On the Lebesgue constant of Floater-Hormann's rational interpolant on equispaced points *

Stefano De Marchi

Department of Pure and Applied Mathematics University of Padova

Oslo, September 27, 2010

^{*} Joint work with L. Bos (Verona), K. Hormann (Lugano)

Outline

Motivations

FHRI Floater-Hormann RI

The Lebesgue Constant d = 0d > 0

Numerical results Equispaced points

Lebesgue constant growth The non-equispaced case

An application

Motivations and aims

• Floater and Hormann Rational Interpolant, shortly FHRI, is one of the most efficient way of constructing a rational interpolant on equispaced and non-equispaced points and, citing the paper by Floater and Hormann 2007, *it seems to be perfectly stable in practice.* How to show this stability?

Motivations and aims

- Floater and Hormann Rational Interpolant, shortly FHRI, is one of the most efficient way of constructing a rational interpolant on equispaced and non-equispaced points and, citing the paper by Floater and Hormann 2007, *it seems to be perfectly stable in practice.* How to show this stability?
- The Lebesgue constant measures the quality and stability of interpolation processes. What we know about the growth of the Lebesgue constant for the FHRI?

Main references

- J.-P. Berrut and H. D. Mittelmann, Lebesgue Constant Minimizing Linear Rational Interpolation of Continuous Functions over the Interval, Computers Math. Appl. 33(6) (1997), 77–86.
- Michael S. Floater and Kai Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math. 107(2) (2007), 315–331.
- Q. Wang, P. Moin and G. laccarino, A rational interpolation scheme with super-polynomial rate of convergence, Annual Research Brief 2008, Centre for Turbulence Research, 31–54.
- J. M. Carnicer, Weighted interpolation for equidistant points, Numer. Algorithms 55(2-3) (2010), 223–232.

General interpolation process

Given a function $f : [a, b] \to \mathbb{R}$, let g be its interpolant at the n + 1 (equispaced) interpolation points

$$a = x_0 < x_1 < \cdots < x_n = b.$$

Given a set of *basis functions* b_i which satisfy the *Lagrange property*

$$b_i(x_j) = \delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases}$$

the interpolant g can be written as $g(x) = \sum_{i=0}^{n} b_i(x)f(x_i)$.

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, say g(x), is very simple.

- Choose any integer d, 0 ≤ d ≤ n
- For each i = 0, 1, ..., n d let p_i denote the unique polynomial of degree at most d that interpolates a function f at d + 1 pts x_i,..., x_{i+d}
- Then

$$g(x) = \frac{\sum_{i=0}^{n-d} \eta_i(x) p_i(x)}{\sum_{i=0}^{n-d} \eta_i(x)}$$
(1)

where
$$\eta_i(x) = \frac{(-1)^i}{\prod\limits_{j=i}^{i+d} (x - x_j)}.$$

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, say g(x), is very simple.

- Choose any integer d, 0 ≤ d ≤ n
- For each i = 0, 1, ..., n d let p_i denote the unique polynomial of degree at most d that interpolates a function f at d + 1 pts x_i,..., x_{i+d}
- Then

$$g(x) = \frac{\sum_{i=0}^{n-d} \eta_i(x) p_i(x)}{\sum_{i=0}^{n-d} \eta_i(x)}$$
(1)

where
$$\eta_i(x) = \frac{(-1)^i}{\prod\limits_{j=i}^{i+d} (x-x_j)}.$$

Thus, g is a local blending of the polynomial interpolants p_0, \ldots, p_{n-d} with $\eta_0, \ldots, \eta_{n-d}$ acting as the blending functions. Notice: for d = n we get the classical polynomial interpolation.

The Floater-Hormann Rational Interpolant

Assume [a, b] = [0, 1] and interpolation points $x_i = i/n$, i = 0, ..., n.

The Floater-Hormann Rational Interpolant

Assume [a, b] = [0, 1] and interpolation points $x_i = i/n$, i = 0, ..., n. As basis functions we take

$$b_i(x) = \frac{(-1)^i \beta_i}{x - x_i} \bigg/ \sum_{j=0}^n \frac{(-1)^j \beta_j}{x - x_j}, \qquad i = 0, \dots, n$$
(2)

with β_0, \ldots, β_n that are positive weights defined as

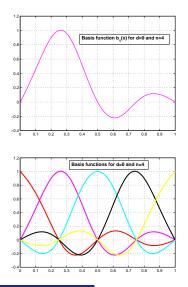
$$\beta_{j} = \begin{cases} \sum_{k=0}^{j} \binom{d}{k}, & \text{if } j \leq d, \\ 2^{d}, & \text{if } d \leq j \leq n-d, \\ \beta_{n-j}, & \text{if } j \geq n-d. \end{cases}$$
(3)

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The n

The weights

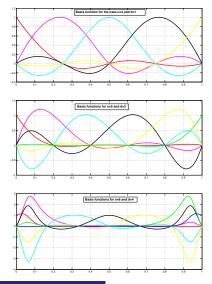
<i>d</i> = 0	$1,1,\ldots,1,1$
d = 1	$1, 2, 2 \dots, 2, 2, 1$
<i>d</i> = 2	$1, 3, 4, 4, \ldots, 4, 4, 3, 1$
<i>d</i> = 3	$1, 4, 7, 8, 8, \dots, 8, 8, 7, 4, 1$
<i>d</i> = 4	$1, 5, 11, 15, 16, 16, \ldots, 16, 16, 15, 11, 5, 1$

Basis functions



Stefano De Marchi

Basis functions



Stefano De Marchi

Properties of the FHRI (cf. FH's paper, 2007)

1. The FHRI can be written in barycentric form. Indeed, in (1), letting $w_i = (-1)^i \beta_i$, for the numerator we have

$$\sum_{i=0}^{n-d} \eta_i(x) p_i(x) = \sum_{k=0}^{n} \frac{w_k}{x - x_k} f(x_k)$$

where

$$w_k = \sum_{i \in I_k} (-1)^i \prod_{j \neq k, j=i}^{i+d} \frac{1}{x_k - x_j}$$

 $I_k = \{i \in J, k - d \le i \le k\}, J := \{0, ..., n - d\}$, and similarly for the denominator

$$\sum_{i=0}^{n-d} \eta_i(x) = \sum_{k=0}^n \frac{w_k}{x - x_k}$$

Properties of the FHRI (cf. FH's paper, 2007)

1. The FHRI can be written in barycentric form. Indeed, in (1), letting $w_i = (-1)^i \beta_i$, for the numerator we have

$$\sum_{i=0}^{n-d} \eta_i(x) p_i(x) = \sum_{k=0}^n \frac{w_k}{x - x_k} f(x_k)$$

where

$$w_k = \sum_{i \in I_k} (-1)^i \prod_{j \neq k, j=i}^{i+d} \frac{1}{x_k - x_j}$$

 $I_k = \{i \in J, k - d \le i \le k\}, J := \{0, ..., n - d\}$, and similarly for the denominator

$$\sum_{i=0}^{n-d} \eta_i(x) = \sum_{k=0}^n \frac{w_k}{x - x_k}$$

2. The rational interpolant g(x) has no real poles. For d = 0 was proved by Berrut in 1988.

Properties of the FHRI (continue)

3. The interpolant reproduces polynomials of degree at most *d*, while does not reproduce rational functions (like Runge function)

Properties of the FHRI (continue)

- 3. The interpolant reproduces polynomials of degree at most *d*, while does not reproduce rational functions (like Runge function)
- 4. Approximation order $\mathcal{O}(h^{d+1})$ (for $f \in C^{d+2}$, and this holds also for non-equispaced points.

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The m

Lebesgue constant. Case d = 0

We wish to derive an upper bound for the Lebesgue function

$$\Lambda_n(x) = \sum_{i=0}^n |b_i(x)| = \sum_{i=0}^n \frac{\beta_i}{|x-x_i|} \Big/ \Big| \sum_{j=0}^n \frac{(-1)^j \beta_j}{|x-x_j|} \Big|.$$
(4)

that is $\Lambda = \max_{x \in [0,1]} \Lambda_n(x).$

Lebesgue constant. Case d = 0

We wish to derive an upper bound for the Lebesgue function

$$\Lambda_n(x) = \sum_{i=0}^n |b_i(x)| = \sum_{i=0}^n \frac{\beta_i}{|x - x_i|} \bigg/ \bigg| \sum_{j=0}^n \frac{(-1)^j \beta_j}{|x - x_j|} \bigg|.$$
(4)

that is
$$\Lambda = \max_{x \in [0,1]} \Lambda_n(x)$$
.
Main theorem

THEOREM

Let d = 0. Then,

 $\Lambda \leq 2 + \log(n).$

If $x = x_k$ for any k, then $\Lambda_n(x) = 1$.

If $x = x_k$ for any k, then $\Lambda_n(x) = 1$. So let $x_k < x < x_{k+1}$ for some k and consider the function

$$\Lambda_k(x) = \frac{(x - x_k)(x_{k+1} - x)\sum_{j=0}^n \frac{1}{|x - x_j|}}{\left| (x - x_k)(x_{k+1} - x)\sum_{j=0}^n \frac{(-1)^j}{x - x_j} \right|} := \frac{N_k(x)}{D_k(x)}.$$
 (5)

$$\begin{split} N_k(x) &= (x - x_k)(x_{k+1} - x) \sum_{j=0}^n \frac{1}{|x - x_j|} \\ &= (x - x_k)(x_{k+1} - x) \left(\sum_{j=0}^{k-1} \frac{1}{x - x_j} + \frac{1}{x - x_k} + \frac{1}{x_{k+1} - x} + \sum_{j=k+2}^n \frac{1}{x_j - x} \right) \\ &= (x_{k+1} - x) + (x - x_k) + (x - x_k)(x_{k+1} - x) \left(\sum_{j=0}^{k-1} \frac{1}{x - x_j} + \sum_{j=k+2}^n \frac{1}{x_j - x} \right) \\ &= (x_{k+1} - x_k) + (x - x_k)(x_{k+1} - x) \left(\sum_{j=0}^{k-1} \frac{1}{x - x_j} + \sum_{j=k+2}^n \frac{1}{x_j - x} \right). \end{split}$$

As the
$$x_i$$
 are equally spaced $\frac{1}{x_i - x_j} = \frac{1}{h(i-j)} = \frac{n}{i-j}$ for any $i \neq j$, and $(x - x_k)(x_{k+1} - x) \leq \left(\frac{h}{2}\right)^2 = \frac{1}{4n^2}$ for $x_k < x < x_{k+1}$. Therefore,

$$\begin{split} \mathsf{N}_{k}(\mathsf{x}) &\leq \frac{1}{n} + \frac{1}{4n^{2}} \left(\sum_{j=0}^{k-1} \frac{1}{x_{k} - x_{j}} + \sum_{j=k+2}^{n} \frac{1}{x_{j} - x_{k+1}} \right) \\ &= \frac{1}{n} + \frac{1}{4n^{2}} \left(\sum_{j=0}^{k-1} \frac{n}{k-j} + \sum_{j=k+2}^{n} \frac{n}{j-k-1} \right) \\ &= \frac{1}{n} + \frac{1}{4n} \left(\frac{1}{k} + \frac{1}{k-1} + \dots + \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n-k-1} \right) \\ &\leq \frac{1}{n} + \frac{1}{4n} \left(\log(2k+1) + \log(2n-2k-1) \right) \\ &= \frac{1}{n} + \frac{1}{4n} \log((2k+1)(2n-(2k+1))) \\ &\leq \frac{1}{n} + \frac{1}{4n} \log((2n/2)^{2}) \\ &= \frac{1}{n} + \frac{1}{2n} \log(n). \end{split}$$

The case $\mathbf{d} = \mathbf{0}$: the proof

Let us consider the denominator $D_k(x)$. Ignoring the absolute value and assuming, for a moment that both k and n to be even

$$\begin{aligned} D_k(x) &= (x - x_k)(x_{k+1} - x) \sum_{j=0}^n \frac{(-1)^j}{x - x_j} \\ &= (x - x_k)(x_{k+1} - x) \left(\sum_{j=0}^{k-1} \frac{(-1)^j}{x - x_j} + \frac{1}{x - x_k} + \frac{1}{x_{k+1} - x} - \sum_{j=k+2}^n \frac{(-1)^j}{x_j - x_j} \right) \\ &= h + (x - x_k)(x_{k+1} - x) \left(\sum_{j=0}^{k-1} \frac{(-1)^j}{x - x_j} - \sum_{j=k+2}^n \frac{(-1)^j}{x_j - x} \right). \end{aligned}$$

Pairing the positive and negative terms

$$S_{k}(x) = \sum_{j=0}^{k-1} \frac{(-1)^{j}}{x - x_{j}} - \sum_{j=k+2}^{n} \frac{(-1)^{j}}{x_{j} - x}$$

$$= \frac{1}{x - x_{0}} + \left(\frac{1}{x - x_{2}} - \frac{1}{x - x_{1}}\right) + \dots + \left(\frac{1}{x - x_{k-2}} - \frac{1}{x - x_{k-3}}\right) - \frac{1}{x - x_{k-1}}$$

$$- \frac{1}{x_{k+2} - x} + \left(\frac{1}{x_{k+3} - x} - \frac{1}{x_{k+4} - x}\right) + \dots + \left(\frac{1}{x_{n-1} - x} - \frac{1}{x_{n} - x}\right)$$
(6)

Since both the leading term and all paired terms are positive, we have

$$S_k(x) > -\frac{1}{x - x_{k-1}} - \frac{1}{x_{k+2} - x} \ge -\frac{1}{x_k - x_{k-1}} - \frac{1}{x_{k+2} - x_{k+1}} = -2n$$

and further

$$D_k(x) = h + (x - x_k)(x_{k+1} - x)S_k(x) \ge \frac{1}{n} + \frac{1}{4n^2}(-2n) = \frac{1}{n} - \frac{1}{2n} = \frac{1}{2n}.$$

This bound also holds if n is odd and if k is odd.

The case $\mathbf{d} = \mathbf{0}$: the proof

Therefore, we have $|D_k(x)| \ge 1/(2n)$ regardless of the parity of k and n, and combining the bounds for numerator and denominator yields

$$\Lambda = \max_{k=0,...,n} \left(\max_{x_k < x < x_{k+1}} \Lambda_k(x) \right) \le \frac{\frac{1}{n} + \frac{1}{2n} \log(n)}{\frac{1}{2n}} = 2 + \log(n).$$

This completes the proof. \Box

Lebesgue constant. The case $d \geq 1$

We observe that

$$\beta_j \leq 2^d, \ \forall j.$$

Lebesgue constant. The case $d \geq 1$

We observe that

$$\beta_j \leq 2^d, \ \forall j.$$

Then

$$N_{k}(x) = (x - x_{k})(x_{k+1} - x) \sum_{j=0}^{n} \frac{\beta_{j}}{|x - x_{j}|}$$

$$\leq 2^{d}(x - x_{k})(x_{k+1} - x) \sum_{j=0}^{n} \frac{1}{|x - x_{j}|}$$

$$\leq 2^{d} \left(\frac{1}{n} + \frac{1}{2n}\log(n)\right),$$
(7)

for any k.

For the **denominator**,

$$D_k(x) = (x - x_k)(x_{k+1} - x) \sum_{j=0}^n \frac{(-1)^j \beta_j}{x - x_j},$$

it will turn out that $|D_k(x)| \ge 1/n$, but the ideas from the proof of THEOREM can be generalized only for a limited range of k.

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The n

The case $d \geq 1$: the proof

The proof is based on some technical Lemmas and Propositions

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The m

The case $d \geq 1$: the proof

The proof is based on some technical Lemmas and Propositions

Lemma Let $d \ge 1$ and $d \le k \le n - d - 1$. Then, $|D_k(x)| \ge \frac{1}{n}$

for $x_k < x < x_{k+1}$.

The proof is based on some technical Lemmas and Propositions

Lemma Let $d \ge 1$ and $d \le k \le n - d - 1$. Then, $|D_k(x)| \ge \frac{1}{n}$

for $x_k < x < x_{k+1}$.

It remains to handle the case $0 \le k < d$, since the case $n - d \le k < n$ follows by symmetry, which is harder (for many reasons). This requires some *Propositions*

Proposition

Let $d \ge 1$. Then,

$$\sum_{j=0}^{n} (-1)^{j} \beta_{j} = 0.$$

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The m

The case $d \geq 1$: the proof

Proposition

Let $d \ge 1$. Then,

$$\sum_{j=0}^{n} (-1)^{j} \beta_{j} = 0.$$

Proposition

Let $d \ge 1$ and $p \ge 1$. Then,

$$\sum_{j=2}^{n} (-1)^{j} \frac{j-1}{j^{p}} \beta_{j} > 0.$$

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The m

The case $d \geq 1$: the proof

Proposition

Let $d \geq 1$. Then,

$$\sum_{j=0}^{n} (-1)^{j} \beta_{j} = 0.$$

Proposition

Let $d \ge 1$ and $p \ge 1$. Then,

$$\sum_{j=2}^{n} (-1)^{j} \frac{j-1}{j^{p}} \beta_{j} > 0.$$

Notice: For this Proposition we have a complete proof for p = 1, $\forall d$ while for $p \ge 2$ we proved up to $d \le 4$.

But, all numerical experiments confirm the claim!

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The m

The case $d \geq 1$: the proof

Lemma

Let $d \ge 1$. Then,

$$D_0(x) = (x - x_0)(x_1 - x) \sum_{j=0}^n \frac{(-1)^j \beta_j}{x - x_j} \ge \frac{1}{n}$$

for $x_0 \leq x \leq x_1$

The main idea of this proof can also be applied to handle the remaining case 0 < k < d. Note that this range of k is empty for d = 1, hence we assume $d \ge 2$.

The case $d \geq 1$: the proof

Lemma

Let $d \ge 1$. Then,

$$D_0(x) = (x - x_0)(x_1 - x) \sum_{j=0}^n \frac{(-1)^j \beta_j}{x - x_j} \ge \frac{1}{n}$$

for $x_0 \leq x \leq x_1$

The main idea of this proof can also be applied to handle the remaining case 0 < k < d. Note that this range of k is empty for d = 1, hence we assume $d \ge 2$. To this aim we proved other three properties of the weights β_i

Further properties of the weights β_i

1. Let $d \ge 2$ and $0 \le k \le n-2$, then

$$\sum_{j=0}^{n} (-1)^{j} (j+1) \beta_{k-j} \ge 1.$$

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The n

Further properties of the weights β_i

1. Let
$$d \ge 2$$
 and $0 \le k \le n-2$, then

$$\sum_{j=0}^{n} (-1)^{j} (j+1) \beta_{k-j} \ge 1.$$

2. Let $d \geq 2$, then

$$\sum_{j=1}^{n} (-1)^{j} j \beta_{j} = 0.$$

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The n

Further properties of the weights β_i

1. Let
$$d \ge 2$$
 and $0 \le k \le n-2$, then

$$\sum_{j=0}^{n} (-1)^{j} (j+1) \beta_{k-j} \ge 1.$$

2. Let
$$d \geq 2$$
 , then $\sum_{j=1}^n (-1)^j j \; eta_j = 0 \, .$

3. Let $d \geq 1$, $2 \leq k \leq n$ and $p \geq 1$, then

$$\sum_{j=2}^{n} (-1)^{j} \frac{j-1}{j^{p}} \beta_{k-j} > 0.$$

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The r

The case $d \geq 1$: the proof

Lemma

Let $d \ge 2$ and 0 < k < d. Then,

$$|D_k(x)| \geq \frac{2}{n}$$

for $x_k \leq x \leq x_{k+1}$

The theorem for $d \geq 1$

Theorem

Let $d \ge 1$. Then,

$$\Lambda \leq 2^{d-1} \big(2 + \log(n) \big).$$

Proof.

Using the bound on the numerator of $\Lambda_k(x)$ in (7) and the common bound on the denominator derived in the Lemmas for all possible values of k, we conclude that

$$\Lambda = \max_{k=0,...,n} \left(\max_{x_k < x < x_{k+1}} \Lambda_k(x) \right) \le \frac{2^d \left(\frac{1}{n} + \frac{1}{2n} \log(n) \right)}{\frac{1}{n}} = 2^{d-1} \left(2 + \log(n) \right).$$

The theorem for $d \ge 1$

Theorem

Let $d \ge 1$. Then,

$$\Lambda \leq 2^{d-1} \big(2 + \log(n) \big).$$

Proof.

Using the bound on the numerator of $\Lambda_k(x)$ in (7) and the common bound on the denominator derived in the Lemmas for all possible values of k, we conclude that

$$\Lambda = \max_{k=0,...,n} \left(\max_{x_k < x < x_{k+1}} \Lambda_k(x) \right) \le \frac{2^d \left(\frac{1}{n} + \frac{1}{2n} \log(n) \right)}{\frac{1}{n}} = 2^{d-1} \left(2 + \log(n) \right).$$

Note that for d = 1 this is the same bound as for d = 0, which is consistent with the numerical experiments that shows that both cases have a similar Lebesgue constant.

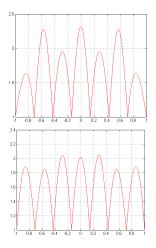


Figure: Lebesgue function for 8 uniform points for d = 0 (above) and d = 1 (below).

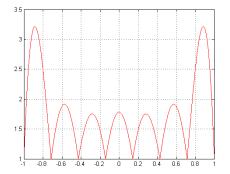


Figure: Lebesgue function for 8 uniform points for d = 3.

From graphs, in [-1,1], we see that the maximum of the Lebesgue function is taken (moreless) at

$$x^* = \begin{cases} 1/n & n = 4k \\ 2/n & n = 4k + 1 \\ 3/n & n = 4k + 2 \\ 0 & n = 4k + 3 \end{cases}$$

for some $k \in \mathbb{N}$ and so $\Lambda = \sum_{i=0}^{n} |b_i(x^*)| := \Lambda_n(x^*)$.

From graphs, in [-1,1], we see that the maximum of the Lebesgue function is taken (moreless) at

$$x^* = \begin{cases} 1/n & n = 4k \\ 2/n & n = 4k + 1 \\ 3/n & n = 4k + 2 \\ 0 & n = 4k + 3 \end{cases}$$

for some $k \in \mathbb{N}$ and so $\Lambda = \sum_{i=0}^{n} |b_i(x^*)| := \Lambda_n(x^*)$. In particular, for n=4k+3,

$$\Lambda_n(0) = \frac{\sum_{i=0}^n 1/|x_i|}{\left|\sum_{i=0}^n (-1)^i/|x_i|\right|} = \frac{\sum_{i=0}^{2k} 1/(n-2i)}{\left|\sum_{i=0}^{2k} (-1)^i/(n-2i)\right|}$$
$$= \frac{\left(\sum_{i=0}^{2k} 1/(2i+1) - 1/(2n)\right)}{\left|\sum_{i=0}^{2k} (-1)^i/(2i+1) - 1/(2n)\right|}$$

Since since

$$\sum_{i=0}^m rac{1}{2i+1} \sim rac{\log(m)}{2}$$
 as $m o \infty$

and

$$\sum_{i=0}^{\infty} \frac{(-1)^i}{2i+1} = \frac{\pi}{4},$$

we get the asymptotic estimate

$$\Lambda \sim rac{2}{\pi} \log(n) \quad ext{as} \quad n o \infty.$$

Since since

$$\sum_{i=0}^m rac{1}{2i+1} \sim rac{\log(m)}{2}$$
 as $m o \infty$

and

$$\sum_{i=0}^{\infty} \frac{(-1)^i}{2i+1} = \frac{\pi}{4},$$

we get the asymptotic estimate

$$\Lambda \sim rac{2}{\pi} \log(n)$$
 as $n o \infty.$

The same is true for the other three cases. In fact, the Lebesgue function becomes

$$\Lambda_n(x^*) = \left(\sum_{i=0}^{2k} \frac{1}{1+2i} - \frac{a_n}{4}\right) / \left(\sum_{i=0}^{2k} \frac{(-1)^i}{1+2i} - \frac{b_n}{4}\right),$$

where

$$\mathbf{a}_{n} = \begin{cases} \frac{1}{n-1} + \frac{3}{n+1}, & \text{if } n = 4k, \\ \frac{2}{n}, & \text{if } n = 4k+1, \\ \frac{1}{n-1} - \frac{1}{n+1}, & \text{if } n = 4k+2, \\ \frac{1}{n-2} - 2 - \frac{2}{n} - \frac{1}{n+2}, & \text{if } n = 4k+3, \end{cases} \qquad \text{and} \qquad \mathbf{b}_{n} = \begin{cases} \frac{-1}{n-1} + \frac{3}{n+1}, & \text{if } n = 4k, \\ \frac{2}{n}, & \text{if } n = 4k+1, \\ \frac{1}{n-1} + \frac{1}{n+1}, & \text{if } n = 4k+2, \\ \frac{1}{n-2} + \frac{2}{n} - \frac{1}{n+2}, & \text{if } n = 4k+3. \end{cases}$$

Lebesgue constant growth

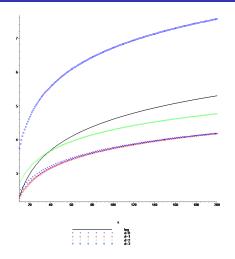


Figure: Lebesgue constant for uniformly distributed points.

Lebesgue constant growth

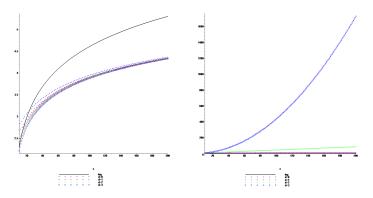


Figure: Lebesgue constant on Chebyshev points. Left: Chebyshev points with weights $(-1)^i \beta_i$. Right: here the weights are the ones constructed on non-equispaced points, garanteeing the approximation order d + 1

Lebesgue constant growth

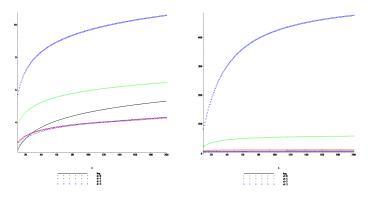


Figure: Lebesgue constant on logarithmically distributed points. Left: with weights $(-1)^i \beta_i$. Right: here the weights are the ones constructed on non-equispaced points, garanteeing the approximation order d + 1

Consider the interval I = [0, 1] and a distribution function $F \in C^1(I)$

• F(0) = 0, F(1) = 1 and F is strictly increasing.

Consider the interval I = [0, 1] and a distribution function $F \in C^1(I)$

- F(0) = 0, F(1) = 1 and F is strictly increasing.
- $F(x) = \int_0^x w(x) dx$ for a certain $w \in \mathcal{C}[0,1], w(x) > 0, x \in I$

Consider the interval I = [0, 1] and a distribution function $F \in C^1(I)$

- F(0) = 0, F(1) = 1 and F is strictly increasing.
- $F(x) = \int_0^x w(x) dx$ for a certain $w \in \mathcal{C}[0,1], w(x) > 0, x \in I$

The points

$$x_j := F^{-1}\left(rac{j}{n}
ight), \ \ 0 \leq j \leq n$$

are said to be equally spaced according to F.

Lemma

If $f \in \mathcal{C}[0,1]$ then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^n f(x_j) = \int_0^1 f(x)w(x)dx$$

Lemma

If $f \in \mathcal{C}[0,1]$ then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^n f(x_j) = \int_0^1 f(x)w(x)dx$$

Proof The key observation is that $\frac{1}{n}\sum_{j=0}^{n} f(x_j) = \frac{1}{n}\sum_{j=0}^{n} f(F^{-1}(j/n))$ is a Riemann sum for $f \circ F^{-1} \in C[0, 1]$ and hence

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^n f(x_j) = \int_0^1 f(F^{-1}(t))dt \; .$$

But $x = F^{-1}(t)$, then $dx = \left(\frac{d}{dt}F^{-1}(t)\right) dt = \frac{dt}{F'(F^{-1}(t))} = \frac{dt}{w(t)}$. Then, dt = w(x)dx. \Box

Lemma

Suppose that $k, n \to \infty$ in such a way that $x_k = F^{-1}(k/n)$ and $x_{k+1} = F^{-1}((k+1)/n)$ both tend to $x = F^{-1}(a)$. Then,

$$\lim_{n \to \infty} nh_k = (F^{-1})'(x) = \frac{1}{w(x)} .$$

where $h_k = x_{k+1} - x_k$.

Lemma

Suppose that $k, n \to \infty$ in such a way that $x_k = F^{-1}(k/n)$ and $x_{k+1} = F^{-1}((k+1)/n)$ both tend to $x = F^{-1}(a)$. Then,

$$\lim_{n \to \infty} nh_k = (F^{-1})'(x) = \frac{1}{w(x)} \, .$$

where $h_k = x_{k+1} - x_k$.

Proof

$$n h_{k} = n(x_{k+1} - x_{k}) = n \left(F^{-1}((k+1)/n) - F^{-1}(k/n) \right)$$

= $\frac{F^{-1}((k+1)/n) - F^{-1}(k/n)}{1/n} = F^{-1} \left[\frac{k+1}{n}, \frac{k}{n} \right] = (F^{-1})'(c_{n}), \text{ for } c_{n}$

Hence, $\lim_{n \to \infty} n h_k = \lim_{n \to \infty} (F^{-1})'(c_n) = (F^{-1})'(a)$ as $c_n \to a$. But $(F^{-1})'(a) = \frac{1}{F'(F^{-1}(a))} = \frac{1}{w(F^{-1}(a))} = \frac{1}{w(x)}$, \Box

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The r

Points equally spaced w.r.t. a distribution

Note also that, as
$$(F^{-1})'(t) = \frac{1}{w(F^{-1}(t))} > 0$$
 and it is continuous (by assumption) then there exist two positive constants c_1 , c_2 so that

 $c_1 < nh_k < c_2$.

Theorem

Suppose that the distribution F and the density w are as above and that, as before, $x_j^{(n)}=F^{-1}(j/n), \ 0\leq j\leq n.$ Let

$$b_i(x) = \frac{(-1)^j \beta_i}{x - x_i} / \sum_{j=0}^n \frac{(-1)^j \beta_j}{x - x_j}, \qquad i = 0, \dots, n, \quad \Lambda_n(x) = \sum_{i=0}^n |b_i(x)| ,$$
(8)

and, for $x_k < x < x_{k+1}$

$$\Lambda_k(x) = \frac{(x - x_k)(x_{k+1} - x)\sum_{j=0}^n \frac{1}{|x - x_j|}}{\left|(x - x_k)(x_{k+1} - x)\sum_{j=0}^n \frac{(-1)^j}{|x - x_j|}\right|}$$

Then, there is a constant C such that

$$N_n(x) \le C \log(n), \ x \in [0, 1].$$
 (9)

On I = [-1, 1]

1. we computed integrals with the quadrature based on the FHRI, on equispaced points at different values of n end/or d

On I = [-1, 1]

- 1. we computed integrals with the quadrature based on the FHRI, on equispaced points at different values of n end/or d
- 2. to speed up the quadrature, the quadrature weights were computed by a Gaussian quadrature rule (Gautschi software in Matlab)

On I = [-1, 1]

- 1. we computed integrals with the quadrature based on the FHRI, on equispaced points at different values of n end/or d
- 2. to speed up the quadrature, the quadrature weights were computed by a Gaussian quadrature rule (Gautschi software in Matlab)
- 3. from numerical experiments, the weights are all positive (this has to be proved !)

The table below shows the quadrature relative errors for d = 0 (left) and d = 3 (right) at different *n*, for the Runge function. errS=quadrature relative error by using cubic splines

n	err(d=0)	err (d=3)	errS
10	3.5e-3	1.1e-2	7.2e-3
30	1.1e-4	1.6e-6	5.9e-5
50	7.6e-6	2.6e-8	3.2e-7
100	3.6e-7	7.9e-10	2.4e-8
150	4.9e-7	1.0e-10	1.5e-9
200	5.4e-7	2.4e-11	6.4e-11

Motivations FHRI The Lebesgue Constant Numerical results Lebesgue constant growth The r

Numerical Quadrature

About the quadrature weights. *Georges Klein*, a PhD student of Jean-Paul Berrut, proved *numerically* that the weights are all positive at least for $d \le n \le 1250$ and $0 \le d \le 5$. For other values of *d* and *n*, there might be a few negative weights, the number of which increases slowly with *d* and *n*.

THANK YOU FOR YOUR KIND ATTENTION