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Motivations

Motivations and aims

(Weakly) Admissible Meshes, (W)AM: play a central role in the construction
of multivariate polynomial approximation processes on compact sets.

LU factorization with row pivoting: a tool for the construction of
Newton-like interpolation (cf. de Boor 2004) and extracting Discrete Leja
Points (cf. BDeMSV 2010)

Error estimation by using the underlying (W)AM.

Robert Schaback recent research!
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Motivations
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(Weakly) Admissible Meshes, (W)AM

(Weakly) Admissible Meshes, (W)AM

Given a polynomial determining compact set K ⊂ Rd .

Definition

An Admissible Mesh is a sequence of finite discrete subsets An ⊂ K such that

‖p‖K ≤ C‖p‖An , ∀p ∈ Pd
n(K ) (1)

holds for some C > 0 with card(An) ≥ N := dim(Pd
n(K )) that grows at most

polynomially with n.

A Weakly Admissible Mesh, or WAM, is a mesh for which the constant C
depends on n, i.e. C = C (An), growing also polynomially with n.

Note: these sets and inequalities are also known as: (L∞) discrete norming
sets, Marcinkiewicz-Zygmund inequalities, stability inequalities (in more
general functional settings).

Optimal Admissible Meshes the ones with O(nd) cardinality and can be
constructed for some classes of compact sets (Kroó 2010, Piazzon and
Vianello 2010).
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(Weakly) Admissible Meshes, (W)AM

Admissible Meshes

Markov compacts have AM (cf. CL JAT08), i.e. K ⊂ Rd s.t.

‖∇p‖K ≤ Mnr‖p‖K , ∀ p ∈ Pd
n(K ) ,

where ‖∇p‖K = maxx∈K ‖∇p(x)‖2

Construction idea: take a uniform discretization of K with spacing O(n−r ). The
mesh will have cardinality of O(nrd) for real compacts or O(n2rd) for general
complex domains.

r = 2 for many (real convex) compacts: the construction and use of AM becomes
difficult even for d = 2, 3 already for small degrees.

TOO BIG!!

Stefano De Marchi (DMPA-UNIPD) Multivariate Newton Interpolation Göttingen, January 14, 2011 6 / 27



(Weakly) Admissible Meshes, (W)AM

Weakly Admissible Meshes: properties

P1: C (An) is invariant for affine transformations.

P2: any sequence of unisolvent interpolation sets whose Lebesgue constant
grows at most polynomially with n is a WAM, C (An) being the Lebesgue
constant itself

P3: any sequence of supersets of a WAM whose cardinalities grow polynomially
with n is a WAM with the same constant C (An)

P4: a finite union of WAMs is a WAM for the corresponding union of compacts,
C (An) being the maximum of the corresponding constants

P5: a finite cartesian product of WAMs is a WAM for the corresponding product
of compacts, C (An) being the product of the corresponding constants

P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM for
πs(K ) with constants C (Ans) (cf. BCLSV Math. Comp.09)
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(Weakly) Admissible Meshes, (W)AM

Weakly Admissible Meshes: properties

P8: any K satisfying a Markov polynomial inequality like ‖∇p‖K ≤ Mnr‖p‖K
has an AM with O(nrd) points (cf. CL JAT08)

P9: The least-squares polynomial LAn f on a WAM is such that

‖f − LAn f ‖K / C (An)
√

card(An) min {‖f − p‖K , p ∈ Pd
n(K )}

P10: The Lebesgue constant of Fekete points extracted from a WAM can be
bounded like Λn ≤ NC (An)

Moreover, their asymptotic distribution is the same of the continuum Fekete
points, in the sense that the corresponding discrete probability measures
converge weak-∗ to the pluripotential equilibrium measure of K (cf. BCLSV
Math. Comp.09)
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Examples of WAMs

WAM for the disk and the triangle

In Bos at al. JCAM 09, it was proved that for the disk and the triangle there are
WAMs with approximately n2 points and the growth of C (An) is the same of an
AM.

Unit disk: a symmetric polar WAM is made by equally spaced angles and
Chebyshev-Lobatto pts along diameters.

Unit simplex: starting from the WAM of the disk for polynomials of degree
2n containing only even powers, by the standard quadratic transformation

(u, v) 7−→ (x , y) = (u2, v2) .

Notice: by affine transformation these WAMs can be mapped to any other
triangle (P1) or polygon (P4).
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Examples of WAMs

WAMs for the disk

Figure: Symmetric polar WAM for the disk for degree n = 10 (left) and n = 11
(right).
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Examples of WAMs

WAMs for quadrant and the triangle

Figure: A WAM of the first quadrant for polynomial degree n = 16 (left) and the
corresponding WAM of the simplex for n = 8 (right).
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Discrete Leja points

Notation

Let An be an AM or WAM of K ⊂ Rd(or Cd)

The rectangular Vandermonde-like matrix

V (a;p) = V (a1, . . . , aM ; p1, . . . , pN) = [pj(ai )] ∈ CM×N , M ≥ N

where a = (ai ) is the array of the points of An and p = (pj) the basis of Pd
n .
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Discrete Leja points

Fekete and Approximate Fekete Points

The rows of V (a;p) correspond to the points of An, while the columns to
the basis. Hence,

The N rows of V (a;p) that maximize the volume generated by them (or
maximize the absolute value of the N × N submatrix) are the Fekete
points.

A greedy maximization of submatrix volumes, implemented by the QR
factorization with column pivoting of V (a;p)t gives the so-called
Approximate Fekete points (cf. SV CMA2009).
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Discrete Leja points

Discrete Leja Points

A greedy maximization of nested square submatrix determinants, implemented by
the LU factorization with row pivoting of V (a;p) gives the so-called Discrete Leja
points (cf. BDeMSV SINUM2010 and observed in SDeM, DRNA2009).

Greedy Algorithm (GA): Discrete Leja Points (DLP):
• V0 = V (a,p); i = [ ];
• for k = 1 : N
“select ik s.t. |det V0([i, ik ] , 1 : k)| is maximum”; i = [i, ik ];
end

• ξ = a(i1, . . . , iN)

GA depends on the ordering of the polynomial basis. In 1-d it produces the
Leja points.

DLP form a sequence. Once we have computed the points for degree n, we
have automatically at hand (nested) interpolation sets for all lower degrees.
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Discrete Leja points

Greedy Algorithm for Discrete Leja Points

The core in the GA

select ik : |det V ([i, ik ] , 1 : k)| is maximum

can be implemented as

one column elimination step of the Gaussian elimination process with standard
row pivoting.

This process is then equivalent to the LU factorization with row pivoting as
clear in the following Matlab-like script

GA-DLP:
• V0 = V (a,p); i = 1 : M;
• [L0,U0,P0] = lu(V0); i = P0 i;
• ξ = a(i1, . . . , iN)
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Discrete Leja points

Remarks

DLP form a sequence. Indeed, suppose {q1,q2} is a ordered basis,
the first m1 = dim(q1) points are exactly the DLP for q1.

If the basis p is s.t.

span{p1, . . . , pNs} = Pd
s , Ns = dim(Pd

s ), 0 ≤ s ≤ n (2)

then, the first Ns DLP are a unisolvent set for interpolation in Pd
s .
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Multivariate Newton Interpolation Interpolant

DLP and Multivariate Newton Interpolation

1 Consider the square Vandermonde matrix at the DLP ξ and basis p

V = V (ξ,p) = (P0V0)1≤i,j,≤N := LU

where L = (L0)1≤i,j≤N and U = U0.

2 The polynomial interpolating a function f at ξ, f = f (ξ) ∈ CN is

Lnf (x) = ctp(x) = (V−1f)tp(x) = (U−1L−1f)tp(x) = dtφ(x) (3)

where dt = (L−1f)t , φ(x) = U−tp(x).
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Multivariate Newton Interpolation Interpolant

Remarks

Formula (3) is a type of Newton interpolant.

Since U−t is lower triangular, by (2) the basis φ is s.t.

span{φ1, . . . , φNs} = Pd
s , 0 ≤ s ≤ n

V (ξ;φ) = V (ξ;p)U−1 = LUU−1 = L

Hence, φj(ξj) = 1 and φj(ξi ) = 0, i = 1, . . . , j − 1, when j > 1.

Case d = 1. Since φj ∈ P1
j−1, then

φj(x) = αj(x − x1) · · · (x − xj−1), 2 ≤ j ≤ N = n + 1 with
αj = ((xj − x1) · · · (xj − xj−1))−1, i.e. the classical Newton basis with dj the
classical divided differences up to 1/αj .

The connection between LU factorization and Newton Interpolation was
recognized by de Boor in SINUM2004 and in a more general way by R.
Schaback et al. 2008 and 2009.
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Multivariate Newton Interpolation Error estimation

Error estimation

Lnf (x) = dtφ(x) = δ0(x) + · · ·+ δn(x)

where δk ∈ Pd
k , 0 ≤ k ≤ n are of the form

δk = (d)tj∈Jk (φ)j∈Jk , Jk = {Nk−1 + 1, . . . ,Nk} . (4)

i.e. the multivariate version of the Newton interpolation formula.
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Multivariate Newton Interpolation Error estimation

Error estimation

In the case of continuum Leja points, if f sufficiently regular to ensure
uniform convergence of the interp. poly.

f (x) =
∞∑
k=0

δk(x)

then

f (x)− Ls−1(x) =
∞∑
k=s

δk(x)

‖f − Ls−1‖K ≈ ‖δs‖K ≤ C‖δs‖An , s ≤ n . (5)

with δs polynomial error indicator

For DLP we may also apply (5), but now δk depend on n via An.

Idea: take n sufficiently large so that An good model for K .
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Multivariate Newton Interpolation Numerical results

Points and error estimation

K = [−1, 1]2.

The Leja points are extracted from the grid of (2n + 1)× (2n + 1)
Chebyshev-Lobatto points, which is an Admissible Mesh of low cardinality,
with C = 2 (cf. BV MJI2011).

The polynomial basis is the tensor product one.

The Lebesgue constant and the interpolation error has been computed on
100× 100 uniform grid of control points.
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Multivariate Newton Interpolation Numerical results

Points and Lebesgue constant

Figure: Left: N = 861 DLP for degree n = 40 on the square, extracted from a 81× 81 Chebyshev-Lobatto grid. Right:
Lebesgue constants of DLP on the square for n = 1, . . . , 40
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Multivariate Newton Interpolation Numerical results

Errors

Figure: Uniform error (circles) and estimate (5) (triangles) of Newton interpolation at DLP on the square for

s = 2, . . . , 40. Left: f (x1, x2) = |(x1 − 1/3)2 + (x2 − 1/3)2|5/2. Right: f (x1, x2) = cos(5(x1 + x2))
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Final greetings

Thanks Robert!
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Final greetings

Robert’s family
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Final greetings

Robert thinking
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Final greetings

THANK YOU ROBERT

ENJOY YOUR FAMILY AND ... MATHEMATICS !
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