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Motivations

◮ Stability is very important in numerical analysis:
desirable in numerical computations, it depends on the
accuracy of algorithms [4, Higham’s book].

◮ In polynomial interpolation, the stability of the process
can be measured by the so-called Lebesgue constant, i.e
the norm of the projection operator from C(K )
(equipped with the uniform norm) to Pn(K ) (or itselfs)
(K ⊂ R

n), which estimates also the interpolation error.

◮ The Lebesgue constant depends on the interpolation
points via the fundamental Lagrange or cardinal
polynomials.
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Our approach

1. Good interpolation points [DeM. RSMT03; DeM.
Schaback Wendland AiCM05].

2. Cardinal functions bounds [DeM. Schaback AiCM08] .

3. Lebesgue constants estimates and growth [DeM.
Schaback AiCM08; Bos DeM. EJA08 (1d)].
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Notations
◮ X = {x1, ..., xN} ⊆ Ω ⊆ R

d , distinct; data sites;
◮ {f1, ..., fN}, data values;
◮ Φ : Ω × Ω → R symmetric positive definite kernel

the RBF interpolant

sf ,Φ :=

N
∑

j=1

αjΦ(·, xj ) , (1)

Letting VX = span{Φ(·, x) : x ∈ X}, sf ,X can be written in
terms of cardinal functions, uj ∈ VX , uj(xk) = δjk , i.e.

sf ,X =
N
∑

j=1

f (xj)uj . (2)
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Error estimates

◮ Take VΩ := span{Φ(·, x) : x ∈ Ω} on which Φ is the
reproducing kernel. clos(VΩ) = NΦ(Ω), the native
Hilbert space to Φ.

◮ f ∈ NΦ(Ω), using (2) and the reproducing kernel
property of Φ on VΩ, applying the Cauchy-Schwarz
inequality, we get

|f (x) − sf ,X (x)| ≤ PΦ,X (x) ‖f ‖Φ (3)

PΦ,X : power function.
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A power function expression

Letting det (AΦ,X (y1, ..., yN )) = det (Φ(yi , xj ))1≤i ,j≤N
, then

uk(x) =
detΦ,X (x1, . . . , xk−1, x , xk+1, . . . , xN)

detΦ,X (x1, . . . , xN)
, (4)

Letting uj(x), 0 ≤ j ≤ N with u0(x) := −1 and x0 = x , then

P2
Φ,X (x) = uTAΦ,Y u , (5)

where uT = (−1, u1(x), . . . , uN(x)), Y = X ∪ {x}.



Stability and
Lebesgue

constants in RBF
interpolation

De Marchi

Motivations

Good interpolation
points

Results

Numerical examples

Stability of
kernel-based
interpolation

Results

Numerical examples

1D RBF having uj

with compact
support

Future work

References

The problem

Are there any good points for

approximating all functions in the native
space?
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Our approach

1. Power function estimates.

2. Geometric arguments.
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Literature

◮ A. Beyer: Optimale Centerverteilung bei Interpolation
mit radialen Basisfunktionen. Diplomarbeit, Universität
Göttingen, 1994.
He considered numerical aspects of the problem.

◮ L. P. Bos and U. Maier: On the asymptotics of points
which maximize determinants of the form
det(g(|xi − xj |)), in Advances in Multivariate
Approximation (Berlin, 1999),
They investigated on Fekete-type points for univariate
RBFs, proving that if g is s.t. g ′(0) 6= 0 then points
that maximize the Vandermonde determinant are the
ones asymptotically equidistributed.
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Literature

◮ A. Iske:, Optimal distribution of centers for radial basis
function methods. Tech. Rep. M0004, Technische
Universität München, 2000.
He studied admissible sets of points by varying the
centers for stability and quality of approximation by
RBF, proving that uniformly distributed points gives
better results. He also provided a bound for the
so-called uniformity: ρX ,Ω ≤

√

2(d + 1)/d , d= space
dimension.

◮ R. Platte and T. A. Driscoll:, Polynomials and potential
theory for GRBF interpolation, SINUM (2005),they
used potential theory for finding near-optimal points for
gaussians in 1d.
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Main result

Idea: data set for good approximation for all f ∈ NΦ(Ω) should
have regions in Ω without large holes.
Assume Φ, translation invariant, integrable and its Fourier
transform decays at infinity with β > d/2

Theorem

[DeM., Schaback&Wendland, AiCM 2005.] For every α > β
there exists a constant Mα > 0 with the following property: if
ǫ > 0 and X = {x1, . . . , xN} ⊆ Ω are given such that

‖f − sf ,X‖L∞(Ω) ≤ ǫ‖f ‖Φ, for all f ∈ W β
2 (Rd ), (6)

then the fill distance of X satisfies

hX ,Ω ≤ Mαǫ
1

α−d/2 . (7)
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Remarks

1. The interpolation error can be bounded by

‖f − sf ,X‖L∞(Ω) ≤ C h
β−d/2
X ,Ω ‖f ‖

W
β
2 (Rd )

. (8)

2. Mα → ∞ when α → β, so from (8) we cannot get

h
β−d/2
X ,Ω ≤ C ǫ but as close as possible.

3. The proof does not work for gaussians (no compactly
supported functions in the native space of the
gaussians).
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To remedy, we made the additional assumption that

X is already quasi-uniform,i.e. hX ,Ω ≈ qX ,Ω.

◮ As a consequence, PΦ,X (x) ≤ ǫ. The result follows from
the lower bounds of PΦ,X (cf. [Schaback AiCM95]
where they are given in terms of qX ).

◮ Quasi-uniformity brings back to bounds in term of hX ,Ω.

Observation: optimally distributed data sites are sets that
cannot have a large region in Ω without centers, i.e. hX ,Ω is
sufficiently small.
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On computing near-optimal points

We studied two algorithms.

1. Greedy Algorithm (GA)

2. Geometric Greedy Algorithm (GGA)
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The Greedy Algorithm (GA)

At each step we determine a point where the power function
attains its maxima w.r.t. the preceding set.

◮ starting step: X1 = {x1}, x1 ∈ Ω, arbitrary .

◮ iteration step: Xj = Xj−1 ∪ {xj} with
PΦ,Xj−1

(xj) = ‖PΦ,Xj−1
‖L∞(Ω).
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The Geometric Greedy Algorithm (GGA)

This algorithm works quite well for subset Ω of cardinality n
with small hX ,Ω and large qX . The points are computed
independently of the kernel Φ.

◮ starting step: X0 = ∅ and define
dist(x , ∅) := A, A > diam(Ω).

◮ iteration step: given Xn ∈ Ω, |Xn| = n pick
xn+1 ∈ Ω \ Xn s.t. xn+1 = maxx∈Ω\Xn

dist(x ,Xn). Then,
form Xn+1 := Xn ∪ {xn+1}.
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Remarks on convergence
◮ Practical experiments show that the GA fills the

currently largest hole in the data point close to the
center of the hole and converges at least like

‖Pj‖L∞(Ω) ≤ C j−1/d , C > 0.

◮ Defining the separation distance for Xj as
qj = 1

2 minx 6=y∈Xj
‖x − y‖2 and the fill distance as

hj = maxx∈Ω miny∈Xj
‖x − y‖2 then, we can prove that

hj ≥ qj ≥
1

2
hj−1 ≥ 1

2
hj , j ≥ 2

i.e. the GGA produces quasi-uniformly distributed
points in the euclidean metric.
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Connections with discrete Leja sequences

◮ Let ΩN be a discretization of a compact domain of
Ω ⊂ R

2 and let x0 arbitrarily chosen in Ω. The points

xn = max
x∈ΩN\{x0,...,xn−1}

min
0≤k≤n−1

‖x − xk‖2

are a Leja sequence on Ω.

◮ Hence, the construction technique of GGA is
conceptually similar to finding Leja sequences : both
maximize a function of distances.

◮ The construction of the GGA is independent of the
Euclidean metric. If µ is any metric on Ω, the GGA
algorithm produces points asymptotically equidistributed
in that metric. In [Caliari,DeM.,Vianello AMC2005] the
GGA was used with the Dubiner metric on the square.
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How good are the point sets computed by GA

and GAA?
We could check these quantities:

◮ Interpolation error
◮ Uniformity: in particular, the GGA maximizes

ρX ,Ω =
qX

hX ,Ω
,

since it works well with subset Ωn ⊂ Ω with large qX

and small hX ,Ω.
◮ Lebesgue constant

ΛN := max
x∈Ω

λN(x) = max
x∈Ω

N
∑

k=1

|uk(x)| .
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Numerical examples: details

1. We considered a discretization of Ω = [−1, 1]2 with
10000 random points.

2. The GA run until ‖PX ,Ω‖∞ ≤ η, η a chosen threshold.

3. The GGA, thanks to the connection with the Leja
extremal sequences, run once and for all. We extracted
406 points from 4063 random on Ω = [−1, 1]2,
406 = dim(Π27(R

2)).
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GA: Gaussian

Gaussian with scale 1, 48 points, η = 2 · 10−5. The “error” in the
right–hand figure is ‖PN‖2

L∞(Ω) which has a decay as a function of
the number N of data points. As determined by the regression line
in the figure, the decay is like N−7.2
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GA: Wendland

C 2 Wendland function scale 15, N = 100 points to depress the
power function down to 2 · 10−5. The error decays like N−1.9 as
determined by the regression line in the figure.
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GGA: Gaussian

error decay when the Gaussian power function is evaluated on the
data supplied by the geometric greedy method up to X48. The
final error is larger by a factor of 4, and the estimated decrease of
the error is only like N−6.1.
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GGA: Wendland

The error factor is only 1.4 bigger, while the estimated decay order
is -1.72.
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Gaussian

Below: 65 points for the gaussian with scale 1. Left: their
separation distances; Right: the points (+) are the one
computed with the GA with η = 2.0e − 7, while the (*) the
one computed with the GGA.
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Inverse multiquadrics

Below: 90 points for the IM with scale 1. Left: their
separation distances; Right: the points (+) are the one
computed with the GA with η = 2.0e − 5, while the (*) the
one computed with the GGA.
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Wendland

Below: 80 points for the Wendland’s RBF with scale 1. Left:
their separation distances; Right: the points (+) are the one
computed with the GA with η = 1.0e − 1, while the (*) the
one computed with the GGA.
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Lebesgue constants for the near-optimal points for the
gaussian. Left: the growth of the data-dependent points.
Right: the growth of the data-independent points.
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Lebesgue constants for the near-optimal points for the
inverse multiquadrics. Left: the growth of the
data-dependent points. Right: the growth of the
data-independent points.
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Lebesgue constants for the near-optimal points for the
Wendland’s rbf. Left: the growth of the data-dependent
points. Right: the growth of the data-independent points.

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60
Lebesgue constant for Wendland

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90
Lebesgue constant for Wendland



Stability and
Lebesgue

constants in RBF
interpolation

De Marchi

Motivations

Good interpolation
points

Results

Numerical examples

Stability of
kernel-based
interpolation

Results

Numerical examples

1D RBF having uj

with compact
support

Future work

References

A comparison of Lebesgue constants growth for points on the
square: RND (random points), EUC (data-independent points),
DUB (Dubiner points)
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f1(x , y) = exp(−8 x2 − 8 y2) and f2(x , y) =
√

x2 + y2 − xy , on
Ω = [−1, 1].

G-G65 GGA-G65 G-W80 GGA-W80 G-IMQ90 GGA-IMQ90

f1 5.5 10−1 ∗∗ 5.6 10−1 ∗∗ 4.9 10−1 ∗∗

f2 7.3 10−1 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Table: Errors in L2-norm for interpolation by the Gaussian. When
errors are > 1.0 we put ∗∗.

G-G65 GGA-G65 G-W80 GGA-W80 G-IMQ90 GGA-IMQ90

f1 2.1 10−1 1.6 10−1 1.3 10−1 1.1 10−1 1.4 10−1 1.0 10−1

f2 6.1 10−1 8.7 10−1 6.1 10−1 9.7 10−1 4.6 10−1 5.8 10−1

Table: Errors in L2-norm for interpolation by the Wendland’s
function.

G-G65 GGA-G65 G-W80 GGA-W80 G-IMQ90 GGA-IMQ90

f1 2.3 10−1 2.3 10−1 4.0 10−2 3.1 10−2 3.5 10−2 2.5 10−2

f2 5.9 10−1 6.0 10−1 3.8 10−1 4.6 10−1 3.7 10−1 3.6 10−1

Table: Errors in L2-norm for interpolation by the inverse
multiquadrics.
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Remarks

1. The GGA is independent on the kernel and generates
asymptotically equidistributed optimal sequences. It still
inferior to the GA that considers the power function.

2. The points computed by the GGA is such that
hXn,Ω = maxx∈Ω miny∈Xn

‖x − y‖2 . In
[Caliari,DeM,Vianello2005], we proved that they are
quasi-uniform in the Dubiner metric and connected to Leja
sequences.

3. So far,we have no proof of the fact the GGA generates a
sequence with hn ≤ Cn−1/d , as required by asymptotic
optimality.

4. We could look for data-dependent adaptive strategies for
reconstruction of functions from spans of translates of kernels
using new techniques known from learning theory and
algorithms, applying optimization techniques for data
selection (proposed by Robert... not yet implemented!).
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Initial ideas

Given the recovery process f → sf ,X , where sf ,X =
∑N

j=1 f (xj )uj

for some uj : Ω ⊂ Rd → R we look for bounds of the form

‖sf ,X‖L∞(Ω) ≤ C (X )‖f ‖ℓ∞(X ) . (9)

C (X ), the stability constant, can be bounded below as

C (X ) ≥

∥

∥

∥

∥

∥

∥

N
∑

j=1

|uj(x)|

∥

∥

∥

∥

∥

∥

L∞(Ω)

(10)

i.e. by the Lebesgue constant ΛX := max
x∈Ω

N
∑

j=1

|uj(x)| .
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Remarks on Polynomial Interpolation

1. Looking for upper bounds for C (X ) and/or ΛX is a
classical problem.In recovering by polynomials, upper
bounds for the Lebesgue constant exist, leading to the
problem of finding near-optimal points.

2. For P.I., near-optimal points X of cardinality N, have
ΛX that, in 1D behaves like log(N) and in 2D on the
square like log2(N).An important set of near-optimal
points in the square for P.I., are the Padua points
[Bos,Caliari,DeM,Vianello,Xu JAT06, NM07],
http://en.wikipedia.org/wiki/Padua points.
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Padua points
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Figure: (Left) Padua points for N = 13 and the generating curve.
(Right) Padua points for N = 30
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Padua points
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and Padua points for N = 8. (Right) Lebesgue constants growth
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Motivations

Stability bounds for multivariate kernel–based
recovery processes are missing.

How can we proceed to derive them?
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Recovering by kernels

Given a kernel Φ : Ω × Ω → R (positive definite), construct

sf ,X :=
N
∑

j=1

αj Φ(·, xj) (11)

from VX := span {Φ(·, x) : x ∈ X} of translates of Φ so that

f (xk) = sf ,X (xk), 1 ≤ k ≤ N (12)

with matrix AΦ,X = (Φ(xk , xj)), 1 ≤ j , k ≤ N.
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The matrix AΦ,X

1. Unfortunately the kernel matrix has bad condition
number if the data locations come close, i.e. if qX is
small.

2. Then, the coefficients of the representation (11) get
very large even if the data values f (xk) are small, and
simple linear solvers will fail. Users often report that the
final function sf ,X of (11) behaves nicely in spite of the
large coefficients, and using stable solvers (for instance
Riley’s algorithm) lead to useful results even in case of
unreasonably large condition numbers [Fasshauer’s talk]

3. The interpolant can be stably calculated (in the sense
of (9)), while the coefficients in the basis supplied by
the Φ(x , xj ) are unstable.
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Error estimates and (in)stability

1. hX ,Ω and qX are used for standard error and stability
estimates for multivariate interpolants. The inequality

qX ≤ hX ,Ω

holds in most cases.

2. If points of X nearly coalesce, qX can be much smaller
than hX ,Ω, causing instability of the standard solution
process. Point sets X are called quasi–uniform with
uniformity constant γ > 1, if holds the inequality

1

γ
qX ≤ hX ,Ω ≤ γqX .
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Kernels and Fourier transforms

To generate interpolants, we allow (conditionally) positive
definite translation-invariant kernels

Φ(x , y) = K (x − y) for all x , y ∈ R
d , K : R

d → R

which are reproducing in their “native” Hilbert space NΦ

which we assume to be norm–equivalent to some Sobolev
space W τ

2 (Ω) with τ > d/2. The kernel will then have a
Fourier transform satisfying

0 < c(1 + ‖ω‖2
2)

−τ ≤ K̂ (ω) ≤ C (1 + ‖ω‖2
2)

−τ (13)

at infinity. This includes polyharmonic splines, thin-plate
splines, the Sobolev/Matérn kernel, and Wendland’s
compactly supported kernels.
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Theorem 1

Theorem

The classical Lebesgue constant for interpolation with Φ on
N = |X | data locations in a bounded Ω ⊆ Rd has a bound of the
form

ΛX ≤ C
√

N

(

hX ,Ω

qX

)τ−d/2

. (14)

For quasi-uniform sets, with uniformity bounded by γ < 1, this
simplifies to ΛX ≤ C

√
N .

Each single cardinal function is bounded by

‖uj‖L∞(Ω) ≤ C

(

hX ,Ω

qX

)τ−d/2

, (15)

which, in the quasi-uniform case, simplifies to ‖uj‖L∞(Ω) ≤ C .
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Corollary

Corollary

Interpolation on sufficiently many quasi–uniformly distributed data
is stable in the sense of

‖sf ,X‖L∞(Ω) ≤ C
(

‖f ‖ℓ∞(X ) + ‖f ‖ℓ2(X )

)

(16)

and
‖sf ,X‖L2(Ω) ≤ Ch

d/2
X ,Ω‖f ‖ℓ2(X ) (17)

with a constant C independent of X .

◮ In the right-hand side of (17), ℓ2 is a properly scaled discrete version of the L2 norm.

◮ Proofs have been done by resorting to classical error estimates. An alternative proof based on
sampling inequality [Rieger, Wendland NM05], has been proposed in [Schaback, DeM.
RR59-08,UniVR].
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Proof sketch

1. Bound uj . Using standard error estimates ([Corol.
11.33,Wendland’s book]), we get

‖uj‖L∞(Ω) ≤ 1+

∥

∥

∥

∥

∥

IX Ψ

(

· − xj

qX

)

− Ψ

(

· − xj

qX

)∥

∥

∥

∥

∥

L∞(Ω)

≤ 1+C h
τ−d/2
X,Ω

∥

∥

∥

∥

∥

Ψ

(

·

qX

)∥

∥

∥

∥

∥

N

.

(18)

Ψ ∈ C∞, having support in the unit ball and such that
Ψ(0) = 1, ‖Ψ‖L∞(Ω) = 1 (i.e. a ”bump” function).

2. Estimate the native space norm of Ψ( ·
qX

) getting

∥

∥

∥

∥

Ψ

( ·
qX

)∥

∥

∥

∥

2

N

≤ C1 q
d−τ/2
X ‖Ψ‖2

L2
.

Thus, the estimates easily follow.
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Proof sketch

Finally, for the Lebesgue constant, observe that

pf ,X (x) =
∑N

j=1 f (xj )Ψ
(

x−xj

qX

)

Then

‖IXpf ,X‖L∞(Ω) ≤ ‖pf ,X‖L∞(Ω) + ‖IXpf ,X − pf ,X‖L∞(Ω) .

◮ ‖pf ,X‖L∞(Ω) ≤ ‖f ‖ℓ∞(X ), since pf ,X is a sum of functions
with nonoverlapping supports.

◮

‖IXpf ,X − pf ,X‖L∞(Ω) ≤ Ch
τ−d/2
X ,Ω ‖pf ,X‖N .

Then, it remains to estimate ‖pf ,X‖N . For τ ∈ N, we have

‖pf ,X‖N ≤ Cqd−2τ
X ‖Ψ‖W τ

2

(

N
∑

i=1

|f (xj)|2
)1/2

≤ Cqd−2τ
X ‖Ψ‖W τ

2

√
N‖f ‖ℓ∞(X ) .

�
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Kernels

1. Matérn/Sobolev kernel (finite smoothness, definite
positive)

Φ(r) = (r/c)νKν(r/c), of order ν .

Kν is the modified Bessel function of second kind.
Examples were done with ν = 1.5 at scale c = 20, 320.
Schaback call them Sobolev splines.

2. Gauss kernel (infinite smoothness, definite positive)

Φ(r) = e−νr , ν > 0 .

Examples with ν = 1 at scale c = 0.1, 0.2, 0.4.
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Lebesgue constants
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Figure: Lebesgue constants for the Matérn/Sobolev kernel (left)
and Gauss kernel (right)
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Lebesgue functions

Figure: Lagrange basis function on 225 data points, Gaussian
kernel with scale 0.1 (left) and scale 0.2 (right). See how scaling
influences the Lagrange basis.
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Lebesgue functions

Figure: Gauss kernel with scale 0.4: Lebesgue function on 225
regular. The maximum of the Lebesgue function is attained near
the corners for large scales, while the behavior in the interior is as
stable as for kernels with limited smoothness.
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Lebesgue functions

Figure: Matérn/Sobolev kernel with scale 320. Lebesgue function
on 225 scattered points (left) and on 225 equidistributed points
(right).
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Lagrange basis functions
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Figure: Matern/Sobolove kernel with scale 320: Lagrange basis
(left) on 225 random points (right)
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Lagrange basis functions

Figure: Lagrange basis (left) and Lebesgue function (right) for 168
scattered data points on the circle, Gaussian kernel with scale 0.4
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Figure: Data points for the previous figure
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Lebesgue constants

Here we collect some computed Lebesgue constants on a grid of
centers consisting of 225 pts on [−1, 1]2. The constants were
computed on a finer grid made of 7225 pts. Matérn and Wendland
had scaled by 10, IMQ and GA scaled by 0.2.

Matern W2 IMQ GA
2.3 2.3 2.7 4.3
1.3 1.3 1.3 1.7

First line contains the max of Lebesgue functions. The second are
the estimated constants, by the Lebesgue function computed by
the formula [Wendland’s book, p. 208]

1 +

N
∑

i=1

(u∗
j (x))2 ≤

P2
Φ,X (x)

λmin(AΦ,X∪{x})
, x 6∈ X .

in a neighborhood of the point that maximizes the ”classical”

Lebesgue constant.
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Remarks on the finite smooth case

1. In all examples, our bounds on the Lebesgue constants,
are confirmed.

2. In all experiments, the Lebesgue constants seem to be
uniformly bounded.

3. The maximum of the Lebesgue function is attained in
the interior points.
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Remarks on the infinite smoothness

... things are moreless specular ...

1. The Lebesgue constants do not seem to be uniformly
bounded.

2. In all experiments, the Lebesgue function attains its
maximum near the corners (for large scales).

3. The limit for large scales is called flat limit which
corresponds to the Lagrange basis function for
polynomial interpolation (see Larsson and Fornberg
talks, [Driscoll, Fornberg 2002], [Schaback 2005],...).
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A possible solution

Schaback, in a recent paper with S. Müller [Müeller,
Scahaback JAT08], studied a Newton’s basis for overcoming
the ill-conditioning of linear systems in RBF interpolation.
The basis is orthogonal in the native space in which the
kernel is reproducing and more stable.
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The case φ(x) = x

This is based on the work [Bos,DeM. EJA2008].

◮ Sites x1 < x2 < · · · < xn belong to some interval [a, b]

◮ Interpolation problem (correct): find coefficients aj ∈ R

n
∑

j=1

aj |x − xj | = yj , (19)

for function values yj in two ways

1. solve the linear system with Vandermonde matrix;
2. give formulas for the associated cardinal functions uj .
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Formulas for the cardinal functions

The cardinal functions are the classical hat functions given
as follows. When xj is an interior point

uj (x) =



























0 if x ≤ xj−1
x−xj−1
xj−xj−1

if xj−1 < x ≤ xj

xj+1−x

xj+1−xj
if xj < x ≤ xj+1

0 if x > xj+1

, 2 ≤ j ≤ n − 1, (20)

while for the boundary points x1 and xn

u1(x) =

{ x2−x

x2−x1
if x1 ≤ x ≤ x2

0 if x > x2 ;
(21)

un(x) =







0 if x ≤ xn−1
x−xn−1
xn−xn−1

if xn−1 < x ≤ xn.
(22)
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Formulas for the cardinal functions

These “hat” functions has another interesting property:

uj is a combination of just 3 translates, |x − xj−1|, |x − xj |
and |x − xj+1|. This also holds for u1 and un identifying
x0 = xn and xn+1 = x1.

For instance, for xj an interior point

uj (x) =
1

2(xj − xj−1)
|x − xj−1| −

xj+1 − xj−1

2(xj+1 − xj )(xj − xj−1)
|x − xj | +

1

2(xj+1 − xj )
|x − xj+1| 2 ≤ j ≤ n − 1,

(23)

Remark: (23) is defined for all x ∈ R, but is identically zero
outside [xj−1, xj+1]. The boundary points x1 and xn are again
slightly different.
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The case φ′′(x) = λ2φ(x)

Assume λ ∈ C.
We proved

1. uj still a combination of 3 consecutive translates of
φ(|x |) and support [xj−1, xj+1].

2. uniqueness of this class of functions.

λ = 0 is essentially φ(x) = x , then assume λ 6= 0. Hence,

φ(x) = aeλx + be−λx (24)

for some a, b ∈ C.
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Formulas for the cardinal functions

Observe that the interpolation problem for functions of the
form

s(x) =

n
∑

j=1

ajφ(|x − xj |) (25)

is correct provided b 6= a and aeλxn 6= ±beλx1.

Theorem

For φ(x) of the form (24) we have

det ([φ(|xi − xj |)]1≤i ,j≤n) =

(b − a)n−2e−2λ
∑n

j=1 xj





n−1
∏

j=1

(e2λxj+1 − e2λxj )





(

b2e2λx1 − a2e2λxn

)

.
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Formulas for the cardinal functions

Proposition

For φ(x) of the form (24) with a, b so that the interpolation
problem is correct, we have for 2 ≤ j ≤ n − 1,

uj(x) = A1φ(|x − xj−1|) + A2φ(|x − xj |) + A3φ(|x − xj+1|)

where

A1 = −
e
λxj−1 e

λxj

(e
2λxj − e

2λxj−1 )(b − a)
,

A2 =
(e

2λxj+1 − e
2λxj−1 )e

2λxj

(e
2λxj+1 − e

2λxj )(e
2λxj − e

2λxj−1 )(b − a)
,

A3 = −
e
λxj e

λxj+1

(e
2λxj+1 − e

2λxj )(b − a)
.
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Formulas for the cardinal functions

◮ These uj are identically zero outside the interval
[xj−1, xj ].

◮ Similar formulas hold for u1 and un.
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Cardinal functions
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Figure: Cardinal functions for the nodes [1, 2, 3.5, 6, 7.5],
a = 2, b = 3, and λ = 1 (left), λ = i (right)
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Uniqueness of the class

Theorem

Suppose that φ : R
+ → R is analytic. Suppose further that

for any x1 < x2 < · · · < xn, the cardinal functions for
interpolation of the form (25) can be given as a linear
combination of three consecutive translates, i.e., there exist
constants αj , βj and γj such that

uj(x) = αjφ(|x − xj−1|) + βjφ(|x − xj |) + γjφ(|x − xj+1|),

2 ≤ j ≤ n − 1. Suppose further that uj has support in the
interval [xj−1, xj+1]. Then there exists a λ ∈ C such that

φ′′(x) = λ2 φ(x).
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Formulas for the cardinal functions

Theorem

Suppose that x1 < x2 < · · · xn and that
φ(x) = aeλx + be−λx is such that the interpolation problem
is correct. Then, independently of the values of a and b,

uj(x) = eλ(xj−x)















e2λx−e
2λxj−1

e
2λxj −e

2λxj−1
if x ∈ [xj−1, xj ]

e2λx−e
2λxj+1

e
2λxj −e

2λxj+1
if x ∈ [xj , xj+1]

0 otherwise

2 ≤ j ≤ n−1 ,

and similarly for u1, un.
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The Lebesgue constant

Since uj are positive functions

Proposition

Suppose that x1 < x2 < · · · xn and that φ(x) = aeλx + be−λx

for λ ∈ R, is such that the interpolation problem is correct.
Then, independently of the values of a and b,

n
∑

j=1

|uj(x)| =
eλx + eλ(xj+xj+1−x)

eλxj + eλxj+1
, x ∈ [xj , xj+1].

In particular,

max
x1≤x≤xn

n
∑

j=1

|uj(x)| = 1.
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The Case of λ Complex

Consider λ = i with a = −i/2 and b = i/2 so that
g(x) = sin(x). If we make the restriction that xn − x1 < π,
one can prove that interpolation problem is correct.It follows

◮ uj(x) ≥ 0 on [x1, xn] with xn − x1 < π.

◮

n
∑

j=1

|uj(x)| =
cos(x − xj+xj+1

2 )

cos(
xj+1−xj

2 )
, x ∈ [xj , xj+1].

The maximum is clearly attained at the midpoint
x = (xj + xj+1)/2 at which

n
∑

j=1

|uj(x)| =
1

cos(
xj+1−xj

2 )
.
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The Case of λ Complex

Hence

Λn := max
x1≤x≤xn

n
∑

j=1

|uj(x)|

= max
1≤j≤n−1

1

cos(
xj+1−xj

2 )

=
1

cos(max1≤j≤n−1
xj+1−xj

2 )
. (26)
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The Case of λ Complex

Theorem

Suppose that φ(x) = sin(x). Then, among all distributions
of points a = x1 < x2 < · · · < xn = b in the interval [a, b]
with b − a < π, the one for which Λn is uniquely minimized
is the equally spaced one, i.e, for

xj = a +
(j − 1)(b − a)

(n − 1)
, 1 ≤ j ≤ n.
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The Case of λ Complex
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Figure: Lebesgue functions for λ = i and equally spaced points
(Left) and non-equally spaced points [0 0.2 0.5 1.2 1.5 2] (Right)
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Work to do

1. In 1d, we studied the case φ(x) = x3 and discovered,
for nearly equidistributed point set, a behavior similar to
that of periodic cubic splines(?) [F. Schurer, Indag.
Math.30 (1968)] giving Λn < 1

4 (1 + 3
√

3). More
investigations are then necessary!

2. Study better the behavior of the cardinal functions uj :
why do they concentrate around xj and ”decay” at
infinity?

3. Efficient computations (for overtaking ill-conditioning
and instability) using Nick’s Trefethen definition 10
digits, 5 sec. and 1 page!).
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DWCAA09

First announcement

2nd Dolomites Workshop on Constructive
Approximation and Applications

Alba di Canazei, 3-9 Sept. 2009.

◮ Keynote speakers (confirmed so far!): Carl de Boor,
Robert Schaback, Nick Trefethen, Holger Wendland,
Yuan Xu

◮ Sessions on: Polynomial and rational approximation (Org.: J.

Carnicer, A. Cuyt), Approximation by radial bases (Org.: A.

Iske, J. Levesley), Quadrature and cubature (Org. B.

Bojanov, E. Venturino, Approximation in linear algebra (Org.

C. Brezinski, M. Eiermann).
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Thank you for your attention!
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