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Motivations

Motivations and aims

Computation of near optimal points, for polynomial interpolation in the
multivariate setting, such as Fekete points, ...

(Weakly) Admissible meshes, (W)AM: play a central role in the construction
of multivariate polynomial approximation processes on compact sets.

Theory vs computation: 2-dimensional and (simple) 3-dimensional (W)AMs
are easy to construct. What’s about more general domains such as
(truncated) cones or rotational sets like toroidal domains?
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Fekete points

Notation

K ⊂ Rd (or Cd) compact set or manifold

p = {pj}1≤j≤N , N = dim(Pd
n(K )) polynomial basis

ξ = {ξ1, . . . , ξN} ⊂ K interpolation points

V (ξ,p) = [pj(ξi )] Vandermonde matrix, det(V ) 6= 0

Πnf (x) =
∑N

j=1 f (ξj) `j(x), interpolating polynomial with `j in
determinantal Lagrange formula

`j(x) =
det(V (ξ1, . . . , ξj−1, x , ξj+1, . . . , ξN))

det(V (ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξN))
, `j(ξi ) = δij
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Fekete points

Fekete points: definition and properties

1 Fekete points: |det(V (ξ1, . . . , ξN))| is max in KN .

2 Lebesgue constant Λn = max
x∈K

N∑
j=1

|`j(x)| ≤ N

3 Fekete points (and Lebesgue constants) are independent of the choice
of the basis

4 Fekete points are analytically known only in a few cases.
interval: Gauss-Lobatto points, Λn = O(log n)
complex circle: equispaced points, Λn = O(log n)
cube: for tensor-product polynomials, Λn = O(logd n)

5 recent important result: Fekete points are asymptotically
equidistributed w.r.t. the pluripotential equilibrium measure of K
[Berman/Boucksom/Nyström 2011]

6 open problem: efficient computation, even in the univariate complex
case (large scale optimization problem in N × d variables
[Bos/Sommariva/Vianello 2011])
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Fekete points

Idea

Extract Fekete points from a discretization of K

Which could be a suitable discretizaion of K?
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(Weakly) Admissible Meshes, (W)AM

(Weakly) Admissible Meshes , (W)AM

Definition

An Admissible Mesh for a compact K ⊂ Rd (polynomial determining), is a
sequence of finite discrete subsets An ⊂ K s.t.

‖p‖K ≤ C‖p‖An , ∀p ∈ Pd
n(K ) (1)

holds for some C > 0 with card(An) ≥ N := dim(Pd
n(K )) that grows at most

polynomially with n [Calvi/Levenberg 2008].

A Weakly Admissible Mesh, or WAM, is a mesh for which C = C (An),
growing also polynomially with n.

These sets and inequalities are also known as: (L∞) discrete norming sets,
Marcinkiewicz-Zygmund inequalities, stability inequalities (in more general
functional settings).

Optimal Admissible Meshes: with cardinality O(nd) (e.g. star-like domains
[Kroó 2011], by analytic transf. [Piazzon/Vianello 2011]).
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(Weakly) Admissible Meshes, (W)AM

Weakly Admissible Meshes: properties

P1: C (An) is invariant under affine mappings

P2: good interpolation points are WAMs with C (An) being their Lebesgue
constant (e.g. Chebyshev points in the interval, Padua points on the square)

P3: finite unions and products of WAMs are WAMs for the corresponding unions
and products of compacts, (C (An) being the maximum or the product of
constants)

P4: given a polynomial mapping πm of degree m, then πm(Anm) is a WAM for
πm(K ) with constants C (Anm) (cf. [Bos et al. 2009])

P5: Least-squares polynomial approximation of f ∈ C(K ) on a WAM is near
optimal in the sup norm

‖f − LAn f ‖K / C (An)
√

card(An) En(f ,K )

P6: The Lebesgue constant of Fekete points extracted from a WAM can be
bounded like Λn ≤ NC (An) (often much smaller)
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(Weakly) Admissible Meshes, (W)AM

Discrete Extremal Sets

Idea: extracting a maximum determinant N × N submatrix from the M × N
Vandermonde matrix V = V (a,p) = [pj(ai )]

NP-hard problem

We look for approximate solutions

This can be done by basic numerical linear algebra

Key asymptotic result (cf. [Bos/De Marchi et al. 2010]): Discrete Extremal Sets
extracted from a WAM by the greedy algorithms below, have the same
asymptotic behavior of the true Fekete points

µn :=
1

N

N∑
j=1

δξj
N→∞−−−−→ dµK

where µK is the pluripotential equilibrium measure of K

Stefano De Marchi (DMPA-UNIPD) 3dimensional WAM Hagen, September 27, 2011 9 / 38



Approximate Fekete Points and Discrete Leja Points

Approximate Fekete Points: algorithm

Idea: greedy maximization of submatrix volumes [Sommariva/Vianello 2009]

core: select the largest norm row, rowik (V ), and remove from each row of V
its orthogonal projection onto rowik onto the largest norm one (preserves
volumes as with parallelograms)

implementation: QR factorization with column pivoting [Businger/Golub
1965] applied to V t

Matlab script: w = V ′\ones(1 : N) ; ind = find(w 6= 0); ξ = a(ind)
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Approximate Fekete Points and Discrete Leja Points

Discrete Leja Points: algorithm

Idea: greedy maximization of nested subdeterminants [Bos/DeMarchi/et al.
2010] and already observed in [Schaback/De Marchi 2009].

core: one column step of Gaussian elimination with row pivoting (preserves
the relevant subdeterminants)

implementation: LU factorization with row pivoting

DLP form a sequence. In one variable they correpond to the usual notion
ξk = argmaxz∈An

∏k
j=1 |z − ξj |, k = 2, ...,N

Matlab script: [L,U,σ] = LU(V , “vector”); ind = σ(1 : N); ξ = a(ind)
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1-dimensional WAMs

AFP in one variable

Figure: N = 31 AFP (deg n = 30) from Admissible Meshes on complex domains

Table 1. Numerically estimated Lebesgue constants of interpolation points in
some 1-dimensional real and complex compacts

points n = 10 20 30 40 50 60
N = 11 21 31 41 51 61

equisp intv 29.9 1e+4 6e+6 4e+8 7e+9 1e+10
Fekete intv 2.2 2.6 2.9 3.0 3.2 3.3
AFP intv 2.3 2.8 3.1 3.4 3.6 3.8

AFP 2intvs 3.1 6.3 7.1 7.6 7.5 7.2
AFP 3intvs 4.2 7.9 12.6 6.3 5.8 5.3
AFP disk 2.7 3.0 3.3 3.4 3.5 3.7

AFP triangle 3.2 6.2 5.2 4.8 9.6 6.1
AFP 3disks 5.1 3.0 7.6 10.6 3.8 8.3

AFP 3branches 4.7 3.5 3.8 8.3 5.0 4.8
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2-dimensional WAMs

2-dimensional WAMS: disk, triangle, square

Unit disk: a symmetric polar WAM (invariant by rotations of π/2) is made
by equally spaced angles and Chebyshev-Lobatto points along diameters
[Bos at al. 2009]

card(An) = O(n2) , C (An) = O(log2 n)

Unit simplex: starting from the WAM of the disk for polynomials of degree
2n containing only even powers, by the standard quadratic transformation

(u, v) 7−→ (x , y) = (u2, v 2) .

Square: Chebyshev-Lobatto grid, Padua points.

Notice: by affine transformation these WAMs can be mapped to any other

triangle (P1) or polygon (P4).
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2-dimensional WAMs

Polar symmetric WAMs for the disk

Figure: Left: for degree n = 11 with 144 = (n + 1)2 points. Right: for n = 10
with 121 = (n + 1)2 points.
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2-dimensional WAMs

WAMs for the quadrant and the triangle

Figure: A WAM of the first quadrant for polynomial degree n = 16 (left) and the
corresponding WAM of the simplex for n = 8 (right).

Stefano De Marchi (DMPA-UNIPD) 3dimensional WAM Hagen, September 27, 2011 15 / 38



2-dimensional WAMs

WAMs for a quadrangle

Figure: A WAM for a quadrangular domain for n = 7 obtained by the bilinear
transformation of the Chebyshev–Lobatto grid of the square [−1, 1]2

1
4

[(1−u)(1−v)A+(1+u)(1−v)B+(1+u)(1+v)C+(1−u)(1+v)D]
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2-dimensional WAMs

WAMs for general polygons

Polygon WAMs: by triangulation/quadrangulation

card(An) = O(n2) , C (An) = O(log2 n)

Figure: Left: N = 45 AFP (◦) and DLP (∗) of an hexagon for n = 8 from the WAM (dots) obtained by bilinear
transformation of a 9 × 9 product Chebyshev grid on two quadrangle elements (M = 153 pts); Right: N = 136 AFP (◦) and
DLP (∗) for degree n = 15 in a hand shaped polygon with 37 sides and a 23 element quadrangulation (M ≈ 5500).
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2-dimensional WAMs

Optimal Lebesgue Gauss–Lobatto points on the triangle

A new set of optimal Lebesgue Gauss-Lobatto points on the simplex has recently
been investigated by [Briani/Sommariva/Vianello 2011].
These points minimize the corresponding Lebesgue constant on the simplex, that
grows like O(n).

Figure: The optimal points for n = 14, cardinality (n + 1)(n + 2)/2.
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3-dimensional WAMs Cones (truncated)

WAMs for (truncated) cones

Starting from a 2-dimensional domain WAM, we ”repeat” the mesh along a
Chebsyhev-Lobatto grid of the z-axis, as shown here in my handwritten notes (on
my whiteboard).
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3-dimensional WAMs Cones (truncated)

Why these are WAMs?

From the previous picture

|p(x , y , z)| ≤ C (An)‖p‖A′
n(z) C (An) ≡ C (A′n(z))

‖p‖A′
n(z) = |p(x̂z , ŷz , z)| with (x̂z , ŷz , z) ∈ A′n(z)

≤ C (An)‖p‖`(ξ̂1,ξ̂2) where (ξ̂1, ξ̂2) ∈ An

≤ C (An) max
(x,y)∈An

‖p‖`(x,y)

≤ O(C (An) logn) max
(x,y)∈An

‖p‖Γn = O(C (An) logn)‖p‖Bn

where Γn are the Chebyshev-Lobatto points of l(x , y) and
Bn =

⋃
(x,y)∈An

Γn(`(x , y)).
Cardinality.

#Bn = (n + 1)#An −#An + 1 = 1 + n#An = O(n3)
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3-dimensional WAMs Cones (truncated)

WAMs for a cone

Figure: A WAM for the rectangular cone for n = 7

Here C (An) = O(log2 n) and the cardinality is O(n3)
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3-dimensional WAMs Cones (truncated)

A low dimension WAM for the cube

The cube can be considered as a cylinder with square basis. WAMs for the cube
with dimension O(n3/4) were studied in [DeMarchi/Vianello/Xu 2009] in the
framework of cubature and hyperinterpolation.
A WAM for the cube that for n even has (n + 2)3/4 points and for n odd
(n + 1)(n + 2)(n + 3)/4 points, is shown here for a parallelpiped with n = 4 (here
#An = 54)
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3-dimensional WAMs Cones (truncated)

WAMs for a pyramid

Figure: A WAM for a non-rectangular pyramid and a truncated one, made by
using Padua points for n = 10. Notice the generating curve of Padua points that
becomes a spiral

In this case C (An) = O(log2 n) and the cardinality is O(n3/2)
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3-dimensional WAMs Toroidal sections

3-dimensional WAMs: toroidal sections

Starting from a 2-dimensional WAM, An, by rotation around a vertical axis
sampled at the 2n + 1 Chebyshev-Lobatto points of the arc of circumference, we
get WAMs for the torus, sections of the torus and in general toroids.
The resulting cardinality will be (2n + 1)×#An
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3-dimensional WAMs Toroidal sections

Why these are WAMs?

From the previous ”picture” Given a polynomial p(x , y , z) ∈ P3
n we can write it in

cylindrical coordinates getting

p(x , y , z) = q(r , z , φ) = s(x ′, y ′, φ) ∈ P2,(x′,y ′)
n ⊗ Tφn

since

x iy jxk = (r cosφ)i (r sinφ)jzk(r0 + x ′)i cosi φ(r0 + y ′)j sinj φ(r0 + y ′)k
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3-dimensional WAMs Toroidal sections

WAMs for toroidal sections: points on the disk

Figure: WAM for n = 5 on the torus centered in z0 = 0 of radius r0 = 3, with
−2/3π ≤ θ ≤ 2/3π.

In this case C (An) = O(log2 n) and the cardinality is O(2n3)
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3-dimensional WAMs Toroidal sections

WAMs for toroidal sections: Padua points

Figure: Padua points on the toroidal section with z0 = 0, r0 = 3 and opening
−2/3π ≤ θ ≤ 2/3π.

In this case C (An) = O(log2 n) and the cardinality is O(n3).
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Interpolation, LS & cubature

Interpolation and Least-Squares

1 Positive aspects:

1 AFP (and DLP) are near optimal interpolation points. We know them
also on subarc-based product WAMs on sections of disk,sphere,ball,
torus, such as circular sectors and lenses, spherical caps, quandrangles,
lunes, slices,.... with card(An) = O(nd) and C (An) = O(logk n),
(k = 2 for surfaces, k = 3 for solids) [Bos/Vianello 2011,
Bos/DeMarchi et al 2011]

2 so far, we can construct, by linear algebra approach, polynomial
interpolation and least-square approximation on AFP or DLP up to
degree 30 on solid cones and torus.

2 Negative aspects.

1 Extracting AFP or DLP, is costly!
2 Find good polynomial basis (for cylinders [Wade 2010, De

Marchi/Marchioro/Sommariva 2011]).
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Interpolation, LS & cubature

Cubature

1 For (generalized) solid cones, in literature there exist cubature product rules
with O(n3/8) points, e.g. [Stround 1971]. For the torus with circular and
square cross-section the software STROUD (Matlab and C) by J. Burkardt
2004-2009, implements Stroud formulas for cubature on the solid torus.

2 Our approach, uses as cubature points for torus with square, circular or
triangular cross-sections, the AFP/DLP. Cardinality O(n3/6) instead of
O(n3/2) (tensor product formulas of Burkardt). As polynomial basis we use
tensor product Chebsyhev polynomials.
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Numerical examples

Conic section: disk

K is the solid cone. Given an n, then

The AFP are extracted from a WAM having O(n3) points

The polynomial basis is the tensor product Chebyshev polynomial basis.

The Lebesgue constant and the interpolation error has been computed on a
mesh of control points (consisting of the original WAM with 2n instead of n).

We also computed the

1 least-square operator norm, ‖LAn‖ = maxx∈K
∑M

i=1 |gi (x)| where
gi , i = 1, . . . ,M are a set of generators and M ≥ N = dimP3

n (cf. [Bos/De
Marchi et al. 2010])

2 interpolation sup error ‖f − pn(f )‖∞
3 least-square sup error ‖f − LAn(f )‖∞
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Numerical examples

Runge function on the cone
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Numerical examples

Cosine function on the rectangular cylinder
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Numerical examples

Circular and square toric sections

K is now a toric section. Given n then

The AFP are extracted from a WAM having (n + 1)2(2n + 1) points in the

case of the disk and (n+1)(n+2)
2 (2n + 1) in the case of the square (by using

Padua points).

The polynomial basis is the tensor product Chebyshev polynomial basis.

The Lebesgue constant and the interpolation error has been computed on a
mesh of control points (the original WAM of degree 2n).

We computed as before least-square operator sup-norm, interpolation error

‖f − pn(f )‖∞ and least-square error ‖f − LAn(f )‖∞.
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Numerical examples

Runge function on circular toric cross-section
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Numerical examples

Cosine function on the toric section using Padua points
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Numerical examples

Cubature

Figure: Relatives errors versus cubature points. Left: for the function
f (x , y , z) = cos(x + y + z). Right: for the function
f (x , y , z) =

√
((x − 4)2 + y 2 + z2)3.
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Numerical examples
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Numerical examples

Thank you for your attention

Dolomites Workshop on Constructive Approximation and
Applications 2012, Alba di Canazei 7-12(?) September 2012
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