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Motivations and aims

• Floater and Hormann Rational Interpolant, shortly FHRI, is one of
the most efficient way of constructing a rational interpolant on
equispaced and non-equispaced points and, citing the paper by
Floater and Hormann 2007, it seems to be perfectly stable in
practice. How to show this stability?
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Motivations and aims

• Floater and Hormann Rational Interpolant, shortly FHRI, is one of
the most efficient way of constructing a rational interpolant on
equispaced and non-equispaced points and, citing the paper by
Floater and Hormann 2007, it seems to be perfectly stable in
practice. How to show this stability?

• The Lebesgue constant measures the quality and stability of
interpolation processes. What we know about the growth of the
Lebesgue constant for the FHRI?
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General interpolation process

Given a function f : [a, b] → R, let g be its interpolant at the n + 1
(equispaced) interpolation points

a = x0 < x1 < · · · < xn = b.

Given a set of basis functions bi which satisfy the Lagrange property

bi(xj ) = δij =

{

1, if i = j ,

0, if i 6= j ,

the interpolant g can be written as g(x) =
n

∑

i=0

bi (x)f (xi ).
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The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, say g(x), is very simple.

• Choose any integer d , 0 ≤ d ≤ n

• For each i = 0, 1, . . . , n − d let pi denote the unique polynomial of
degree at most d that interpolates a function f at d + 1 pts
xi , . . . , xi+d

• Then

g(x) =

∑n−d
i=0 ηi (x)pi (x)
∑n−d

i=0 ηi (x)
(1)

where ηi (x) =
(−1)i

i+d
∏

j=i

(x − xj)

.
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The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, say g(x), is very simple.

• Choose any integer d , 0 ≤ d ≤ n

• For each i = 0, 1, . . . , n − d let pi denote the unique polynomial of
degree at most d that interpolates a function f at d + 1 pts
xi , . . . , xi+d

• Then

g(x) =

∑n−d
i=0 ηi (x)pi (x)
∑n−d

i=0 ηi (x)
(1)

where ηi (x) =
(−1)i

i+d
∏

j=i

(x − xj)

.

Thus, g is a local blending of the polynomial interpolants p0, . . . , pn−d with η0, . . . , ηn−d acting as the

blending functions. Notice: for d = n we get the classical polynomial interpolation.
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The Floater-Hormann Rational Interpolant

Assume [a, b] = [0, 1] and interpolation points xi = i/n, i = 0, ..., n.
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The Floater-Hormann Rational Interpolant

Assume [a, b] = [0, 1] and interpolation points xi = i/n, i = 0, ..., n.
As basis functions we take

bi (x) =
(−1)

i
βi

x − xi

/ n
∑

j=0

(−1)
j
βj

x − xj

, i = 0, . . . , n (2)

with β0, . . . , βn that are positive weights defined as

βj =











∑j

k=0

(

d
k

)

, if j ≤ d ,

2d , if d ≤ j ≤ n − d ,

βn−j , if j ≥ n − d .

(3)
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The weights

d = 0 1, 1, . . . , 1, 1

d = 1 1, 2, 2 . . . , 2, 2, 1

d = 2 1, 3, 4, 4, . . . , 4, 4, 3, 1

d = 3 1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1

d = 4 1, 5, 11, 15, 16, 16, . . . , 16, 16, 15, 11, 5, 1
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Properties of the FHRI (cf. FH’s paper, 2007)

1. The FHRI can be written in barycentric form. Indeed, in (1), letting
wi = (−1)iβi , for the numerator we have

n−d
∑

i=0

ηi (x)pi (x) =
n

∑

k=0

wk

x − xk

f (xk )

where

wk =
∑

i∈Ik

(−1)i
i+d
∏

j 6=k,j=i

1

xk − xj

Ik = {i ∈ J, k − d ≤ i ≤ k}, J := {0, ..., n − d}, and similarly for
the denominator

n−d
∑

i=0

ηi (x) =

n
∑

k=0

wk

x − xk
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Properties of the FHRI (cf. FH’s paper, 2007)

1. The FHRI can be written in barycentric form. Indeed, in (1), letting
wi = (−1)iβi , for the numerator we have

n−d
∑

i=0

ηi (x)pi (x) =
n

∑

k=0

wk

x − xk

f (xk )

where

wk =
∑

i∈Ik

(−1)i
i+d
∏

j 6=k,j=i

1

xk − xj

Ik = {i ∈ J, k − d ≤ i ≤ k}, J := {0, ..., n − d}, and similarly for
the denominator

n−d
∑

i=0

ηi (x) =

n
∑

k=0

wk

x − xk

2. The rational interpolant g(x) has no real poles. For d = 0 was
proved by Berrut in 1988.
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Properties of the FHRI (continue)

3. The interpolant reproduces polynomials of degree at most d , while
does not reproduce rational functions (like Runge function)
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Properties of the FHRI (continue)

3. The interpolant reproduces polynomials of degree at most d , while
does not reproduce rational functions (like Runge function)

4. Approximation order O(hd+1) (for f ∈ Cd+2, and this holds also for
non-equispaced points.
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Lebesgue constant. Case d = 0

We wish to derive an upper bound for the Lebesgue function

Λn(x) =
n

∑

i=0

|bi(x)| =
n

∑

i=0

βi

|x − xi |

/∣

∣

∣

∣

n
∑

j=0

(−1)jβj

x − xj

∣

∣

∣

∣

. (4)

that is Λ = max
x∈[0,1]

Λn(x).
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Lebesgue constant. Case d = 0

We wish to derive an upper bound for the Lebesgue function

Λn(x) =
n

∑

i=0

|bi(x)| =
n

∑

i=0

βi

|x − xi |

/∣

∣

∣

∣

n
∑

j=0

(−1)jβj

x − xj

∣

∣

∣

∣

. (4)

that is Λ = max
x∈[0,1]

Λn(x).

Main theorem

Theorem

Let d = 0. Then,

Λ ≤ 2 + log(n).
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The case d = 0: the proof

If x = xk for any k , then Λn(x) = 1.
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The case d = 0: the proof

If x = xk for any k , then Λn(x) = 1.
So let xk < x < xk+1 for some k and consider the function

Λk(x) =

(x − xk )(xk+1 − x)

n
∑

j=0

1

|x − xj |
∣

∣

∣

∣

∣

(x − xk )(xk+1 − x)
n

∑

j=0

(−1)j

x − xj

∣

∣

∣

∣

∣

:=
Nk(x)

Dk(x)
. (5)

Nk (x) = (x − xk )(xk+1 − x)

n
X

j=0

1
˛

˛x − xj

˛

˛

= (x − xk )(xk+1 − x)

0

@

k−1
X

j=0

1

x − xj

+
1

x − xk

+
1

xk+1 − x
+

n
X

j=k+2

1

xj − x

1

A

= (xk+1 − x) + (x − xk ) + (x − xk )(xk+1 − x)

0

@

k−1
X

j=0

1

x − xj

+
n
X

j=k+2

1

xj − x

1

A

= (xk+1 − xk ) + (x − xk )(xk+1 − x)

0

@

k−1
X

j=0

1

x − xj

+
n
X

j=k+2

1

xj − x

1

A .
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The case d = 0: the proof

As the xi are equally spaced 1
xi−xj

= 1
h(i−j) = n

i−j
for any i 6= j , and

(x − xk)(xk+1 − x) ≤
(

h
2

)2
= 1

4n2 for xk < x < xk+1. Therefore,

Nk (x) ≤
1

n
+

1

4n2

0

@

k−1
X

j=0

1

xk − xj

+
n
X

j=k+2

1

xj − xk+1

1

A

=
1

n
+

1

4n2

0

@

k−1
X

j=0

n

k − j
+

n
X

j=k+2

n

j − k − 1

1

A

=
1

n
+

1

4n

„

1

k
+

1

k − 1
+ · · · +

1

1
+

1

1
+

1

2
+ · · · +

1

n − k − 1

«

≤
1

n
+

1

4n

`

log(2k + 1) + log(2n − 2k − 1)
´

=
1

n
+

1

4n
log
`

(2k + 1)(2n − (2k + 1))
´

≤
1

n
+

1

4n
log
`

(2n/2)
2´

=
1

n
+

1

2n
log(n).
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The case d = 0: the proof

Let us consider the denominator Dk(x).
Ignoring the absolute value and assuming, for a moment that both k and
n to be even

Dk (x) = (x − xk )(xk+1 − x)

n
X

j=0

(−1)j

x − xj

= (x − xk )(xk+1 − x)

0

@

k−1
X

j=0

(−1)j

x − xj

+
1

x − xk

+
1

xk+1 − x
−

n
X

j=k+2

(−1)j

xj − x

1

A

= h + (x − xk )(xk+1 − x)

0

@

k−1
X

j=0

(−1)j

x − xj

−
n
X

j=k+2

(−1)j

xj − x

1

A .

Pairing the positive and negative terms

Sk (x) =

k−1
X

j=0

(−1)j

x − xj

−
n
X

j=k+2

(−1)j

xj − x

=
1

x − x0

+

„

1

x − x2

−
1

x − x1

«

+ · · · +

 

1

x − xk−2

−
1

x − xk−3

!

−
1

x − xk−1

−
1

xk+2 − x
+

 

1

xk+3 − x
−

1

xk+4 − x

!

+ · · · +

 

1

xn−1 − x
−

1

xn − x

!

(6)
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The case d = 0: the proof

Since both the leading term and all paired terms are positive, we have

Sk(x) > −
1

x − xk−1
−

1

xk+2 − x
≥ −

1

xk − xk−1
−

1

xk+2 − xk+1
= −2n

and further

Dk(x) = h + (x − xk)(xk+1 − x)Sk (x) ≥
1

n
+

1

4n2
(−2n) =

1

n
−

1

2n
=

1

2n
.

This bound also holds if n is odd and if k is odd.
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The case d = 0: the proof

Therefore, we have |Dk(x)| ≥ 1/(2n) regardless of the parity of k and n,
and combining the bounds for numerator and denominator yields

Λ = max
k=0,...,n

(

max
xk<x<xk+1

Λk(x)

)

≤
1
n

+ 1
2n

log(n)
1
2n

= 2 + log(n).

This completes the proof. �
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Lebesgue constant. The case d ≥ 1

We observe that
βj ≤ 2d , ∀ j .
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Lebesgue constant. The case d ≥ 1

We observe that
βj ≤ 2d , ∀ j .

Then

Nk(x) = (x − xk)(xk+1 − x)

n
∑

j=0

βj

|x − xj |

≤ 2d(x − xk)(xk+1 − x)

n
∑

j=0

1

|x − xj |

≤ 2d

(

1

n
+

1

2n
log(n)

)

,

(7)

for any k .
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For the denominator,

Dk(x) = (x − xk)(xk+1 − x)

n
∑

j=0

(−1)jβj

x − xj
,

it will turn out that |Dk(x)| ≥ 1/n, but the ideas from the proof of
Theorem can be generalized only for a limited range of k.
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The case d ≥ 1: the proof

The proof is based on some technical Lemmas and Propositions
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The case d ≥ 1: the proof

The proof is based on some technical Lemmas and Propositions

Lemma

Let d ≥ 1 and d ≤ k ≤ n − d − 1. Then,

|Dk(x)| ≥
1

n

for xk < x < xk+1.
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The case d ≥ 1: the proof

The proof is based on some technical Lemmas and Propositions

Lemma

Let d ≥ 1 and d ≤ k ≤ n − d − 1. Then,

|Dk(x)| ≥
1

n

for xk < x < xk+1.

It remains to handle the case 0 ≤ k < d , since the case n − d ≤ k < n

follows by symmetry, which is harder (for many reasons).

This requires some Propositions
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The case d ≥ 1: the proof
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The case d ≥ 1: the proof

Proposition

Let d ≥ 1. Then,
n

∑

j=0

(−1)jβj = 0.

Stefano De Marchi On the Lebesgue constant of Floater-Hormann’s



Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The non-equispaced

The case d ≥ 1: the proof

Proposition

Let d ≥ 1. Then,
n

∑

j=0

(−1)jβj = 0.

Proposition

Let d ≥ 1 and p ≥ 1. Then,

n
∑

j=2

(−1)j
j − 1

jp
βj > 0.
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The case d ≥ 1: the proof

Proposition

Let d ≥ 1. Then,
n

∑

j=0

(−1)jβj = 0.

Proposition

Let d ≥ 1 and p ≥ 1. Then,

n
∑

j=2

(−1)j
j − 1

jp
βj > 0.

Notice: For this Proposition we have a complete proof for p = 1, ∀ d while for p ≥ 2 we proved up to d ≤ 4.

But, all numerical experiments confirm the claim!
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The case d ≥ 1: the proof
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The case d ≥ 1: the proof

Lemma

Let d ≥ 1. Then,

D0(x) = (x − x0)(x1 − x)

n
∑

j=0

(−1)jβj

x − xj
≥

1

n

for x0 ≤ x ≤ x1

The main idea of this proof can also be applied to handle the
remaining case 0 < k < d . Note that this range of k is empty for
d = 1, hence we assume d ≥ 2.
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The case d ≥ 1: the proof

Lemma

Let d ≥ 1. Then,

D0(x) = (x − x0)(x1 − x)

n
∑

j=0

(−1)jβj

x − xj
≥

1

n

for x0 ≤ x ≤ x1

The main idea of this proof can also be applied to handle the
remaining case 0 < k < d . Note that this range of k is empty for
d = 1, hence we assume d ≥ 2.
To this aim we proved other three properties of the weights βj
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Further properties of the weights βj

1. Let d ≥ 2 and 0 ≤ k ≤ n − 2, then

n
∑

j=0

(−1)j (j + 1)βk−j ≥ 1 .
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Further properties of the weights βj

1. Let d ≥ 2 and 0 ≤ k ≤ n − 2, then

n
∑

j=0

(−1)j (j + 1)βk−j ≥ 1 .

2. Let d ≥ 2 , then
n

∑

j=1

(−1)j j βj = 0 .
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Further properties of the weights βj

1. Let d ≥ 2 and 0 ≤ k ≤ n − 2, then

n
∑

j=0

(−1)j (j + 1)βk−j ≥ 1 .

2. Let d ≥ 2 , then
n

∑

j=1

(−1)j j βj = 0 .

3. Let d ≥ 1, 2 ≤ k ≤ n and p ≥ 1 , then

n
∑

j=2

(−1)j
j − 1

jp
βk−j > 0 .

Stefano De Marchi On the Lebesgue constant of Floater-Hormann’s



Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The non-equispaced

The case d ≥ 1: the proof

Lemma

Let d ≥ 2 and 0 < k < d. Then,

|Dk(x)| ≥
2

n

for xk ≤ x ≤ xk+1
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The theorem for d ≥ 1

Theorem

Let d ≥ 1. Then,

Λ ≤ 2d−1
(

2 + log(n)
)

.

Proof.

Using the bound on the numerator of Λk(x) in (7) and the common
bound on the denominator derived in the Lemmas for all possible values
of k , we conclude that

Λ = max
k=0,...,n

(

max
xk<x<xk+1

Λk(x)

)

≤
2d

(

1
n

+ 1
2n

log(n)
)

1
n

= 2d−1
(

2 + log(n)
)

.
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The theorem for d ≥ 1

Theorem

Let d ≥ 1. Then,

Λ ≤ 2d−1
(

2 + log(n)
)

.

Proof.

Using the bound on the numerator of Λk(x) in (7) and the common
bound on the denominator derived in the Lemmas for all possible values
of k , we conclude that

Λ = max
k=0,...,n

(

max
xk<x<xk+1

Λk(x)

)

≤
2d

(

1
n

+ 1
2n

log(n)
)

1
n

= 2d−1
(

2 + log(n)
)

.

Note that for d = 1 this is the same bound as for d = 0, which is consistent with the numerical experiments that

shows that both cases have a similar Lebesgue constant.
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The Lebesgue function

Figure: Lebesgue function for 8 uniform points for d = 0 (above) and d = 1 (below).
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The Lebesgue function

Figure: Lebesgue function for 8 uniform points for d = 3.
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The Lebesgue function

From graphs, in [−1, 1], we see that the maximum of the Lebesgue
function is taken (moreless) at

x∗ =















1/n n = 4k

2/n n = 4k + 1
3/n n = 4k + 2
0 n = 4k + 3

for some k ∈ N and so Λ =
∑n

i=0 |bi (x
∗)| := Λn(x

∗).
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The Lebesgue function

From graphs, in [−1, 1], we see that the maximum of the Lebesgue
function is taken (moreless) at

x∗ =















1/n n = 4k

2/n n = 4k + 1
3/n n = 4k + 2
0 n = 4k + 3

for some k ∈ N and so Λ =
∑n

i=0 |bi (x
∗)| := Λn(x

∗).
In particular, for n=4k+3,

Λn(0) =

∑n

i=0 1/|xi |
∣

∣

∑n
i=0(−1)i/|xi |

∣

∣

=

∑2k

i=0 1/(n − 2i)
∣

∣

∣

∑2k

i=0(−1)i/(n − 2i)
∣

∣

∣

=

(

∑2k

i=0 1/(2i + 1) − 1/(2n)
)

∣

∣

∣

∑2k
i=0(−1)i/(2i + 1) − 1/(2n)

∣

∣

∣
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The Lebesgue function

Since since
m

∑

i=0

1

2i + 1
∼

log(m)

2
as m → ∞

and
∞
∑

i=0

(−1)i

2i + 1
=

π

4
,

we get the asymptotic estimate

Λ ∼
2

π
log(n) as n → ∞.
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The Lebesgue function

Since since
m

∑

i=0

1

2i + 1
∼

log(m)

2
as m → ∞

and
∞
∑

i=0

(−1)i

2i + 1
=

π

4
,

we get the asymptotic estimate

Λ ∼
2

π
log(n) as n → ∞.

The same is true for the other three cases. In fact, the Lebesgue function becomes

Λn(x
∗
) =

0

@

2k
X

i=0

1

1 + 2i
−

an

4

1

A

ffi

0

@

2k
X

i=0

(−1)i

1 + 2i
−

bn

4

1

A ,

where

an =

8

>

>

>

>

<

>

>

>

>

:

1
n−1

+ 3
n+1

, if n = 4k,
2
n
, if n = 4k + 1,
1

n−1
− 1

n+1
, if n = 4k + 2,

1
n−2

− 2
n
− 1

n+2
, if n = 4k + 3,

and bn =

8

>

>

>

>

<

>

>

>

>

:

− 1
n−1

+ 3
n+1

, if n = 4k,
2
n

, if n = 4k + 1,
1

n−1
+ 1

n+1
, if n = 4k + 2,

1
n−2

+ 2
n
− 1

n+2
, if n = 4k + 3.
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Lebesgue constant growth

Figure: Lebesgue constant for uniformly distributed points.
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Lebesgue constant growth

Figure: Lebesgue constant on Chebyshev points. Left: Chebyshev points with weights (−1)iβi . Right: here
the weights are the ones constructed on non-equispaced points, garanteeing the approximation order d + 1
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Lebesgue constant growth

Figure: Lebesgue constant on logarithmically distributed points. Left: with weights (−1)i βi . Right: here the
weights are the ones constructed on non-equispaced points, garanteeing the approximation order d + 1
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Points equally spaced w.r.t. a distribution

Consider the interval I = [0, 1] and a distribution function F ∈ C1(I )

• F (0) = 0, F (1) = 1 and F is strictly increasing.

Stefano De Marchi On the Lebesgue constant of Floater-Hormann’s



Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The non-equispaced

Points equally spaced w.r.t. a distribution

Consider the interval I = [0, 1] and a distribution function F ∈ C1(I )

• F (0) = 0, F (1) = 1 and F is strictly increasing.

• F (x) =
∫ x

0
w(x)dx for a certain w ∈ C[0, 1], w(x) > 0, x ∈ I
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Points equally spaced w.r.t. a distribution

Consider the interval I = [0, 1] and a distribution function F ∈ C1(I )

• F (0) = 0, F (1) = 1 and F is strictly increasing.

• F (x) =
∫ x

0
w(x)dx for a certain w ∈ C[0, 1], w(x) > 0, x ∈ I

The points

xj := F−1

(

j

n

)

, 0 ≤ j ≤ n

are said to be equally spaced according to F .
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Points equally spaced w.r.t. a distribution

Lemma

If f ∈ C[0, 1] then

lim
n→∞

1

n

n
∑

j=0

f (xj) =

∫ 1

0

f (x)w(x)dx
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Points equally spaced w.r.t. a distribution

Lemma

If f ∈ C[0, 1] then

lim
n→∞

1

n

n
∑

j=0

f (xj) =

∫ 1

0

f (x)w(x)dx

Proof The key observation is that 1
n

∑n

j=0 f (xj) = 1
n

∑n

j=0 f (F−1(j/n)) is

a Riemann sum for f ◦ F−1 ∈ C[0, 1] and hence

lim
n→∞

1

n

n
∑

j=0

f (xj) =

∫ 1

0

f (F−1(t))dt .

But x = F−1(t), then dx =
(

d
dt

F−1(t)
)

dt = dt
F ′(F−1(t)) = dt

w(t) . Then,

dt = w(x)dx . �
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Points equally spaced w.r.t. a distribution

Lemma

Suppose that k , n → ∞ in such a way that xk = F−1(k/n) and

xk+1 = F−1((k + 1)/n) both tend to x = F−1(a). Then,

lim
n→∞

nhk = (F−1)′(x) =
1

w(x)
.

where hk = xk+1 − xk .
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Points equally spaced w.r.t. a distribution

Lemma

Suppose that k , n → ∞ in such a way that xk = F−1(k/n) and

xk+1 = F−1((k + 1)/n) both tend to x = F−1(a). Then,

lim
n→∞

nhk = (F−1)′(x) =
1

w(x)
.

where hk = xk+1 − xk .

Proof

n hk = n(xk+1 − xk ) = n
(

F−1((k + 1)/n) − F−1(k/n)
)

=
F−1((k + 1)/n) − F−1(k/n)

1/n
= F−1

[

k + 1

n
,
k

n

]

= (F−1)′(cn), for cn

Hence, lim
n→∞

n hk = lim
n→∞

(F−1)′(cn) = (F−1)′(a) as cn → a. But

(F−1)′(a) = 1
F ′(F−1(a)) = 1

w(F−1(a)) = 1
w(x) , �

Stefano De Marchi On the Lebesgue constant of Floater-Hormann’s



Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The non-equispaced

Points equally spaced w.r.t. a distribution

Note also that, as (F−1)′(t) =
1

w(F−1(t))
> 0 and it is

continuous (by assumption) then there exist two positive constants
c1, c2 so that

c1 < nhk < c2 .
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Points equally spaced w.r.t. a distribution

Theorem

Suppose that the distribution F and the density w are as above and that, as before,

x
(n)
j

= F−1(j/n), 0 ≤ j ≤ n. Let

bi (x) =
(−1)i βi

x − xi

ffi n
X

j=0

(−1)j βj

x − xj

, i = 0, . . . , n, Λn(x) =
n
X

i=0

|bi (x)| , (8)

and, for xk < x < xk+1

Λk (x) =

(x − xk )(xk+1 − x)
n
X

j=0

1
˛

˛x − xj

˛

˛

˛

˛

˛

˛

˛

(x − xk )(xk+1 − x)
n
X

j=0

(−1)j

x − xj

˛

˛

˛

˛

˛

.

Then, there is a constant C such that

Λn(x) ≤ C log(n), x ∈ [0, 1] . (9)
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Numerical Quadrature

On I = [−1, 1]

1. we computed integrals with the quadrature based on the FHRI, on
equispaced points at different values of n end/or d
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Numerical Quadrature

On I = [−1, 1]

1. we computed integrals with the quadrature based on the FHRI, on
equispaced points at different values of n end/or d

2. to speed up the quadrature, the quadrature weights were computed
by a Gaussian quadrature rule (Gautschi software in Matlab)
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Numerical Quadrature

On I = [−1, 1]

1. we computed integrals with the quadrature based on the FHRI, on
equispaced points at different values of n end/or d

2. to speed up the quadrature, the quadrature weights were computed
by a Gaussian quadrature rule (Gautschi software in Matlab)

3. from numerical experiments, the weights are all positive (this has to
be proved !)
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Numerical Quadrature

The table below shows the quadrature relative errors for d = 0 (left) and
d = 3 (right) at different n, for the Runge function. errS=quadrature
relative error by using cubic splines

n err (d=0) err (d=3) errS
10 3.5e-3 1.1e-2 7.2e-3
30 1.1e-4 1.6e-6 5.9e-5
50 7.6e-6 2.6e-8 3.2e-7
100 3.6e-7 7.9e-10 2.4e-8
150 4.9e-7 1.0e-10 1.5e-9
200 5.4e-7 2.4e-11 6.4e-11
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Numerical Quadrature

About the quadrature weights. Georges Klein, a PhD student of
Jean-Paul Berrut, proved numerically that the weights are all
positive at least for d ≤ n ≤ 1250 and 0 ≤ d ≤ 5. For other values
of d and n, there might be a few negative weights, the number of
which increases slowly with d and n.
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