letting det (AΦ,X (y1, ..., yN)) = det (Φ(yi , xj ))1≤i ,j≤N , then

uk(x) =
detΦ,X (x1, . . . , xk−1, x , xk+1, . . . , xN)

detΦ,X (x1, . . . , xN)
, (4)

Letting uj(x), 0 ≤ j ≤ N with u0(x) := −1 and x0 = x , then

PΦ,X (x) =
√

uT (x)AΦ,Y u(x) , (5)

where uT (x) = (−1, u1(x), . . . , uN(x)), Y = X ∪ {x}.

Stefano De Marchi, Department of Computer Science, University of Verona (Italy) Geometric greedy and greedy points for RBF interpolation 8/48



The problem

Are there any good points for approximating
all functions in the native space?
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Our approach

1. Power function estimates.

2. Geometric arguments.

Stefano De Marchi, Department of Computer Science, University of Verona (Italy) Geometric greedy and greedy points for RBF interpolation 10/48



Overview of the existing literature

A. Beyer: Optimale Centerverteilung bei Interpolation mit
radialen Basisfunktionen. Diplomarbeit, Universität Göttingen,
1994.
He considered numerical aspects of the problem.

L. P. Bos and U. Maier: On the asymptotics of points which
maximize determinants of the form det(g(|xi − xj |)), in
Advances in Multivariate Approximation (Berlin, 1999),
They investigated on Fekete-type points for univariate RBFs,
proving that if g is s.t. g ′(0) 6= 0 then points that maximize
the Vandermonde determinant are the ones asymptotically
equidistributed.
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Literature

A. Iske:, Optimal distribution of centers for radial basis
function methods. Tech. Rep. M0004, Technische Universität
München, 2000.
He studied admissible sets of points by varying the centers for
stability and quality of approximation by RBF, proving that
uniformly distributed points gives better results. He also
provided a bound for the so-called uniformity:
ρX ,Ω ≤

√

2(d + 1)/d , d= space dimension.

R. Platte and T. A. Driscoll:, Polynomials and potential theory
for GRBF interpolation, SINUM (2005), they used potential
theory for finding near-optimal points for gaussians in 1d.
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Main result

Idea: data sets, for good approximation for all f ∈ NΦ(Ω), should have
regions in Ω without large holes.
Assume Φ, translation invariant, integrable and its Fourier transform
decays at infinity with β > d/2

Theorem
[DeM., Schaback&Wendland, AiCM05]. For every α > β there exists
a constant Mα > 0 with the following property: if ǫ > 0 and
X = {x1, . . . , xN} ⊆ Ω are given such that

‖f − sf ,X‖L∞(Ω) ≤ ǫ‖f ‖Φ, for all f ∈ W β
2 (Rd), (6)

then the fill distance of X satisfies

hX ,Ω ≤ Mαǫ
1

α−d/2 . (7)
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Remarks

1. The interpolation error can be bounded in terms of the
fill-distance (cf. e.g., Fasshauer’s book, p. 121):

‖f − sf ,X‖L∞(Ω) ≤ C h
β−d/2
X ,Ω ‖f ‖

W β
2 (Rd )

. (8)

provided hX ,Ω ≤ h0, for some h0

2. Mα → ∞ when α → β, so from (8) we cannot get

h
β−d/2
X ,Ω ≤ C ǫ but as close as possible.

3. The proof does not work for gaussians (no compactly
supported functions in the native space of the gaussians).
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To remedy, we made the additional assumption that X is already
quasi-uniform, i.e. hX ,Ω ≈ qX .

As a consequence, PΦ,X (x) ≤ ǫ. The result follows from the
lower bounds of PΦ,X (cf. [Schaback AiCM95] where they are
given in terms of qX ).

Quasi-uniformity brings back to bounds in term of hX ,Ω.

Observation: optimally distributed data sites are sets that cannot
have a large region in Ω without centers, i.e. hX ,Ω is sufficiently
small.
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On computing near-optimal points

We studied two algorithms.

1. Greedy Algorithm (GA)

2. Geometric Greedy Algorithm (GGA)
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The Greedy Algorithm (GA)

At each step we determine a point where the power function
attains its maxima w.r.t. the preceding set. That is,

starting step: X1 = {x1}, x1 ∈ Ω, arbitrary .

iteration step: Xj = Xj−1 ∪ {xj} with
PΦ,Xj−1

(xj) = ‖PΦ,Xj−1
‖L∞(Ω).

Remark: practically we maximize over some very large discrete set
X ⊂ Ω instead of Ω.
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The Geometric Greedy Algorithm (GGA)

The points are computed independently of the kernel Φ.

starting step: X0 = ∅ and define
dist(x , ∅) := A, A > diam(Ω).

iteration step: given Xn ∈ Ω, |Xn| = n pick xn+1 ∈ Ω \ Xn

s.t. xn+1 = maxx∈Ω\Xn
dist(x ,Xn). Then, form

Xn+1 := Xn ∪ {xn+1}.
Notice: this algorithm works quite well for subset Ω of cardinality n
with small hX ,Ω and large qX .
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On the convergence of GA e GGA

Experiments showed that the GA fills the currently largest
hole in the data set close to the center of the hole and
converges at least like

‖Pj‖L∞(Ω) ≤ C j−1/d , C > 0.

Defining the separation distance for Xj as
qj := qXj

= 1
2 minx 6=y∈Xj

‖x − y‖2 and the fill distance as
hj := hXj ,Ω = maxx∈Ω miny∈Xj

‖x − y‖2 then, we proved that

hj ≥ qj ≥
1

2
hj−1 ≥ 1

2
hj , ∀ j ≥ 2

i.e. the GGA produces point sets quasi-uniformly distributed
in the euclidean metric.
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Connections with (discrete) Leja-like sequences

Let ΩN be a discretization of a compact domain of Ω ⊂ R
d

and let x0 arbitrarily chosen in Ω. The sequence of points

min
0≤k≤n−1

‖xn − xk‖2 = max
x∈ΩN\{x0,...,xn−1}

(

min
0≤k≤n−1

‖x − xk‖2

)

(9)
is known as Leja-Bos sequence on ΩN or Greedy Best Packing
sequence (cf. López-G.Saff09).

Hence, the construction technique of GGA is conceptually
similar to finding Leja-like sequences : both maximize a
function of distances.

The GGA can be generalized to any metric. Indeed, if µ is any
metric on Ω, the GGA produces points asymptotically
equidistributed in that metric (cf. CDeM.V AMC2005).
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How good are the point sets computed by GA and GAA?

We could check these quantities:

Interpolation error

Uniformity

ρX ,Ω :=
qX

hX ,Ω
,

Notice: GGA maximizes the uniformity (since it works well
with subsets Ωn ⊂ Ω with large qX and small hX ,Ω).

Lebesgue constant

ΛN := max
x∈Ω

λN(x) = max
x∈Ω

N∑

k=1

|uk(x)| .
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Numerical examples in R
2

1. We considered a discretization of Ω = [−1, 1]2 with 10000
random points.

2. The GA run until ‖PX ,Ω‖∞ ≤ η, η a chosen threshold.

3. The GGA, thanks to the connection with the Leja-like
sequences, has been run once and for all. We extracted 406
points from 4063 random on Ω = [−1, 1]2,
406 = dim(P27(R

2)).
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GA: Gaussian

Gaussian kernel with scale 1, 48 points, η = 2 · 10−5. The “error”, in the
right–hand figure, is ‖PN‖2

L∞(Ω) which decays as a function of N , the
number of data points. The decay, which has been determined by the
regression line, behaves like N−7.2.
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GA: Wendland

C 2 Wendland function scale 15, N = 100 points to depress the power
function down to 2 · 10−5. The error decays like N−1.9 as determined by
the regression line depicted in the right figure.
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GGA: Gaussian

Error decay when the Gaussian power function is evaluated on the data
supplied by the GGA up to X48. The final error is larger by a factor of 4,
and the estimated decrease of the error is only like N−6.1.
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GGA: Wendland

The error factor is only 1.4 bigger, while the estimated decay order is
-1.72.
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Gaussian

Below: 65 points for the gaussian with scale 1. Left: their
separation distances; Right: the points (+) are the one computed
with the GA with η = 2.0e − 7, while the (*) the one computed
with the GGA.
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C2 Wendland

Below: 80 points for the Wendland’s RBF with scale 1. Left: their
separation distances; Right: the points (+) are the one computed
with the GA with η = 1.0e − 1, while the (*) the one computed
with the GGA.
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The GGA algorithm

For points quasi-uniformly distributed, i.e. points for which
∃M1,M2 ∈ R+ such that M1 ≤ hn

qn
≤ M2, ∀n ∈ N, holds the

following.

Proposition

(cf. [7, Prop. 14.1]) There exists constants c1 , c2 ∈ R, n0 ∈ N

such that
c1 n−1/d ≤ hn ≤ C2 n−1/d , ∀n ≥ n0. (10)
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The GGA algorithm

Defining CΩ by

CΩ :=
vol(Ω)2d+1πΓ(d/2 + 1)

απd/2
,

we get
CΩ ≥ n(qn)

d ≥ n(hn/M2)
d .

Hence,
hn ≤ M2(CΩ/n)1/d = C

1/d
Ω M2

︸ ︷︷ ︸

=:CΩ,M2

n−1/d . (11)
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The GGA algorithm
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The GGA algorithm
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Remarks

1. The GGA is independent on the kernel and generates asymptotically
equidistributed optimal sequences. It still inferior to the GA that
considers the power function.

2. The points generated by the GGA are such that
hXn,Ω = maxx∈Ω miny∈Xn ‖x − y‖2 .

3. GGA generates sequences with hn ≤ Cn−1/d , as required by the
asymptotic optimality.

4. So far, we have no theoretical results on the asymptotic distribution
of points generated by the GA. We are convinced that the use of
disk covering strategies could help.
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Lebesgue Constants

Theorem
(cf. DeM.S08) The classical Lebesgue constant for interpolation with Φ
on N = |X | data locations in a bounded Ω ⊆ R

d has a bound of the form

ΛX ≤ C
√

N

(
hX ,Ω

qX

)τ−d/2

. (12)

For quasi-uniform sets, with uniformity bounded by γ < 1, this simplifies
to ΛX ≤ C

√
N .

Each single cardinal function is bounded by

‖uj‖L∞(Ω) ≤ C

(
hX ,Ω

qX

)τ−d/2

, (13)

which, in the quasi-uniform case, simplifies to ‖uj‖L∞(Ω) ≤ C .
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Corollary

Corollary
Interpolation on sufficiently many quasi–uniformly distributed data is
stable in the sense of

‖sf ,X‖L∞(Ω) ≤ C
(
‖f ‖ℓ∞(X ) + ‖f ‖ℓ2(X )

)
(14)

and
‖sf ,X‖L2(Ω) ≤ Ch

d/2
X ,Ω‖f ‖ℓ2(X ) (15)

with a constant C independent of X .

In the right-hand side of (15), ℓ2 is a properly scaled discrete version
of the L2 norm.

Proofs have been done by resorting to classical error estimates. An
alternative proof based on sampling inequality [Rieger, Wendland
NM05], has been proposed in [DeM.Schaback,RR59-08,UniVR].
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Lebesgue constants: kernels

1. Matérn/Sobolev kernel (finite smoothness, definite positive)

Φ(r) = (r/c)νKν(r/c), of order ν .

Kν is the modified Bessel function of second kind. Schaback
call them Sobolev splines. Examples were done with ν = 1.5
at scale c = 20, 320.

2. Gauss kernel (infinite smoothness, definite positive)

Φ(r) = e
−νr , ν > 0 .

Examples with ν = 1 at scale c = 0.1, 0.2, 0.4.
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Lebesgue constants
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Figure: Lebesgue constants for the Matérn/Sobolev kernel (left) and
Gauss kernel (right)
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Lebesgue constants

Here we collect some computed Lebesgue constants on a grid of centers
consisting of 225 pts on [−1, 1]2. The constants were computed on a
finer grid made of 7225 pts. Matérn and Wendland had scaled by 10,
IMQ and GA scaled by 0.2.

Matern W2 IMQ GA
2.3 2.3 2.7 4.3
1.3 1.3 1.3 1.7

First line contains the max of Lebesgue functions. The second are the
estimated constants, by the Lebesgue function computed by the formula
[Wendland’s book, p. 208]

1 +
N∑

i=1

(u∗
j (x))2 ≤

P2
Φ,X (x)

λmin(AΦ,X∪{x})
, x 6∈ X .

in a neighborhood of the point that maximizes the ”classical” Lebesgue

constant.
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Remarks on the finite smooth case

1. In all examples, our bounds on the Lebesgue constants, are
confirmed.

2. In all experiments, the Lebesgue constants seem to be
uniformly bounded.

3. The maximum of the Lebesgue function is attained in the
interior points.
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Remarks on the infinite smoothness

... things are moreless specular ...

1. The Lebesgue constants do not seem to be uniformly
bounded.

2. In all experiments, the Lebesgue function attains its maximum
near the corners (for large scales).

3. The limit for large scales is called flat limit which corresponds
to the Lagrange basis function for polynomial interpolation
(see Larsson and Fornberg talks, [Driscoll, Fornberg 2002],
[Schaback 2005],...).

Stefano De Marchi, Department of Computer Science, University of Verona (Italy) Geometric greedy and greedy points for RBF interpolation 43/48



A possible solution

Schaback, in a recent paper with S. Müller [Müeller, Scahaback
JAT08], studied a Newton’s basis for overcoming the
ill-conditioning of linear systems in RBF interpolation. The basis is
orthogonal in the native space in which the kernel is reproducing
and more stable.
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DWCAA09

2nd Dolomites Workshop on Constructive
Approximation and Applications
Alba di Canazei (Italy), 4-9 Sept. 2009.

Keynote speakers: C. de Boor, N. Dyn, G. Meurant, R.
Schaback, I. Sloan, N. Trefethen, H. Wendland, Y. Xu

Sessions on: Polynomial and rational approximation (Org.: J.

Carnicer, A. Cuyt), Approximation by radial bases (Org.: A. Iske, J.

Levesley), Quadrature and cubature (Org. B. Bojanov†, E.

Venturino, Approximation in linear algebra (Org. C. Brezinski, M.

Eiermann).
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Happy Birthday Gianpietro!

... and thank you for your attention!
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