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Motivations and aims

Well-distributed nodes: there exist various nodal sets for polynomial
interpolation of even degree n in the square Ω = [−1, 1]2 (C.DeM.V.,

AMC04), which turned out to be equidistributed w.r.t. Dubiner metric
(D., JAM95) and which show optimal Lebesgue constant growth.

Efficient interpolant evaluation: the interpolant should be
constructed without solving the Vandermonde system whose
complexity is O(N3), N =

(

n+2
2

)

for each pointwise evaluation. We
look for compact formulae.

Efficient cubature: in particular computation of cubature weights for
non-tensorial cubature formulae.
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The Dubiner metric

The Dubiner metric in the 1D:

µ[−1,1](x , y) = | arccos(x) − arccos(y)|, ∀x , y ∈ [−1, 1] .

By using the Van der Corput-Schaake inequality (1935) for trig. polys.

µ[−1,1](x , y) := sup
‖P‖∞,[−1,1]≤1

1

deg(P)
| arccos(P(x)) − arccos(P(y))| ,

with P ∈ Pn([−1, 1]).

This metric generalizes to compact sets Ω ⊂ R
d , d > 1:

µΩ(x, y) := sup
‖P‖∞,Ω≤1

1

(deg(P))
| arccos(P(x)) − arccos(P(y))| .
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The Dubiner metric

Conjecture(C.DeM.V.AMC04):

Nearly optimal interpolation points on a compact Ω are asymptotically
equidistributed w.r.t. the Dubiner metric on Ω.

Once we know the Dubiner metric on a compact Ω, we have at least a
method for producing ”good” points. Letting x = (x1, x2), y = (y1, y2)

Dubiner metric on the square:

max{| arccos(x1) − arccos(y1)|, | arccos(x2) − arccos(y2)|} ;

Dubiner metric on the disk:
∣

∣

∣

∣

arccos

(

x1y1 + x2y2 +
√

1 − x2
1 − x2

2

√

1 − y2
1 − y2

2

)∣

∣

∣

∣

;
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Dubiner points and Lebesgue constant

496 Dubiner nodes (i.e. degree n=30) and the comparison of Lebesgue constants for Random (RND), Euclidean
(EUC) and Dubiner (DUB) points.
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Euclidean pts, are Leja-like points: max
x∈Ω

min
y∈Xn

‖x − y‖2 .
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Morrow-Patterson points

Let n be a positive even integer. The Morrow-Patterson points
(MP) (cf. M.P. SIAM JNA 78) are the points

xm = cos

(

mπ

n + 2

)

, yk =















cos

(

2kπ

n + 3

)

if m odd

cos

(

(2k − 1)π

n + 3

)

if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1. Note: they are N =

(

n + 2

2

)

.
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Extended Morrow-Patterson points

The Extended Morrow-Patterson points (EMP) (C.DeM.V. AMC
05) are the points

xEMP
m =

1

αn
xMP
m , yEMP

k =
1

βn
yMP
k

αn = cos(π/(n + 2)), βn = cos(π/(n + 3)).
Note: the MP and the EMP points are equally distributed w.r.t.
Dubiner metric on the square [−1, 1]2 and unisolvent for
polynomial interpolation of degree n on the square.
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Padua points

The Padua points (PD) can be defined as follows (C.DeM.V. AMC
05):

xPD
m = cos

(

(m − 1)π

n

)

, yPD
k =















cos

(

(2k − 1)π

n + 1

)

if m odd

cos

(

2(k − 1)π

n + 1

)

if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1, N =

(

n + 2

2

)

.

The PD points are equispaced w.r.t. Dubiner metric on [−1, 1]2.

They are modified Morrow-Patterson points discovered in Padua in
2003 by B.DeM.V.&W.

There are 4 families of PD pts: take rotations of 90 degrees,
clockwise for even degrees and counterclockwise for odd degrees.
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Graphs of MP, EMP, PD pts and their Lebesgue constants
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Left: the graphs of MP, EMP, PD for n = 8. Right: the growth of the corresponding Lebesgue constants.
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Bivariate interpolation problem and Padua Pts

Let P
2
n be the space of bivariate polynomials of total degree ≤ n.

Question: is there a set Ξ ⊂ [−1, 1]2 of points such that:

card(Ξ) = dim(P2
n) = (n+1)(n+2)

2 ;

the problem of finding the interpolation polynomial on Ξ of
degree n is unisolvent;

the Lebesgue constant Λn behaves like log2 n for n → ∞.

Answer: yes, it is the set Ξ = Padn of Padua points.
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Padua points

Let us consider n + 1 Chebyshev–Lobatto points on [−1, 1]

Cn+1 =

{

zn
j = cos

(

(j − 1)π

n

)

, j = 1, . . . , n + 1

}

and the two subsets of points with odd or even indexes

CO
n+1 =

{

zn
j , j = 1, . . . , n + 1, j odd

}

CE
n+1 =

{

zn
j , j = 1, . . . , n + 1, j even

}

Then, the Padua points are the set

Padn = CO
n+1 × CE

n+2 ∪ CE
n+1 × CO

n+2 ⊂ Cn+1 × Cn+2
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The generating curve

There exists an alternative representation as self-intersections and
boundary contacts of the (parametric and periodic) generating
curve:

γ(t) = (− cos((n + 1)t),− cos(nt)), t ∈ [0, π]
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

C odd
n+1 × C even

n+2

Stefano De Marchi Padua points: theory, computation and applications



Motivations and aims
From Dubiner metric to Padua points

Padua points and their properties
Interpolation

Cubature
Numerical results

The generating curve γ(t) (n = 4), is a Lissajous curve
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Lagrange polynomials

The fundamental Lagrange polynomials of the Padua points are

Lξ(x) = wξ (Kn(ξ, x) − Tn(ξ1)Tn(x1)) , Lξ(η) = δξη, ξ, η ∈ Padn

(1)

where

wξ =
1

n(n + 1)
·















1

2
if ξ is a vertex point

1 if ξ is an edge point

2 if ξ is an interior point

{wξ} are weights of cubature formula for the prod. Cheb. measure, exact

”on almost” Pn
2n([−1, 1]2), i.e. pol. orthogonal to T2n(x2)
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Reproducing kernel

Kn(x, y) =

n
∑

k=0

k
∑

j=0

T̂j(x1)T̂k−j(x2)T̂j(y1)T̂k−j(y2) , T̂j =
√

2Tj , j ≥ 1

(2)

is the reproducing kernel of P2
n([−1, 1]2) equipped with the inner product

〈f , g〉 =

∫

[−1,1]2
f (x1, x2)g(x1, x2)

dx1

π
√

1 − x2
1

dx2

π
√

1 − x2
2

,

with reproduction property
∫

[−1,1]2
Kn(x, y)pn(y)w(y)dy = pn(x), ∀pn ∈ P

2
n

w(x) = w(x1, x2) =
1

π
√

1 − x2
1

1

π
√

1 − x2
2
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Lebesgue constant

The Lebesgue constant

Λn = max
x∈[−1,1]2

λn(x), λn(x) =
∑

ξ∈Padn

|Lξ(x)|

is bounded by (cf. BCDeMVX, Numer. Math. 2006)

Λn ≤ C log2 n (3)

(optimal order of growth on a square).
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Interpolant

From the representations (1) (Lagrange poly.) and (2) (reproducing
kernel) the interpolant of a function f : [−1, 1]2 → R is

Lnf (x) =
∑

ξ∈Padn

f (ξ)Lξ(x) =
∑

ξ∈Padn

f (ξ) [wξ (Kn(ξ, x) − Tn(ξ1)Tn(x1))] =

=

n
∑

k=0

k
∑

j=0

cj,k−j T̂j(x1)T̂k−j(x2) −
cn,0

2
T̂n(x1)T̂0(x2) ,

where the coefficients

cj,k−j =
∑

ξ∈Padn

f (ξ)wξT̂j(ξ1)T̂k−j(ξ2), 0 ≤ j ≤ k ≤ n

can be computed once and for all.
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Coefficient matrix

Let us define the coefficient matrix

C0 =















c0,0 c0,1 . . . . . . c0,n

c1,0 c1,1 . . . c1,n−1 0
...

... . .
.

. .
. ...

cn−1,0 cn−1,1 0 . . . 0
cn,0

2 0 . . . 0 0















and for a vector S = (s1, . . . , sm), S ∈ [−1, 1]m, the (n + 1) × m

Chebyshev collocation matrix

T(S) =







T̂0(s1) . . . T̂0(sm)
... . . .

...

T̂n(s1) . . . T̂n(sm)






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Coefficient matrix factorization

Letting Cn+1 the vector of the Chebyshev-Lobatto pts

Cn+1 =
(

zn
1 , . . . , zn

n+1

)

we construct the (n + 1) × (n + 2) matrix

G(f ) = (gr,s) =

{

wξf (zn
r , zn+1

s ) if ξ = (zn
r , zn+1

s ) ∈ Padn

0 if ξ = (zn
r , zn+1

s ) ∈ (Cn+1 × Cn+2) \ Padn

.

Then C0 is essentially the upper-left triangular part of

C(f ) = P1 G(f )PT
2

P1 = T(Cn+1) ∈ R
(n+1)×(n+1) and P2 = T(Cn+2) ∈ R

(n+1)×(n+2).
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Coefficient matrix factorization

Exploiting the fact that the Padua points are union of two Chebyshev
subgrids, we may define the two matrices

G1(f ) =
(

wξf (ξ) , ξ = (zn
r , zn+1

s ) ∈ CE

n+1 × CO

n+2

)

G2(f ) =
(

wξf (ξ) , ξ = (zn
r , zn+1

s ) ∈ CO

n+1 × CE

n+2

)

then we can compute the coefficient matrix as

C(f ) = T(CE

n+1) G1(f ) (T(CO

n+2))
t + T(CO

n+1) G2(f ) (T(CE

n+2))
t

We term this approach as MM, Matrix-Multiplication.
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Coefficient matrix factorization by FFT

cj,l =
∑

ξ∈Padn

f (ξ)wξT̂j(ξ1)T̂l(ξ2) =

n
∑

r=0

n+1
∑

s=0

gr,sT̂j(z
n
r )T̂l(z

n+1
s )

= βj,l

n
∑

r=0

n+1
∑

s=0

gr,s cos
jrπ

n
cos

lsπ

n + 1
= βj,l

M−1
∑

s=0

(

N−1
∑

r=0

g 0
r,s cos

2jrπ

N

)

cos
2lsπ

M

where N = 2n, M = 2(n + 1) and

βj,l =











1 j = l = 0

2 j 6= 0, l 6= 0
√

2 otherwise

g 0
r,s =

{

gr,s 0 ≤ r ≤ n and 0 ≤ s ≤ n + 1

0 r > n or s > n + 1
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Coefficient matrix factorization by FFT

The coefficients cj,l can be computed by a double Discrete Fourier
Transform.

ĝj,s = REAL

(

N−1
∑

r=0

g 0
r,se

−2πijr/N

)

, 0 ≤ j ≤ n, 0 ≤ s ≤ M − 1

cj,l

βj,l
= ˆ̂gj,l = REAL

(

M−1
∑

s=0

ĝj,se
−2πils/M

)

, 0 ≤ j ≤ n, 0 ≤ l ≤ n − j

(4)
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Matlab
R© code for the FFT approach

Input: G ↔ G(f )

Gfhat = real(fft(G,2*n));

Gfhat = Gfhat(1:n+1,:);

Gfhathat =real(fft(Gfhat,2*(n+1),2));

C0f = Gfhathat(:,1:n+1);

C0f =2*C0f; C0f(1,:) = C0f(1,:)/sqrt(2);

C0f(:,1) = C0f(:,1)/sqrt(2);

C0f = fliplr(triu(fliplr(C0f)));

C0f(n+1,1) = C0f(n+1,1)/2;

Output: C0 ↔ C0
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Linear algebra approach vs FFT approach

The construction of the coefficients is performed by a
matrix-matrix product.

It has been easily and efficiently implemented in Fortran77

(by, eventually optimized, BLAS) (cf. CDeMV, TOMS 2008)
and in Matlab

R© (based on optimized BLAS).

The coefficients are approximated Fourier–Chebyshev
coefficients, hence they can be computed by FFT techniques.

FFT is competitive and more stable than the MM approach at
high degrees of interpolation (see later).
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Evaluating the interpolant (in Matlab)

Given a point x = (x1, x2) and the coefficient matrix C0, the
polynomial interpolation formula can be evaluated by a double
matrix-vector product

Lnf (x) = T(x1)
T

C0(f )T(x2)

If X = (X1, X2) (X1,2 column vectors) is a set of target points, then

Lnf (X) = diag
(

(T(X1))
t

C0(f ) T(X2)
)

(5)

The result Lnf (X) is a (column) vector.

If X = X1 × X2 is a Cartesian grid then

Lnf (X) =
(

(T(X1))
t

C0(f ) T(X2)
)t

(6)

The result Lnf (X) is a matrix whose i-th row and j-th column
contains the evaluation of the interpolant as the built-in function
meshgrid of Matlab

R©.
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Beyond the square

The interpolation formula can be extended to other domains
Ω ⊂ R

2, by means of a suitable mapping of the square. Given

σ : [−1,1]2 → Ω

t 7→ x = σ(t)

it is possible to construct the (in general nonpolynomial)
interpolation formula

Lnf (x) = T(σ←1 (x))TC0(f ◦ σ)T(σ←2 (x))
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Cubature

Integration of the interpolant at the Padua points gives a
nontensorial Clenshaw–Curtis cubature formula (cf. SVZ, Numer.
Algorithms 2008)

∫

[−1,1]2
f (x)dx ≈

∫

[−1,1]2
Lnf (x)dx =

n
∑

k=0

k
∑

j=0

c ′j ,k−j mj ,k−j

=
n
∑

j=0

n
∑

l=0

c ′j ,l mj ,l =
n
∑

j even

n
∑

l even

c ′j ,l mj ,l
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Cubature

Where the moments mj ,l are

mj ,l =

∫ 1

−1
T̂j(t)dt

∫ 1

−1
T̂l(t)dt

Since

∫ 1

−1
T̂j(t)dt =



















2 j = 0

0 j odd

2
√

2

1 − j2
j even
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The Matlab
R© code for the cubature

Input: C0f↔ C0(f )

j = [0:2:n];

mom = 2*sqrt(2)./(1-j.^2);

mom(1) = 2;

[M1,M2]=meshgrid(mom);

M = M1.*M2;

C0fM = C0f(1:2:n+1,1:2:n+1).*M;

Int = sum(sum(C0fM));

Output: Int↔ In(f )
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It is often desiderable having a cubature formula involving the function
values at the nodes and the corresponding cubature weights. Using the
formula for the coefficients cj,l , we can write

In(f ) =
∑

ξ∈Padn

λξ f (ξ)

=
∑

ξ∈CE

n+1×CO

n+2

λξ f (ξ) +
∑

ξ∈CO

n+1×CE

n+2

λξ f (ξ)

where

λξ = wξ

n
∑

j even

n
∑

l even

m′
j,l T̂j(ξ1)T̂l(ξ2) (7)
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Cubature

Defining the Chebyshev matrix corresponding to even degrees

T
E(S) =











T̂0(s1) · · · T̂0(sm)

T̂2(s1) · · · T̂2(sm)
... · · ·

...

T̂pn(s1) · · · T̂pn(sm)











∈ R
([ n

2 ]+1)×m

and the matrices of weights on the subgrids,
W1 =

(

wξ, ξ ∈ CE
n+1 × CO

n+2

)t
, W2 =

(

wξ, ξ ∈ CO
n+1 × CE

n+2

)t
, then the

cubature weights {λξ} can be computed in the matrix form

L1 =
(

λξ, ξ ∈ CE

n+1 × CO

n+2

)t
= W1.

(

T
E(CE

n+1))
t

M0 T
E(CO

n+2)
)t

L2 =
(

λξ, ξ ∈ CO

n+1 × CE

n+2

)t
= W2.

(

T
E(CO

n+1))
t

M0 T
E(CE

n+2)
)t

where M0 =
(

m′
j,l

)

(moment matrix) and the dot means that the final

product is made componentwise.
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1 An FFT-based implementation is then feasible, in analogy to what
happens in the univariate case with the Clenshaw-Curtis formula (cf.
Waldvogel, BIT06). The algorithm is quite similar the one for
interpolation.

2 The cubature weights are not all positive, but the negative ones are
few and of small size and

lim
n→∞

∑

ξ∈Padn

|λξ| = 4

i.e. stability and convergence.
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Numerical results

Language: Matlab
R© 7.6.0

Processor: Intel Core2 Duo 2.2GHz.

n 20 40 60 80 100 200 300 400 500
FFT 0.002 0.002 0.002 0.002 0.006 0.029 0.055 0.088 0.137
MM 0.003 0.001 0.003 0.004 0.006 0.022 0.065 0.142 0.206

Table: CPU time (in seconds) for the computation of the interpolation
coefficients at a sequence of degrees.

n 20 40 60 80 100 200 300 400 500
FFT 0.005 0.001 0.003 0.003 0.005 0.025 0.048 0.090 0.142
MM 0.004 0.000 0.001 0.002 0.003 0.010 0.025 0.043 0.071

Table: CPU time (in seconds) for the computation of the cubature
weights at a sequence of degrees.
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degree n
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Figure: Relative errors of interpolation (left) and cubature (right) versus
the interpolation degree for the Franke test function in [0, 1]2, by the
Matrix Multiplication (MM) and the FFT-based algorithms.
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Figure: Relative interpolation errors versus the number of interpolation
points for the Gaussian f (x) = exp (−|x|2) (left) and the C 2 function
f (x) = |x|3 (right) in [−1, 1]2; Tens. CL = Tensorial Chebyshev-Lobatto
interpolation.
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Figure: Relative cubature errors versus the number of cubature points
(CC = Clenshaw-Curtis, GLL = Gauss-Legendre-Lobatto, OS =
Omelyan-Solovyan) for the Gaussian f (x) = exp (−|x|2) (left) and the C 2

function f (x) = |x|3 (right); the integration domain is [−1, 1]2, the
integrals up to machine precision are, respectively: 2.230985141404135
and 2.508723139534059.
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Conclusions

We studied different families of point sets for polynomial
interpolation on the square.

The most promising, from theoretical purposes and
computational cost both of the interpolant and Lebesgue
constant growth are the Padua points.

More on Padua points (papers, software, links) at the CAA
research group:
http://www.math.unipd.it/∼marcov/CAA.html

http://en.wikipedia.org/wiki/Padua points.
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