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Motivations

Motivations

Well-distributed nodes: there exist various nodal sets for polynomial
interpolation of even degree n in the square Ω = [−1, 1]2 (C.DeM.V.,

AMC04), which turned out to be equidistributed w.r.t. Dubiner metric
(D., JAM95) and which show optimal Lebesgue constant growth.

Efficient interpolant evaluation: the interpolant should be
constructed without solving the Vandermonde system whose
complexity is O(N3), N =

(
n+2
2

)
for each pointwise evaluation. We

look for compact formulae.

Efficient cubature: in particular computation of cubature weights for
non-tensorial cubature formulae.
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Motivations
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From Dubiner metric to Padua points

The Dubiner metric

The Dubiner metric in the 1D:
.

...... µ[−1,1](x , y) = | arccos(x)− arccos(y)|, ∀x , y ∈ [−1, 1] .

By using the Van der Corput-Schaake inequality (1935) for trig. polys. T (θ) of
degree m and |T (θ)| ≤ 1,

|T ′(θ)| ≤ m
√

1− T 2(θ) .

.

......

µ[−1,1](x , y) := sup
∥P∥∞,[−1,1]≤1

1

m
| arccos(P(x))− arccos(P(y))| ,

with P ∈ Pn([−1, 1]).
This metric generalizes to compact sets Ω ⊂ Rd , d > 1:
.

......

µΩ(x, y) := sup
∥P∥∞,Ω≤1

1

m
| arccos(P(x))− arccos(P(y))| .
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From Dubiner metric to Padua points

The Dubiner metric

Conjecture(C.DeM.V.AMC04):

.

......

Nearly optimal interpolation points on a compact Ω are asymptotically
equidistributed w.r.t. the Dubiner metric on Ω.

Once we know the Dubiner metric on a compact Ω, we have at least a
method for producing ”good” points.
For d = 2, let x = (x1, x2), y = (y1, y2)

Dubiner metric on the square, [−1, 1]2:

max{| arccos(x1)− arccos(y1)|, | arccos(x2)− arccos(y2)|} ;

Dubiner metric on the disk, |x| ≤ 1:∣∣∣∣arccos(x1y1 + x2y2 +
√
1− x21 − x22

√
1− y2

1 − y2
2

)∣∣∣∣ ;
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From Dubiner metric to Padua points

Dubiner points and Lebesgue constant

496 Dubiner nodes (i.e. deg. n = 30) and the comparison of Lebesgue constants for Random (RND), Euclidean
(EUC) and Dubiner (DUB) points.
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Euclidean pts, are Leja-like points, given by max
x∈Ω

min
y∈Xn

∥x − y∥2 .
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From Dubiner metric to Padua points

Morrow-Patterson points

Let n be a positive even integer. The Morrow-Patterson points
(MP) (cf. M.P. SIAM JNA 78) are the points

xm = cos

(
mπ

n + 2

)
, yk =


cos

(
2kπ

n + 3

)
if m odd

cos

(
(2k − 1)π

n + 3

)
if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1. Note: they are N =

(
n + 2

2

)
.
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From Dubiner metric to Padua points

Extended Morrow-Patterson points

The Extended Morrow-Patterson points (EMP) (C.DeM.V. AMC
05) are the points

xEMP
m =

1

αn
xMP
m , yEMP

k =
1

βn
yMP
k

αn = cos(π/(n + 2)), βn = cos(π/(n + 3)).

Note: the MP and the EMP points are equally distributed w.r.t.
Dubiner metric on the square [−1, 1]2 and unisolvent for
polynomial interpolation of degree n on the square.
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From Dubiner metric to Padua points

Padua points

The Padua points (PD) can be defined as follows (C.DeM.V. AMC
05):

xPDm = cos

(
(m − 1)π

n

)
, yPDk =


cos

(
(2k − 1)π

n + 1

)
if m odd

cos

(
2(k − 1)π

n + 1

)
if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1, N =

(
n + 2

2

)
.
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From Dubiner metric to Padua points

Some properties

The PD points are equispaced w.r.t. Dubiner metric on [−1, 1]2.

They are modified Morrow-Patterson points discovered in Padua in
2003 by B.DeM.V.&W. Actually the interior points are the MP
points of degree n − 2 while the boundary points are “natural”
points of the grid.

There are 4 families of PD pts: take rotations of 90 degrees,
clockwise for even degrees and counterclockwise for odd degrees.
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From Dubiner metric to Padua points

Graphs of MP, EMP, PD pts and their Lebesgue constants
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Left: the graphs of MP, EMP, PD for n = 8. Right: the growth of the corresponding Lebesgue constants.
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Padua points: properties

Bivariate interpolation problem and Padua points

Let P2
n be the space of bivariate polynomials of total degree ≤ n.

Question: is there a set Ξ ⊂ [−1, 1]2 of points such that:

card(Ξ) = dim(P2
n) =

(n+1)(n+2)
2 ;

the problem of finding the interpolation polynomial on Ξ of
degree n is unisolvent;

the Lebesgue constant Λn behaves like log2 n for n → ∞.

Answer: yes, it is the set Ξ = Padn of Padua points.
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Padua points: properties

Padua points

Let us consider n + 1 Chebyshev–Lobatto points on [−1, 1]

Cn+1 =

{
znj = cos

(
(j − 1)π

n

)
, j = 1, . . . , n + 1

}
and the two subsets of points with odd or even indexes

CO
n+1 =

{
znj , j = 1, . . . , n + 1, j odd

}
CE
n+1 =

{
znj , j = 1, . . . , n + 1, j even

}
Then, the Padua points are the set

Padn = CO
n+1 × CE

n+2 ∪ CE
n+1 × CO

n+2 ⊂ Cn+1 × Cn+2
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Padua points: properties

The generating curve

There exists an alternative representation as self-intersections and
boundary contacts of the (parametric and periodic) generating
curve:

γ(t) = (− cos((n + 1)t),− cos(nt)), t ∈ [0, π]
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Padua points: properties

The generating curve γ(t) (n = 4)
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Padua points: properties

The generating curve γ(t) (n = 4)
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Padua points: properties
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Padua points: properties
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Padua points: properties
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Padua points: properties
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Padua points: properties

The generating curve γ(t) (n = 4)
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Padua points: properties
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Padua points: properties
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Padua points: properties
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Padua points: properties
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Padua points: properties
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Padua points: properties
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Padua points: properties
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Padua points: properties
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Padua points: properties

The generating curve γ(t) (n = 4)
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Padua points: properties

The complete generating curve γ(t) (n = 4)
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Padua points: properties

The generating curve γ(t) is a Lissajous curve

...1 It is an algebraic curve: Tn+1(x) = Tn(y) (for the first
family!).

...2 Lissajous curves are algebraic, their implicit equations can be
found by using Chebyshev polynomials.

...3 Chebyshev polynomials are Lissajous curves (cf. J.C. Merino,
The Coll. Math. J. 34(2)2003).
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Padua points: properties

Lagrange polynomials

The fundamental Lagrange polynomials of the Padua points are

.

......

Lξ(x) = wξ (Kn(ξ, x)− Tn(ξ1)Tn(x1)) , Lξ(η) = δξη, ξ,η ∈ Padn
(1)

where

wξ =
1

n(n + 1)
·


1

2
if ξ is a vertex point

1 if ξ is an edge point

2 if ξ is an interior point

{wξ} are weights of cubature formula for the prod. Cheb. measure, exact
”on almost” Pn

2n([−1, 1]2), i.e. pol. orthogonal to T2n(x2)
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Padua points: properties

Reproducing kernel

.

......

Kn(x, y) =
n∑

k=0

k∑
j=0

T̂j(x1)T̂k−j(x2)T̂j(y1)T̂k−j(y2) , T̂j =
√
2Tj , j ≥ 1

(2)

is the reproducing kernel of P2
n([−1, 1]2) equipped with the inner product

⟨f , g⟩ =
∫
[−1,1]2

f (x1, x2)g(x1, x2)
dx1

π
√
1− x21

dx2

π
√
1− x22

,

with reproduction property∫
[−1,1]2

Kn(x, y)pn(y)w(y)dy = pn(x), ∀pn ∈ P2
n

w(x) = w(x1, x2) =
1

π
√
1− x21

1

π
√
1− x22
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Padua points: properties

Lebesgue constant

The Lebesgue constant

Λn = max
x∈[−1,1]2

λn(x), λn(x) =
∑

ξ∈Padn

|Lξ(x)|

is bounded by (cf. BCDeMVX, Numer. Math. 2006)
.

...... Λn ≤ C log2 n (3)

(optimal order of growth on a square).

Stefano De Marchi Padua points: genesis, theory, computation and applications



Padua points: genesis, theory, computation and applications

Interpolation: formula and computational issues

Interpolant

From the representations (1) (Lagrange poly.) and (2) (reproducing
kernel) the interpolant of a function f : [−1, 1]2 → R is

Lnf (x) =
∑

ξ∈Padn

f (ξ)Lξ(x) =
∑

ξ∈Padn

f (ξ) [wξ (Kn(ξ, x)− Tn(ξ1)Tn(x1))] =

=
n∑

k=0

k∑
j=0

cj,k−j T̂j(x1)T̂k−j(x2)−
cn,0
2

T̂n(x1)T̂0(x2) ,

where the coefficients

cj,k−j =
∑

ξ∈Padn

f (ξ)wξT̂j(ξ1)T̂k−j(ξ2), 0 ≤ j ≤ k ≤ n

can be computed once and for all.
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Interpolation: formula and computational issues

Coefficient matrix

Let us define the n + 1× n + 1 coefficient matrix

C0 =


c0,0 c0,1 . . . . . . c0,n
c1,0 c1,1 . . . c1,n−1 0
...

... . .
.

. .
. ...

cn−1,0 cn−1,1 0 . . . 0
cn,0
2 0 . . . 0 0


and for a vector S = (s1, . . . , sm), S ∈ [−1, 1]m, the (n + 1)×m
Chebyshev collocation matrix

T(S) =

T̂0(s1) . . . T̂0(sm)
... . . .

...

T̂n(s1) . . . T̂n(sm)
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Interpolation: formula and computational issues

Coefficient matrix factorization

Letting Cn+1 the vector of the Chebyshev-Lobatto pts

Cn+1 =
(
zn1 , . . . , z

n
n+1

)
we construct the (n + 1)× (n + 2) matrix

G(f ) = (gr ,s) =

{
wξf (z

n
r , z

n+1
s ) if ξ = (znr , z

n+1
s ) ∈ Padn

0 if ξ = (znr , z
n+1
s ) ∈ (Cn+1 × Cn+2) \ Padn

.

Then C0 is essentially the upper-left triangular part of
.

...... C(f ) = P1G(f )PT
2

P1 = T(Cn+1) ∈ R(n+1)×(n+1) and P2 = T(Cn+2) ∈ R(n+1)×(n+2).
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Interpolation: formula and computational issues

Coefficient matrix factorization

Exploiting the fact that the Padua points are union of two Chebyshev
subgrids, we may define the two matrices

G1(f ) =
(
wξf (ξ) , ξ = (znr , z

n+1
s ) ∈ CE

n+1 × CO
n+2

)
G2(f ) =

(
wξf (ξ) , ξ = (znr , z

n+1
s ) ∈ CO

n+1 × CE
n+2

)
then we can compute the coefficient matrix as

C(f ) = T(CE
n+1)G1(f ) (T(CO

n+2))
t + T(CO

n+1)G2(f ) (T(CE
n+2))

t

We term this approach as MM, Matrix-Multiplication.
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Interpolation: formula and computational issues

Coefficient matrix factorization by FFT

cj,l =
∑

ξ∈Padn

f (ξ)wξT̂j(ξ1)T̂l(ξ2) =
n∑

r=0

n+1∑
s=0

gr ,s T̂j(z
n
r )T̂l(z

n+1
s )

= βj,l

n∑
r=0

n+1∑
s=0

gr ,s cos
jrπ

n
cos

lsπ

n + 1
= βj,l

M−1∑
s=0

(
N−1∑
r=0

g0
r ,s cos

2jrπ

N

)
cos

2lsπ

M

where N = 2n, M = 2(n + 1) and

βj,l =


1 j = l = 0

2 j ̸= 0, l ̸= 0
√
2 otherwise

g0
r ,s =

{
gr ,s 0 ≤ r ≤ n and 0 ≤ s ≤ n + 1

0 r > n or s > n + 1
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Interpolation: formula and computational issues

Coefficient matrix factorization by FFT

The coefficients cj,l can be computed by a double Discrete Fourier
Transform.

ĝj,s = REAL

(
N−1∑
r=0

g0
r ,se

−2πijr/N

)
, 0 ≤ j ≤ n, 0 ≤ s ≤ M − 1

cj,l
βj,l

= ˆ̂gj,l = REAL

(
M−1∑
s=0

ĝj,se
−2πils/M

)
, 0 ≤ j ≤ n, 0 ≤ l ≤ n − j

(4)
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Interpolation: formula and computational issues

Matlab R⃝ code for the FFT approach

Input: G ↔ G(f )

Gfhat = real(fft(G,2*n));

Gfhat = Gfhat(1:n+1,:);

Gfhathat =real(fft(Gfhat,2*(n+1),2));

C0f = Gfhathat(:,1:n+1);

C0f =2*C0f; C0f(1,:) = C0f(1,:)/sqrt(2);

C0f(:,1) = C0f(:,1)/sqrt(2);

C0f = fliplr(triu(fliplr(C0f)));

C0f(n+1,1) = C0f(n+1,1)/2;

Output: C0 ↔ C0
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Interpolation: formula and computational issues

Linear algebra approach vs FFT approach

The construction of the coefficients is performed by a
matrix-matrix product.

It has been easily and efficiently implemented in Fortran77
(by, eventually optimized, BLAS) (cf. CDeMV, TOMS 2008)
and in Matlab R⃝ (based on optimized BLAS).

The coefficients are approximated Fourier–Chebyshev
coefficients, hence they can be computed by FFT techniques.

FFT is competitive and more stable than the MM approach at
high degrees of interpolation (see later).
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Interpolation: formula and computational issues

Evaluating the interpolant (in Matlab)

Given a point x = (x1, x2) and the coefficient matrix C0, the
polynomial interpolation formula can be evaluated by a double
matrix-vector product

Lnf (x) = T(x1)TC0(f )T(x2)

If X = (X1,X2) (X1,2 column vectors) is a set of target points, then

Lnf (X) = diag
(
(T(X1))

t C0(f ) T(X2)
)

(5)

The result Lnf (X) is a (column) vector.

If X = X1 × X2 is a Cartesian grid then

Lnf (X) =
(
(T(X1))

t C0(f ) T(X2)
)t

(6)

The result Lnf (X) is a matrix whose i-th row and j-th column
contains the evaluation of the interpolant as the built-in function
meshgrid of Matlab R⃝.
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Interpolation: formula and computational issues

Beyond the square

The interpolation formula can be extended to other domains
Ω ⊂ R2, by means of a suitable mapping of the square (cf.
CDeMV JCAM2008). Given

σ : [−1,1]2 → Ω

t 7→ x = σ(t)

it is possible to construct the (in general nonpolynomial)
interpolation formula

Lnf (x) = T(σ←1 (x))TC0(f ◦ σ)T(σ←2 (x))
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Cubature: formula and computational issues

Cubature

Integration of the interpolant at the Padua points gives a
nontensorial Clenshaw–Curtis cubature formula (cf. SVZ, Numer.
Algorithms 2008)∫

[−1,1]2
f (x)dx ≈

∫
[−1,1]2

Lnf (x)dx =
n∑

k=0

k∑
j=0

c ′j ,k−j mj ,k−j

=
n∑

j=0

n∑
l=0

c ′j ,l mj ,l =
n∑

j , even

n∑
l , even

c ′j ,l mj ,l
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Cubature: formula and computational issues

Cubature

Where the moments mj ,l are

mj ,l =

∫ 1

−1
T̂j(t)dt

∫ 1

−1
T̂l(t)dt

Since ∫ 1

−1
T̂j(t)dt =


2 j = 0

0 j odd

2
√
2

1− j2
j even
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Cubature: formula and computational issues

The Matlab R⃝ code for the cubature

Input: C0f↔ C0(f )

j = [0:2:n];

mom = 2*sqrt(2)./(1-j.^2);

mom(1) = 2;

[M1,M2]=meshgrid(mom);

M = M1.*M2;

C0fM = C0f(1:2:n+1,1:2:n+1).*M;

Int = sum(sum(C0fM));

Output: Int↔ In(f )
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Cubature: formula and computational issues

Cubature

It is often desiderable having a cubature formula involving the function
values at the nodes and the corresponding cubature weights. Using the
formula for the coefficients cj,l , we can write

In(f ) =
∑

ξ∈Padn

λξ f (ξ)

=
∑

ξ∈CE
n+1×CO

n+2

λξ f (ξ) +
∑

ξ∈CO
n+1×CE

n+2

λξ f (ξ)

where

λξ = wξ

n∑
j even

n∑
l even

m′
j,l T̂j(ξ1)T̂l(ξ2) (7)
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Cubature: formula and computational issues

Cubature

Defining the Chebyshev matrix corresponding to even degrees

TE(S) =


T̂0(s1) · · · T̂0(sm)

T̂2(s1) · · · T̂2(sm)
... · · ·

...

T̂pn(s1) · · · T̂pn(sm)

 ∈ R([ n2 ]+1)×m

and the matrices of weights on the subgrids,
W1 =

(
wξ, ξ ∈ CE

n+1 × CO
n+2

)t
, W2 =

(
wξ, ξ ∈ CO

n+1 × CE
n+2

)t
, then the

cubature weights {λξ} can be computed in matrix form

L1 =
(
λξ, ξ ∈ CE

n+1 × CO
n+2

)t
= W1.

(
TE(CE

n+1))
t M0 TE(CO

n+2)
)t

L2 =
(
λξ, ξ ∈ CO

n+1 × CE
n+2

)t
= W2.

(
TE(CO

n+1))
t M0 TE(CE

n+2)
)t

where M0 =
(
m′

j,l

)
(moment matrix) and the dot means that the final

product is entrywise (Hadamard or Schur product).
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Cubature: formula and computational issues

Cubature

...1 An FFT-based implementation is then feasible, in analogy to what
happens in the univariate case with the Clenshaw-Curtis formula (cf.
Waldvogel, BIT06). The algorithm is quite similar the one for
interpolation (cf. CDSV, Numer. Alg. 2010)

...2 The cubature weights are not all positive, but the negative ones are
few and of small size and

.

......

lim
n→∞

∑
ξ∈Padn

|λξ| = 4

i.e. stability and convergence for every continuous f .
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Examples and numerical tests

Numerical tests

Language: Matlab R⃝ 7.6.0
Processor: Intel Core2 Duo 2.2GHz.
Similar results with Octave 3.2.3.

n 20 40 60 80 100 300 500 1000
FFT 0.001 0.001 0.001 0.002 0.003 0.034 0.115 0.387
MM 0.002 0.003 0.003 0.003 0.008 0.101 0.298 1.353

Table : CPU time (in seconds) for the computation of the interpolation
coefficients at a sequence of degrees (average of 10 runs).

n 20 40 60 80 100 300 500 1000
FFT 0.001 0.001 0.002 0.002 0.004 0.028 0.111 0.389
MM 0.001 0.001 0.001 0.002 0.003 0.027 0.092 0.554

Table : CPU time (in seconds) for the computation of the cubature
weights at a sequence of degrees (average of 10 runs).
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Examples and numerical tests

Numerical tests

Figure : Relative interpolation errors (left) and cubature (right) versus
the interpolation degree for the Franke test function in [0, 1]2, by the
Matrix Multiplication (MM) and the FFT-based algorithms.
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Examples and numerical tests

Numerical tests
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Figure : Relative interpolation errors versus the number of interpolation
points for the Gaussian f (x) = exp (−|x|2) (left) and the C 2 function
f (x) = |x|3 (right) in [−1, 1]2; Tens. CL = Tensorial Chebyshev-Lobatto
interpolation.
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Examples and numerical tests

Numerical tests
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Figure : Relative cubature errors versus the number of cubature points (CC = Clenshaw-Curtis, GLL =

Gauss-Legendre-Lobatto, OS = Omelyan-Solovyan) for the Gaussian f (x) = exp (−|x|2) (left) and the C2 function

f (x) = |x|3 (right); the integration domain is [−1, 1]2, the integrals up to machine precision are, respectively:
2.230985141404135 and 2.508723139534059.
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Applications

Padua points on triangle

Figure : Padua points on the unit triangle for n = 10.
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Applications

Approximated Fekete pts from Padua points on triangle

Figure : Fekete points for n = 6 extracted from a mesh of Padua points
for n = 24. Left: the Padua points mapped on the lower vertex
transformation. Right: Padua points on the triangle mapped along the
diagonal.
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Applications

Applications

...1 Padua points are WAM (Weakly Admissible Meshes) for
interpolation or extracting Fekete points on 2D domains (cf.
BSV09)

...2 Padua points can be used in 3D (tensor product) WAMs on
different domains (Master’s theses recently done at UniPD)

...3 Vandermonde determinant of Padua Points has variables that
separate: this was an open question (see BDeMW DRNA09) now
solved (see DeMU13 also as arXiv:1311.6455)

...4 Histogram Compression and Image Retrieval Through Padua Points
Interpolation (cf. Montagna-Finlayson 2008) “Experiments show
that our new compact Padua point representation supports excellent
indexing and recognition.”
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separate: this was an open question (see BDeMW DRNA09) now
solved (see DeMU13 also as arXiv:1311.6455)

...4 Histogram Compression and Image Retrieval Through Padua Points
Interpolation (cf. Montagna-Finlayson 2008) “Experiments show
that our new compact Padua point representation supports excellent
indexing and recognition.”
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...1 New observations on the distribution of Padua points by Cuyt et al.
NA2012

Figure : Padua pts for n = 6, they lie on n concentric squares with
sides at the zeros of Un and Un−1 (the inner) except the external
and the center (just a dot!) .

...2 For more applications see
www.math.unipd.it/∼marcov/CAApadua.html
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Applications

Some open problems

...1 Still a conjecture the fact that the Lebesgue function attains
its maximum in one of the vertices (−1, 1) or (1, 1) (for the
first family)

...2 Padua points in 3D ... open problem

...3 Make the software more efficient (if there’s any possibility),
maybe by using ChebFun2 (Nick Trefethen’s definition of
efficiency: 10 digits, 5 sec. and 1 page!)
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.

......

THANK YOU
FOR YOUR KIND ATTENTION
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