#### Stefano De Marchi

Department of Mathematics University of Padova

April 2, 2014

<sup>&</sup>lt;sup>\*</sup> Joint work with L. Bos (Verona), M. Caliari (Verona), A. Sommariva and M. Vianello (Padua), Y. Xu (Eugene)

## Outline



- Prom Dubiner metric to Padua points
- 3 Padua points: properties
- Interpolation: formula and computational issues
- 5 Cubature: formula and computational issues
- 6 Examples and numerical tests

#### 7 Applications

## Motivations

- Well-distributed nodes: there exist various nodal sets for polynomial interpolation of even degree n in the square  $\Omega = [-1, 1]^2$  (c.DeM.V., AMC04), which turned out to be equidistributed w.r.t. Dubiner metric (D., JAM95) and which show optimal Lebesgue constant growth.
- Efficient interpolant evaluation: the interpolant should be constructed without solving the Vandermonde system whose complexity is  $\mathcal{O}(N^3)$ ,  $N = \binom{n+2}{2}$  for each pointwise evaluation. We look for compact formulae.
- Efficient cubature: in particular computation of cubature weights for non-tensorial cubature formulae.

#### Main references

- M. Caliari, S. De Marchi and M. Vianello: Bivariate polynomial interpolation on the square at new nodal sets, Applied Math. Comput. vol. 165/2, pp. 261-274 (2005).
- L. Bos, S. De Marchi, M. Caliari, M. Vianello and Y. Xu: Bivariate Lagrange interpolation at the Padua points: the generating curve approach, J. Approx. Theory 143 (2006), 15–25.
- 3 L. Bos, S. De Marchi, M. Vianello and Y. Xu: Bivariate Lagrange interpolation at the Padua points: the ideal theory approach, Numer. Math., 108(1) (2007), 43-57.
- M. Caliari, S. De Marchi, and M. Vianello: Bivariate Lagrange interpolation at the Padua points: computational aspects, J. Comput. Appl. Math., Vol. 221 (2008), 284-292.
- M. Caliari, S. De Marchi and M. Vianello: Algorithm 886: Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains, ACM Trans. Math. Software, Vol. 35(3), Article 21, 11 pages (2008).
- L. Bos, S. De Marchi and S. Waldron: On the Vandermonde Determinant of Padua-like Points (on Open Problems section), Dolomites Res. Notes on Approx. 2(2009), 1–15.
  - M. Caliari, S. De Marchi, A. Sommariva and M. Vianello: Padua2DM: fast interpolation and cubature at Padua points in Matlab/Octave, Numer. Algorithms 56(1) (2011), 45–60.

## The Dubiner metric

The **Dubiner metric** in the 1D:

$$\mu_{[-1,1]}(x,y) = |\operatorname{arccos}(x) - \operatorname{arccos}(y)|, \ \forall x,y \in [-1,1]$$
.

By using the Van der Corput-Schaake inequality (1935) for trig. polys.  $T(\theta)$  of degree *m* and  $|T(\theta)| \leq 1$ ,

$$|T'(\theta)| \leq m\sqrt{1-T^2( heta)}$$
.

$$\mu_{[-1,1]}(x,y) := \sup_{\|P\|_{\infty,[-1,1]} \le 1} \frac{1}{m} |\operatorname{arccos}(P(x)) - \operatorname{arccos}(P(y))|,$$

with  $P \in \mathbb{P}_n([-1, 1])$ . This metric generalizes to compact sets  $\Omega \subset \mathbb{R}^d$ , d > 1:

$$\mu_{\Omega}(\mathbf{x},\mathbf{y}) := \sup_{\|P\|_{\infty,\Omega} \leq 1} \frac{1}{m} |\operatorname{arccos}(P(\mathbf{x})) - \operatorname{arccos}(P(\mathbf{y}))|.$$

## The Dubiner metric

#### Conjecture(C.DeM.V.AMC04):

Nearly optimal interpolation points on a compact  $\Omega$  are asymptotically equidistributed w.r.t. the Dubiner metric on  $\Omega$ .

Once we know the Dubiner metric on a compact  $\Omega$ , we have at least a method for producing "good" points. For d = 2, let  $\mathbf{x} = (x_1, x_2)$ ,  $\mathbf{y} = (y_1, y_2)$ 

• Dubiner metric on the square,  $[-1, 1]^2$ :

 $\max\{|\arccos(x_1) - \arccos(y_1)|, |\arccos(x_2) - \arccos(y_2)|\};$ 

• Dubiner metric on the disk,  $|\mathbf{x}| \leq 1$ :

$$\arccos\left(x_1y_1 + x_2y_2 + \sqrt{1 - x_1^2 - x_2^2}\sqrt{1 - y_1^2 - y_2^2}\right)$$

## The Dubiner metric

#### Conjecture(C.DeM.V.AMC04):

Nearly optimal interpolation points on a compact  $\Omega$  are asymptotically equidistributed w.r.t. the Dubiner metric on  $\Omega$ .

Once we know the Dubiner metric on a compact  $\Omega$ , we have at least a method for producing "good" points. For d = 2, let  $\mathbf{x} = (x_1, x_2)$ ,  $\mathbf{y} = (y_1, y_2)$ 

• Dubiner metric on the square,  $[-1, 1]^2$ :

 $\max\{|\arccos(x_1) - \arccos(y_1)|, |\arccos(x_2) - \arccos(y_2)|\};$ 

• Dubiner metric on the disk,  $|\mathbf{x}| \leq 1$ :

$$\left| \arccos\left( x_1y_1 + x_2y_2 + \sqrt{1 - x_1^2 - x_2^2}\sqrt{1 - y_1^2 - y_2^2} \right) \right|$$

#### Dubiner points and Lebesgue constant

496 Dubiner nodes (i.e. deg. n = 30) and the comparison of Lebesgue constants for Random (RND). Euclidean (EUC) and Dubiner (DUB) points.



Euclidean pts, are Leja-like points, given by  $\max_{\mathbf{x} \in \Omega} \min_{\mathbf{y} \in X_n} \|\mathbf{x} - \mathbf{y}\|_2$ .

Padua points: genesis, theory, computation and applications From Dubiner metric to Padua points

#### Morrow-Patterson points

• Let *n* be a positive even integer. The Morrow-Patterson points (MP) (cf. M.P. SIAM JNA 78) are the points

$$x_m = \cos\left(\frac{m\pi}{n+2}\right), \quad y_k = \begin{cases} \cos\left(\frac{2k\pi}{n+3}\right) & \text{if } m \text{ odd} \\ \cos\left(\frac{(2k-1)\pi}{n+3}\right) & \text{if } m \text{ even} \end{cases}$$

$$1 \le m \le n+1, \ 1 \le k \le n/2+1$$
. Note: they are  $N = \binom{n+2}{2}$ 

## Extended Morrow-Patterson points

The Extended Morrow-Patterson points (EMP) (C.DeM.V. AMC 05) are the points

$$x_m^{EMP} = rac{1}{lpha_n} x_m^{MP}, \quad y_k^{EMP} = rac{1}{eta_n} y_k^{MP}$$

 $\alpha_n = \cos(\pi/(n+2)), \ \beta_n = \cos(\pi/(n+3)).$ 

**Note:** the MP and the EMP points are equally distributed w.r.t. Dubiner metric on the square  $[-1,1]^2$  and unisolvent for polynomial interpolation of degree *n* on the square.

The Padua points (PD) can be defined as follows (C.DeM.V. AMC 05):

$$x_m^{PD} = \cos\left(\frac{(m-1)\pi}{n}\right), \quad y_k^{PD} = \begin{cases} \cos\left(\frac{(2k-1)\pi}{n+1}\right) & \text{if } m \text{ odd} \\ \cos\left(\frac{2(k-1)\pi}{n+1}\right) & \text{if } m \text{ ever} \end{cases}$$

$$1 \le m \le n+1, \ 1 \le k \le n/2+1, \ N = \binom{n+2}{2}.$$

- >

#### Some properties

- The PD points are equispaced w.r.t. Dubiner metric on  $[-1, 1]^2$ .
- They are modified Morrow-Patterson points discovered in Padua in 2003 by B.DeM.V.&W. Actually the interior points are the MP points of degree n − 2 while the boundary points are "natural" points of the grid.



 There are 4 families of PD pts: take rotations of 90 degrees, clockwise for even degrees and counterclockwise for odd degrees.

Stefano De Marchi

Padua points: genesis, theory, computation and applications

#### Some properties

- The PD points are equispaced w.r.t. Dubiner metric on  $[-1, 1]^2$ .
- They are modified Morrow-Patterson points discovered in Padua in 2003 by B.DeM.V.&W. Actually the interior points are the MP points of degree n 2 while the boundary points are "natural" points of the grid.



 There are 4 families of PD pts: take rotations of 90 degrees, clockwise for even degrees and counterclockwise for odd degrees. From Dubiner metric to Padua points

#### Graphs of MP, EMP, PD pts and their Lebesgue constants



Left: the graphs of MP, EMP, PD for n = 8. Right: the growth of the corresponding Lebesgue constants.

#### Let $\mathbb{P}_n^2$ be the space of bivariate polynomials of total degree $\leq n$ . Question: is there a set $\Xi \subset [-1,1]^2$ of points such that:

- $\operatorname{card}(\Xi) = \dim(\mathbb{P}_n^2) = \frac{(n+1)(n+2)}{2};$
- the problem of finding the interpolation polynomial on Ξ of degree n is unisolvent;
- the Lebesgue constant  $\Lambda_n$  behaves like  $\log^2 n$  for  $n \to \infty$ .

#### Let $\mathbb{P}_n^2$ be the space of bivariate polynomials of total degree $\leq n$ . Question: is there a set $\Xi \subset [-1,1]^2$ of points such that:

- $\operatorname{card}(\Xi) = \dim(\mathbb{P}_n^2) = \frac{(n+1)(n+2)}{2};$
- the problem of finding the interpolation polynomial on Ξ of degree n is unisolvent;
- the Lebesgue constant  $\Lambda_n$  behaves like  $\log^2 n$  for  $n \to \infty$ .

Let  $\mathbb{P}_n^2$  be the space of bivariate polynomials of total degree  $\leq n$ . Question: is there a set  $\Xi \subset [-1,1]^2$  of points such that:

- $\operatorname{card}(\Xi) = \dim(\mathbb{P}_n^2) = \frac{(n+1)(n+2)}{2};$
- the problem of finding the interpolation polynomial on Ξ of degree n is unisolvent;

• the Lebesgue constant  $\Lambda_n$  behaves like  $\log^2 n$  for  $n \to \infty$ .

Let  $\mathbb{P}_n^2$  be the space of bivariate polynomials of total degree  $\leq n$ . Question: is there a set  $\Xi \subset [-1, 1]^2$  of points such that:

- $\operatorname{card}(\Xi) = \dim(\mathbb{P}_n^2) = \frac{(n+1)(n+2)}{2};$
- the problem of finding the interpolation polynomial on Ξ of degree n is unisolvent;

• the Lebesgue constant  $\Lambda_n$  behaves like  $\log^2 n$  for  $n \to \infty$ .

Let  $\mathbb{P}_n^2$  be the space of bivariate polynomials of total degree  $\leq n$ . Question: is there a set  $\Xi \subset [-1,1]^2$  of points such that:

- $\operatorname{card}(\Xi) = \dim(\mathbb{P}_n^2) = \frac{(n+1)(n+2)}{2};$
- the problem of finding the interpolation polynomial on Ξ of degree n is unisolvent;
- the Lebesgue constant  $\Lambda_n$  behaves like  $\log^2 n$  for  $n \to \infty$ .

Let  $\mathbb{P}_n^2$  be the space of bivariate polynomials of total degree  $\leq n$ . Question: is there a set  $\Xi \subset [-1, 1]^2$  of points such that:

- $\operatorname{card}(\Xi) = \dim(\mathbb{P}_n^2) = \frac{(n+1)(n+2)}{2};$
- the problem of finding the interpolation polynomial on Ξ of degree n is unisolvent;
- the Lebesgue constant  $\Lambda_n$  behaves like  $\log^2 n$  for  $n \to \infty$ .

Let us consider n + 1 Chebyshev–Lobatto points on [-1, 1]

$$C_{n+1} = \left\{ z_j^n = \cos\left(\frac{(j-1)\pi}{n}\right), \ j = 1, \dots, n+1 \right\}$$

and the two subsets of points with odd or even indexes

$$C_{n+1}^{O} = \{z_{j}^{n}, j = 1, \dots, n+1, j \text{ odd}\}$$
$$C_{n+1}^{E} = \{z_{j}^{n}, j = 1, \dots, n+1, j \text{ even}\}$$

Then, the Padua points are the set

$$\operatorname{Pad}_{n} = C_{n+1}^{\operatorname{O}} \times C_{n+2}^{\operatorname{E}} \cup C_{n+1}^{\operatorname{E}} \times C_{n+2}^{\operatorname{O}} \subset C_{n+1} \times C_{n+2}$$

Let us consider n + 1 Chebyshev–Lobatto points on [-1, 1]

$$C_{n+1} = \left\{ z_j^n = \cos\left(\frac{(j-1)\pi}{n}\right), \ j = 1, \dots, n+1 \right\}$$

and the two subsets of points with odd or even indexes

$$C_{n+1}^{O} = \left\{ z_{j}^{n}, \ j = 1, \dots, n+1, \ j \text{ odd} \right\}$$
$$C_{n+1}^{E} = \left\{ z_{j}^{n}, \ j = 1, \dots, n+1, \ j \text{ even} \right\}$$

Then, the Padua points are the set

$$\operatorname{Pad}_{n} = C_{n+1}^{\operatorname{O}} \times C_{n+2}^{\operatorname{E}} \cup C_{n+1}^{\operatorname{E}} \times C_{n+2}^{\operatorname{O}} \subset C_{n+1} \times C_{n+2}$$

Let us consider n + 1 Chebyshev–Lobatto points on [-1, 1]

$$C_{n+1} = \left\{ z_j^n = \cos\left(\frac{(j-1)\pi}{n}\right), \ j = 1, \dots, n+1 \right\}$$

and the two subsets of points with odd or even indexes

$$C_{n+1}^{O} = \left\{ z_{j}^{n}, \ j = 1, \dots, n+1, \ j \text{ odd} \right\}$$
$$C_{n+1}^{E} = \left\{ z_{j}^{n}, \ j = 1, \dots, n+1, \ j \text{ even} \right\}$$

Then, the Padua points are the set

$$\operatorname{Pad}_{n} = \boldsymbol{\mathsf{C}}_{n+1}^{\operatorname{O}} \times \boldsymbol{\mathsf{C}}_{n+2}^{\operatorname{E}} \cup \boldsymbol{\mathsf{C}}_{n+1}^{\operatorname{E}} \times \boldsymbol{\mathsf{C}}_{n+2}^{\operatorname{O}} \subset \boldsymbol{\mathsf{C}}_{n+1} \times \boldsymbol{\mathsf{C}}_{n+2}$$

## The generating curve

There exists an alternative representation as self-intersections and boundary contacts of the (parametric and periodic) generating curve:

$$\gamma(t) = (-\cos((n+1)t), -\cos(nt)), \quad t \in [0,\pi]$$

Padua points: properties



Padua points: properties


# The generating curve $\gamma(t)$ (n = 4)



# The generating curve $\gamma(t)$ (n = 4)



# The generating curve $\gamma(t)$ (n = 4)



# The generating curve $\gamma(t)$ (n=4)



# The complete generating curve $\gamma(t)$ (n = 4)



# The generating curve $\gamma(t)$ is a Lissajous curve

- It is an algebraic curve:  $T_{n+1}(x) = T_n(y)$  (for the first family!).
- Lissajous curves are algebraic, their implicit equations can be found by using Chebyshev polynomials.
- Chebyshev polynomials are Lissajous curves (cf. J.C. Merino, The Coll. Math. J. 34(2)2003).

# Lagrange polynomials

The fundamental Lagrange polynomials of the Padua points are

$$L_{\boldsymbol{\xi}}(\mathbf{x}) = w_{\boldsymbol{\xi}} \left( K_n(\boldsymbol{\xi}, \mathbf{x}) - T_n(\boldsymbol{\xi}_1) T_n(\boldsymbol{x}_1) \right) , \quad L_{\boldsymbol{\xi}}(\boldsymbol{\eta}) = \delta_{\boldsymbol{\xi}\boldsymbol{\eta}}, \quad \boldsymbol{\xi}, \boldsymbol{\eta} \in \operatorname{Pad}_n$$
(1)

where

$$w_{\xi} = \frac{1}{n(n+1)} \cdot \begin{cases} \frac{1}{2} & \text{if } \xi \text{ is a vertex point} \\ 1 & \text{if } \xi \text{ is an edge point} \\ 2 & \text{if } \xi \text{ is an interior point} \end{cases}$$

 $\{w_{\xi}\}\$  are weights of cubature formula for the prod. Cheb. measure, exact "on almost"  $\mathbb{P}_{2n}^{n}([-1,1]^{2})$ , i.e. pol. orthogonal to  $T_{2n}(x_{2})$ 

# Lagrange polynomials

The fundamental Lagrange polynomials of the Padua points are

$$L_{\boldsymbol{\xi}}(\mathbf{x}) = w_{\boldsymbol{\xi}} \left( K_n(\boldsymbol{\xi}, \mathbf{x}) - T_n(\boldsymbol{\xi}_1) T_n(\boldsymbol{x}_1) \right) , \quad L_{\boldsymbol{\xi}}(\boldsymbol{\eta}) = \delta_{\boldsymbol{\xi}\boldsymbol{\eta}}, \quad \boldsymbol{\xi}, \boldsymbol{\eta} \in \operatorname{Pad}_n$$
(1)

where

$$w_{\boldsymbol{\xi}} = \frac{1}{n(n+1)} \cdot \begin{cases} \frac{1}{2} & \text{if } \boldsymbol{\xi} \text{ is a vertex point} \\ 1 & \text{if } \boldsymbol{\xi} \text{ is an edge point} \\ 2 & \text{if } \boldsymbol{\xi} \text{ is an interior point} \end{cases}$$

 $\{w_{\xi}\}\$  are weights of cubature formula for the prod. Cheb. measure, exact "on almost"  $\mathbb{P}_{2n}^n([-1,1]^2)$ , i.e. pol. orthogonal to  $T_{2n}(x_2)$ 

# Reproducing kernel

$$\mathcal{K}_{n}(\mathbf{x},\mathbf{y}) = \sum_{k=0}^{n} \sum_{j=0}^{k} \hat{T}_{j}(x_{1}) \hat{T}_{k-j}(x_{2}) \hat{T}_{j}(y_{1}) \hat{T}_{k-j}(y_{2}) , \quad \hat{T}_{j} = \sqrt{2} T_{j}, \, j \ge 1$$
(2)

is the reproducing kernel of  $\mathbb{P}^2_n([-1,1]^2)$  equipped with the inner product

$$\langle f,g \rangle = \int_{[-1,1]^2} f(x_1,x_2)g(x_1,x_2) \frac{\mathrm{d}x_1}{\pi\sqrt{1-x_1^2}} \frac{\mathrm{d}x_2}{\pi\sqrt{1-x_2^2}} ,$$

with reproduction property

$$egin{aligned} &\int_{[-1,1]^2} \mathcal{K}_n(\mathbf{x},\mathbf{y}) 
ho_n(\mathbf{y}) w(\mathbf{y}) \mathrm{d}\mathbf{y} = 
ho_n(\mathbf{x}), & orall 
ho_n \in \mathbb{P}_n^2 \ w(\mathbf{x}) = w(x_1,x_2) = rac{1}{\pi\sqrt{1-x_1^2}} rac{1}{\pi\sqrt{1-x_2^2}} \end{aligned}$$

Padua points: genesis, theory, computation and applications Padua points: properties

#### Lebesgue constant

#### The Lebesgue constant

$$\Lambda_n = \max_{\mathbf{x} \in [-1,1]^2} \lambda_n(\mathbf{x}), \quad \lambda_n(\mathbf{x}) = \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_n} |L_{\boldsymbol{\xi}}(\mathbf{x})|$$

is bounded by (cf. BCDeMVX, Numer. Math. 2006)

$$\Lambda_n \le C \log^2 n \tag{3}$$

(optimal order of growth on a square).

#### Interpolant

From the representations (1) (Lagrange poly.) and (2) (reproducing kernel) the interpolant of a function  $f: [-1,1]^2 \to \mathbb{R}$  is

$$egin{aligned} \mathcal{L}_n f(\mathbf{x}) &= \sum_{oldsymbol{\xi} \in \mathrm{Pad}_n} f(oldsymbol{\xi}) L_{oldsymbol{\xi}}(\mathbf{x}) &= \sum_{oldsymbol{\xi} \in \mathrm{Pad}_n} f(oldsymbol{\xi}) \left[ w_{oldsymbol{\xi}} \left( K_n(oldsymbol{\xi}, \mathbf{x}) - T_n(oldsymbol{\xi}_1) T_n(x_1) 
ight) 
ight] = \ &= \sum_{k=0}^n \sum_{j=0}^k c_{j,k-j} \hat{T}_j(x_1) \hat{T}_{k-j}(x_2) - rac{c_{n,0}}{2} \hat{T}_n(x_1) \hat{T}_0(x_2) \;, \end{aligned}$$

where the coefficients

$$c_{j,k-j} = \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_n} f(\boldsymbol{\xi}) w_{\boldsymbol{\xi}} \hat{T}_j(\xi_1) \hat{T}_{k-j}(\xi_2), \quad 0 \leq j \leq k \leq n$$

can be computed once and for all.

### Interpolant

From the representations (1) (Lagrange poly.) and (2) (reproducing kernel) the interpolant of a function  $f: [-1,1]^2 \to \mathbb{R}$  is

$$egin{aligned} \mathcal{L}_n f(\mathbf{x}) &= \sum_{oldsymbol{\xi} \in \mathrm{Pad}_n} f(oldsymbol{\xi}) L_{oldsymbol{\xi}}(\mathbf{x}) &= \sum_{oldsymbol{\xi} \in \mathrm{Pad}_n} f(oldsymbol{\xi}) \left[ w_{oldsymbol{\xi}} \left( K_n(oldsymbol{\xi}, \mathbf{x}) - \mathcal{T}_n(oldsymbol{\xi}_1) \mathcal{T}_n(x_1) 
ight) 
ight] = \ &= \sum_{k=0}^n \sum_{j=0}^k c_{j,k-j} \hat{\mathcal{T}}_j(x_1) \hat{\mathcal{T}}_{k-j}(x_2) - rac{c_{n,0}}{2} \hat{\mathcal{T}}_n(x_1) \hat{\mathcal{T}}_0(x_2) \;, \end{aligned}$$

where the coefficients

$$c_{j,k-j} = \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_n} f(\boldsymbol{\xi}) w_{\boldsymbol{\xi}} \hat{T}_j(\xi_1) \hat{T}_{k-j}(\xi_2), \quad 0 \leq j \leq k \leq n$$

can be computed once and for all.

# Coefficient matrix

Let us define the  $n + 1 \times n + 1$  coefficient matrix

$$\mathbb{C}_{0} = \begin{pmatrix} c_{0,0} & c_{0,1} & \dots & c_{0,n} \\ c_{1,0} & c_{1,1} & \dots & c_{1,n-1} & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{n-1,0} & c_{n-1,1} & 0 & \dots & 0 \\ \frac{c_{n,0}}{2} & 0 & \dots & 0 & 0 \end{pmatrix}$$

and for a vector  $S = (s_1, \ldots, s_m)$ ,  $S \in [-1, 1]^m$ , the  $(n + 1) \times m$ Chebyshev collocation matrix

$$\mathbb{T}(S) = \begin{pmatrix} \hat{T}_0(s_1) & \dots & \hat{T}_0(s_m) \\ \vdots & \dots & \vdots \\ \hat{T}_n(s_1) & \dots & \hat{T}_n(s_m) \end{pmatrix}$$

Letting  $C_{n+1}$  the vector of the Chebyshev-Lobatto pts

$$C_{n+1} = \left(z_1^n, \ldots, z_{n+1}^n\right)$$

we construct the  $(n + 1) \times (n + 2)$  matrix

$$\mathbb{G}(f) = (g_{r,s}) = \begin{cases} w_{\boldsymbol{\xi}} f(z_r^n, z_s^{n+1}) & \text{if } \boldsymbol{\xi} = (z_r^n, z_s^{n+1}) \in \operatorname{Pad}_n \\ 0 & \text{if } \boldsymbol{\xi} = (z_r^n, z_s^{n+1}) \in (C_{n+1} \times C_{n+2}) \setminus \operatorname{Pad}_n \end{cases}$$

Then  $\mathbb{C}_0$  is essentially the upper-left triangular part of

$$\mathbb{C}(f) = \mathbb{P}_1 \mathbb{G}(f) \mathbb{P}_2^{\mathrm{T}}$$

 $\mathbb{P}_1 = \mathbb{T}(\mathcal{C}_{n+1}) \in \mathbb{R}^{(n+1) imes (n+1)}$  and  $\mathbb{P}_2 = \mathbb{T}(\mathcal{C}_{n+2}) \in \mathbb{R}^{(n+1) imes (n+2)}$ .

Letting  $C_{n+1}$  the vector of the Chebyshev-Lobatto pts

$$C_{n+1} = \left(z_1^n, \ldots, z_{n+1}^n\right)$$

we construct the  $(n+1) \times (n+2)$  matrix

$$\mathbb{G}(f) = (g_{r,s}) = \begin{cases} w_{\boldsymbol{\xi}} f(\boldsymbol{z}_{r}^{n}, \boldsymbol{z}_{s}^{n+1}) & \text{if } \boldsymbol{\xi} = (\boldsymbol{z}_{r}^{n}, \boldsymbol{z}_{s}^{n+1}) \in \operatorname{Pad}_{n} \\ 0 & \text{if } \boldsymbol{\xi} = (\boldsymbol{z}_{r}^{n}, \boldsymbol{z}_{s}^{n+1}) \in (C_{n+1} \times C_{n+2}) \setminus \operatorname{Pad}_{n} \end{cases}$$

Then  $\mathbb{C}_0$  is essentially the upper-left triangular part of

$$\mathbb{C}(f) = \mathbb{P}_1 \mathbb{G}(f) \mathbb{P}_2^{\mathrm{T}}$$

 $\mathbb{P}_1 = \mathbb{T}(\mathcal{C}_{n+1}) \in \mathbb{R}^{(n+1) imes (n+1)}$  and  $\mathbb{P}_2 = \mathbb{T}(\mathcal{C}_{n+2}) \in \mathbb{R}^{(n+1) imes (n+2)}$ .

Letting  $C_{n+1}$  the vector of the Chebyshev-Lobatto pts

$$C_{n+1} = \left(z_1^n, \ldots, z_{n+1}^n\right)$$

we construct the  $(n + 1) \times (n + 2)$  matrix

$$\mathbb{G}(f) = (g_{r,s}) = \begin{cases} w_{\boldsymbol{\xi}} f(\boldsymbol{z}_{r}^{n}, \boldsymbol{z}_{s}^{n+1}) & \text{if } \boldsymbol{\xi} = (\boldsymbol{z}_{r}^{n}, \boldsymbol{z}_{s}^{n+1}) \in \operatorname{Pad}_{n} \\ 0 & \text{if } \boldsymbol{\xi} = (\boldsymbol{z}_{r}^{n}, \boldsymbol{z}_{s}^{n+1}) \in (C_{n+1} \times C_{n+2}) \setminus \operatorname{Pad}_{n} \end{cases}$$

Then  $\mathbb{C}_0$  is essentially the upper-left triangular part of

$$\mathbb{C}(f) = \mathbb{P}_1 \mathbb{G}(f) \mathbb{P}_2^{\mathrm{T}}$$

 $\mathbb{P}_1 = \mathbb{T}(\mathcal{C}_{n+1}) \in \mathbb{R}^{(n+1) \times (n+1)} \text{ and } \mathbb{P}_2 = \mathbb{T}(\mathcal{C}_{n+2}) \in \mathbb{R}^{(n+1) \times (n+2)}.$ 

Exploiting the fact that the Padua points are union of two Chebyshev subgrids, we may define the two matrices

$$\mathbb{G}_1(f) = \left(w_{\boldsymbol{\xi}}f(\boldsymbol{\xi}), \, \boldsymbol{\xi} = (z_r^n, z_s^{n+1}) \in C_{n+1}^{\mathrm{E}} \times C_{n+2}^{\mathrm{O}}\right)$$

$$\mathbb{G}_{2}(f) = \left(w_{\boldsymbol{\xi}}f(\boldsymbol{\xi}), \, \boldsymbol{\xi} = (z_{r}^{n}, z_{s}^{n+1}) \in \boldsymbol{C}_{n+1}^{\mathrm{O}} \times \boldsymbol{C}_{n+2}^{\mathrm{E}}\right)$$

then we can compute the coefficient matrix as

 $\mathbb{C}(f) = \mathbb{T}(C_{n+1}^{\mathrm{E}}) \mathbb{G}_{1}(f) (\mathbb{T}(C_{n+2}^{\mathrm{O}}))^{t} + \mathbb{T}(C_{n+1}^{\mathrm{O}}) \mathbb{G}_{2}(f) (\mathbb{T}(C_{n+2}^{\mathrm{E}}))^{t}$ 

We term this approach as MM, Matrix-Multiplication.

$$\begin{aligned} c_{j,l} &= \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_n} f(\boldsymbol{\xi}) w_{\boldsymbol{\xi}} \, \hat{T}_j(\xi_1) \, \hat{T}_l(\xi_2) = \sum_{r=0}^n \sum_{s=0}^{n+1} g_{r,s} \, \hat{T}_j(z_r^n) \, \hat{T}_l(z_s^{n+1}) \\ &= \beta_{j,l} \sum_{r=0}^n \sum_{s=0}^{n+1} g_{r,s} \cos \frac{jr\pi}{n} \cos \frac{ls\pi}{n+1} = \beta_{j,l} \sum_{s=0}^{M-1} \left( \sum_{r=0}^{N-1} g_{r,s}^0 \cos \frac{2jr\pi}{N} \right) \cos \frac{2ls\pi}{M} \\ &\text{where } N = 2n, \ M = 2(n+1) \text{ and} \\ &\beta_{j,l} = \begin{cases} 1 & j = l = 0 \\ 2 & j \neq 0, \ l \neq 0 \\ \sqrt{2} & \text{otherwise} \end{cases} g_{r,s}^0 = \begin{cases} g_{r,s} & 0 \le r \le n \text{ and } 0 \le s \le n+1 \\ 0 & r > n \text{ or } s > n+1 \end{cases} \end{aligned}$$

The coefficients  $c_{j,l}$  can be computed by a double Discrete Fourier Transform.

$$\hat{g}_{j,s} = \text{REAL}\left(\sum_{r=0}^{N-1} g_{r,s}^{0} e^{-2\pi i j r/N}\right), \quad 0 \le j \le n, \ 0 \le s \le M-1$$
$$\frac{c_{j,l}}{\beta_{j,l}} = \hat{g}_{j,l} = \text{REAL}\left(\sum_{s=0}^{M-1} \hat{g}_{j,s} e^{-2\pi i l s/M}\right), \quad 0 \le j \le n, \ 0 \le l \le n-j$$
(4)

# $\operatorname{MATLAB}^{\mathbb{R}}$ code for the FFT approach

```
Input: G \leftrightarrow \mathbb{G}(f)
```

```
Gfhat = real(fft(G,2*n));
Gfhat = Gfhat(1:n+1,:);
```

```
Gfhathat =real(fft(Gfhat,2*(n+1),2));
```

```
COf = Gfhathat(:,1:n+1);
COf =2*COf; COf(1,:) = COf(1,:)/sqrt(2);
COf(:,1) = COf(:,1)/sqrt(2);
COf = fliplr(triu(fliplr(COf)));
COf(n+1,1) = COf(n+1,1)/2;
```

Output:  $C0 \leftrightarrow \mathbb{C}_0$ 

- The construction of the coefficients is performed by a matrix-matrix product.
- It has been easily and efficiently implemented in FORTRAN77 (by, eventually optimized, BLAS) (cf. CDeMV, TOMS 2008) and in MATLAB<sup>®</sup> (based on optimized BLAS).
- The coefficients are approximated Fourier–Chebyshev coefficients, hence they can be computed by FFT techniques.
- FFT is competitive and more stable than the MM approach at high degrees of interpolation (see later).

- The construction of the coefficients is performed by a matrix-matrix product.
- It has been easily and efficiently implemented in FORTRAN77 (by, eventually optimized, BLAS) (cf. CDeMV, TOMS 2008) and in  $MATLAB^{\mathbb{R}}$  (based on optimized BLAS).
- The coefficients are approximated Fourier–Chebyshev coefficients, hence they can be computed by FFT techniques.
- FFT is competitive and more stable than the MM approach at high degrees of interpolation (see later).

- The construction of the coefficients is performed by a matrix-matrix product.
- It has been easily and efficiently implemented in FORTRAN77 (by, eventually optimized, BLAS) (cf. CDeMV, TOMS 2008) and in  $MATLAB^{\mathbb{R}}$  (based on optimized BLAS).
- The coefficients are approximated Fourier–Chebyshev coefficients, hence they can be computed by FFT techniques.
- FFT is competitive and more stable than the MM approach at high degrees of interpolation (see later).

- The construction of the coefficients is performed by a matrix-matrix product.
- It has been easily and efficiently implemented in FORTRAN77 (by, eventually optimized, BLAS) (cf. CDeMV, TOMS 2008) and in  $MATLAB^{\mathbb{R}}$  (based on optimized BLAS).
- The coefficients are approximated Fourier–Chebyshev coefficients, hence they can be computed by FFT techniques.
- FFT is competitive and more stable than the MM approach at high degrees of interpolation (see later).

# Evaluating the interpolant (in Matlab)

 Given a point x = (x<sub>1</sub>, x<sub>2</sub>) and the coefficient matrix C<sub>0</sub>, the polynomial interpolation formula can be evaluated by a double matrix-vector product

$$\mathcal{L}_n f(\mathbf{x}) = \mathbb{T}(x_1)^{\mathrm{T}} \mathbb{C}_0(f) \mathbb{T}(x_2)$$

• If  $\mathbf{X} = (X_1, X_2)$   $(X_{1,2}$  column vectors) is a set of target points, then  $\mathcal{L}_n f(\mathbf{X}) = \operatorname{diag} \left( (\mathbb{T}(X_1))^t \ \mathbb{C}_0(f) \ \mathbb{T}(X_2) \right)$ (5)

The result  $\mathcal{L}_n f(\mathbf{X})$  is a (column) vector.

• If  $\mathbf{X} = X_1 \times X_2$  is a Cartesian grid then

$$\mathcal{L}_n f(\mathbf{X}) = \left( \left( \mathbb{T}(X_1) \right)^t \ \mathbb{C}_0(f) \ \mathbb{T}(X_2) \right)^t \tag{6}$$

The result  $\mathcal{L}_n f(\mathbf{X})$  is a matrix whose *i*-th row and *j*-th column contains the evaluation of the interpolant as the built-in function meshgrid of MATLAB<sup>®</sup>.

## Beyond the square

The interpolation formula can be extended to other domains  $\Omega \subset \mathbb{R}^2$ , by means of a suitable mapping of the square (cf. CDeMV JCAM2008). Given

$$egin{aligned} oldsymbol{\sigma} \colon [-1,1]^2 & o \Omega \ \mathbf{t} &\mapsto \mathbf{x} = oldsymbol{\sigma}(\mathbf{t}) \end{aligned}$$

it is possible to construct the (in general **nonpolynomial**) interpolation formula

$$\mathcal{L}_n f(\mathbf{x}) = \mathbb{T}(\sigma_1^{\leftarrow}(\mathbf{x}))^{\mathrm{T}} \mathbb{C}_0(f \circ \boldsymbol{\sigma}) \mathbb{T}(\sigma_2^{\leftarrow}(\mathbf{x}))$$

### Beyond the square

The interpolation formula can be extended to other domains  $\Omega \subset \mathbb{R}^2$ , by means of a suitable mapping of the square (cf. CDeMV JCAM2008). Given

$$oldsymbol{\sigma} : \ [-1,1]^2 o \Omega$$
  
 $\mathbf{t} \mapsto \mathbf{x} = oldsymbol{\sigma}(\mathbf{t})$ 

it is possible to construct the (in general nonpolynomial) interpolation formula

$$\mathcal{L}_n f(\mathbf{x}) = \mathbb{T}(\sigma_1^{\leftarrow}(\mathbf{x}))^{\mathrm{T}} \mathbb{C}_0(f \circ \boldsymbol{\sigma}) \mathbb{T}(\sigma_2^{\leftarrow}(\mathbf{x}))$$

Integration of the interpolant at the Padua points gives a nontensorial Clenshaw–Curtis cubature formula (cf. SVZ, Numer. Algorithms 2008)

$$\int_{[-1,1]^2} f(\mathbf{x}) d\mathbf{x} \approx \int_{[-1,1]^2} \mathcal{L}_n f(\mathbf{x}) d\mathbf{x} = \sum_{k=0}^n \sum_{j=0}^k c'_{j,k-j} m_{j,k-j}$$
$$= \sum_{j=0}^n \sum_{l=0}^n c'_{j,l} m_{j,l} = \sum_{j,\text{ even } l, \text{ even } l, \text{ even } l, \text{ even } l, \text{ even } l$$

Where the *moments*  $m_{j,l}$  are

$$m_{j,l} = \int_{-1}^{1} \hat{T}_j(t) \mathrm{d}t \int_{-1}^{1} \hat{T}_l(t) \mathrm{d}t$$

Since

$$\int_{-1}^{1} \hat{T}_{j}(t) \mathrm{d}t = \begin{cases} 2 & j = 0\\ 0 & j \text{ odd} \\ \frac{2\sqrt{2}}{1 - j^{2}} & j \text{ even} \end{cases}$$

#### The $MATLAB^{\mathbb{R}}$ code for the cubature

```
Input: COf ↔ C<sub>0</sub>(f)
j = [0:2:n];
mom = 2*sqrt(2)./(1-j.^2);
mom(1) = 2;
[M1,M2]=meshgrid(mom);
M = M1.*M2;
COfM = COf(1:2:n+1,1:2:n+1).*M;
Int = sum(sum(COfM));
```

Output: Int $\leftrightarrow I_n(f)$ 

It is often desiderable having a cubature formula involving the function values at the nodes and the corresponding cubature weights. Using the formula for the coefficients  $c_{i,l}$ , we can write

$$\begin{aligned} \mathcal{U}_n(f) &= \sum_{\boldsymbol{\xi} \in \operatorname{Pad}_n} \lambda_{\boldsymbol{\xi}} f(\boldsymbol{\xi}) \\ &= \sum_{\boldsymbol{\xi} \in \mathcal{C}_{n+1}^{\operatorname{E}} \times \mathcal{C}_{n+2}^{\operatorname{O}}} \lambda_{\boldsymbol{\xi}} f(\boldsymbol{\xi}) + \sum_{\boldsymbol{\xi} \in \mathcal{C}_{n+1}^{\operatorname{O}} \times \mathcal{C}_{n+2}^{\operatorname{E}}} \lambda_{\boldsymbol{\xi}} f(\boldsymbol{\xi}) \end{aligned}$$

where

$$\lambda_{\boldsymbol{\xi}} = w_{\boldsymbol{\xi}} \sum_{j \text{ even}}^{n} \sum_{l \text{ even}}^{n} m_{j,l}' \, \hat{T}_{j}(\xi_{1}) \, \hat{T}_{l}(\xi_{2}) \tag{7}$$

Defining the Chebyshev matrix corresponding to even degrees

$$\mathbb{T}^{\mathrm{E}}(S) = \begin{pmatrix} \hat{T}_0(s_1) & \cdots & \hat{T}_0(s_m) \\ \hat{T}_2(s_1) & \cdots & \hat{T}_2(s_m) \\ \vdots & \cdots & \vdots \\ \hat{T}_{p_n}(s_1) & \cdots & \hat{T}_{p_n}(s_m) \end{pmatrix} \in \mathbb{R}^{(\lfloor \frac{n}{2} \rfloor + 1) \times m}$$

and the matrices of weights on the subgrids,  $\mathbb{W}_1 = \left(w_{\boldsymbol{\xi}}, \, \boldsymbol{\xi} \in C_{n+1}^{\mathrm{E}} \times C_{n+2}^{\mathrm{O}}\right)^t$ ,  $\mathbb{W}_2 = \left(w_{\boldsymbol{\xi}}, \, \boldsymbol{\xi} \in C_{n+1}^{\mathrm{O}} \times C_{n+2}^{\mathrm{E}}\right)^t$ , then the cubature weights  $\{\lambda_{\boldsymbol{\xi}}\}$  can be computed in matrix form

$$\mathbb{L}_{1} = \left(\lambda_{\boldsymbol{\xi}}, \, \boldsymbol{\xi} \in C_{n+1}^{\mathrm{E}} \times C_{n+2}^{\mathrm{O}}\right)^{t} = \mathbb{W}_{1}.\left(\mathbb{T}^{\mathrm{E}}(C_{n+1}^{\mathrm{E}})\right)^{t} \, \mathbb{M}_{0} \, \mathbb{T}^{\mathrm{E}}(C_{n+2}^{\mathrm{O}})\right)^{t}$$
$$\mathbb{L}_{2} = \left(\lambda_{\boldsymbol{\xi}}, \, \boldsymbol{\xi} \in C_{n+1}^{\mathrm{O}} \times C_{n+2}^{\mathrm{E}}\right)^{t} = \mathbb{W}_{2}.\left(\mathbb{T}^{\mathrm{E}}(C_{n+1}^{\mathrm{O}})\right)^{t} \, \mathbb{M}_{0} \, \mathbb{T}^{\mathrm{E}}(C_{n+2}^{\mathrm{E}})\right)^{t}$$
where  $\mathbb{M}_{0} = \left(m_{j,l}^{\prime}\right)$  (moment matrix) and the dot means that the fina

product is entrywise (Hadamard or Schur product).

- An FFT-based implementation is then feasible, in analogy to what happens in the univariate case with the Clenshaw-Curtis formula (cf. Waldvogel, BIT06). The algorithm is quite similar the one for interpolation (cf. CDSV, Numer. Alg. 2010)
- 2 The cubature weights are not all positive, but the negative ones are few and of small size and

$$\lim_{n\to\infty}\sum_{\boldsymbol{\xi}\in\mathrm{Pad}_n}|\lambda_{\boldsymbol{\xi}}|=4$$

i.e. stability and convergence for every continuous f.

### Numerical tests

Language: MATLAB<sup>®</sup> 7.6.0 Processor: Intel Core2 Duo 2.2GHz. Similar results with Octave 3.2.3.

| п   | 20    | 40    | 60    | 80    | 100   | 300   | 500   | 1000  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| FFT | 0.001 | 0.001 | 0.001 | 0.002 | 0.003 | 0.034 | 0.115 | 0.387 |
| MM  | 0.002 | 0.003 | 0.003 | 0.003 | 0.008 | 0.101 | 0.298 | 1.353 |

Table : CPU time (in seconds) for the computation of the interpolation coefficients at a sequence of degrees (average of 10 runs).

| п   | 20    | 40    | 60    | 80    | 100   | 300   | 500   | 1000  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| FFT | 0.001 | 0.001 | 0.002 | 0.002 | 0.004 | 0.028 | 0.111 | 0.389 |
| MM  | 0.001 | 0.001 | 0.001 | 0.002 | 0.003 | 0.027 | 0.092 | 0.554 |

Table : CPU time (in seconds) for the computation of the cubature weights at a sequence of degrees (average of 10 runs).

### Numerical tests



Figure : Relative interpolation errors (left) and cubature (right) versus the interpolation degree for the Franke test function in  $[0,1]^2$ , by the Matrix Multiplication (MM) and the FFT-based algorithms.

### Numerical tests



Figure : Relative interpolation errors versus the number of interpolation points for the Gaussian  $f(\mathbf{x}) = \exp(-|\mathbf{x}|^2)$  (left) and the  $C^2$  function  $f(\mathbf{x}) = |\mathbf{x}|^3$  (right) in  $[-1, 1]^2$ ; Tens. CL = Tensorial Chebyshev-Lobatto interpolation.
#### Numerical tests



**Figure** : Relative cubature errors versus the number of cubature points (CC = Clenshaw-Curtis, GLL = Gauss-Legendre-Lobatto, OS = Omelyan-Solovyan) for the Gaussian  $f(\mathbf{x}) = \exp(-|\mathbf{x}|^2)$  (left) and the  $C^2$  function  $f(\mathbf{x}) = |\mathbf{x}|^3$  (right); the integration domain is  $[-1, 1]^2$ , the integrals up to machine precision are, respectively: 2.230985141404135 and 2.508723139534059.

#### Padua points on triangle



Figure : Padua points on the unit triangle for n = 10.

#### Approximated Fekete pts from Padua points on triangle



Figure : Fekete points for n = 6 extracted from a mesh of Padua points for n = 24. Left: the Padua points mapped on the lower vertex transformation. Right: Padua points on the triangle mapped along the diagonal.

- Padua points are WAM (Weakly Admissible Meshes) for interpolation or extracting Fekete points on 2D domains (cf. BSV09)
- Padua points can be used in 3D (tensor product) WAMs on different domains (Master's theses recently done at UniPD)
- Vandermonde determinant of Padua Points has variables that separate: this was an open question (see BDeMW DRNA09) now solved (see DeMU13 also as arXiv:1311.6455)
- Histogram Compression and Image Retrieval Through Padua Points Interpolation (cf. Montagna-Finlayson 2008) "Experiments show that our new compact Padua point representation supports excellent indexing and recognition."

- Padua points are WAM (Weakly Admissible Meshes) for interpolation or extracting Fekete points on 2D domains (cf. BSV09)
- Padua points can be used in 3D (tensor product) WAMs on different domains (Master's theses recently done at UniPD)
- Vandermonde determinant of Padua Points has variables that separate: this was an open question (see BDeMW DRNA09) now solved (see DeMU13 also as arXiv:1311.6455)
- Histogram Compression and Image Retrieval Through Padua Points Interpolation (cf. Montagna-Finlayson 2008) "Experiments show that our new compact Padua point representation supports excellent indexing and recognition."

- Padua points are WAM (Weakly Admissible Meshes) for interpolation or extracting Fekete points on 2D domains (cf. BSV09)
- Padua points can be used in 3D (tensor product) WAMs on different domains (Master's theses recently done at UniPD)
- Vandermonde determinant of Padua Points has variables that separate: this was an open question (see BDeMW DRNA09) now solved (see DeMU13 also as arXiv:1311.6455)
- Histogram Compression and Image Retrieval Through Padua Points Interpolation (cf. Montagna-Finlayson 2008) "Experiments show that our new compact Padua point representation supports excellent indexing and recognition."

- Padua points are WAM (Weakly Admissible Meshes) for interpolation or extracting Fekete points on 2D domains (cf. BSV09)
- Padua points can be used in 3D (tensor product) WAMs on different domains (Master's theses recently done at UniPD)
- Vandermonde determinant of Padua Points has variables that separate: this was an open question (see BDeMW DRNA09) now solved (see DeMU13 also as arXiv:1311.6455)
- Histogram Compression and Image Retrieval Through Padua Points Interpolation (cf. Montagna-Finlayson 2008) "Experiments show that our new compact Padua point representation supports excellent indexing and recognition."

- Padua points are WAM (Weakly Admissible Meshes) for interpolation or extracting Fekete points on 2D domains (cf. BSV09)
- Padua points can be used in 3D (tensor product) WAMs on different domains (Master's theses recently done at UniPD)
- Vandermonde determinant of Padua Points has variables that separate: this was an open question (see BDeMW DRNA09) now solved (see DeMU13 also as arXiv:1311.6455)
- Histogram Compression and Image Retrieval Through Padua Points Interpolation (cf. Montagna-Finlayson 2008) "Experiments show that our new compact Padua point representation supports excellent indexing and recognition."

New observations on the distribution of Padua points by Cuyt et al. NA2012



Figure : Padua pts for n = 6, they lie on n concentric squares with sides at the zeros of  $U_n$  and  $U_{n-1}$  (the inner) except the external and the center (just a dot!).

#### 2 For more applications see

www.math.unipd.it/~marcov/CAApadua.html

#### Some open problems

- Still a conjecture the fact that the Lebesgue function attains its maximum in one of the vertices (−1, 1) or (1, 1) (for the first family)
- Padua points in 3D ... open problem
- Make the software more efficient (if there's any possibility), maybe by using ChebFun2 (Nick Trefethen's definition of efficiency: 10 digits, 5 sec. and 1 page!)

#### Some open problems

- Still a conjecture the fact that the Lebesgue function attains its maximum in one of the vertices (−1, 1) or (1, 1) (for the first family)
- Padua points in 3D ... open problem
- Make the software more efficient (if there's any possibility), maybe by using ChebFun2 (Nick Trefethen's definition of efficiency: 10 digits, 5 sec. and 1 page!)

#### Some open problems

- Still a conjecture the fact that the Lebesgue function attains its maximum in one of the vertices (−1, 1) or (1, 1) (for the first family)
- Padua points in 3D ... open problem
- Make the software more efficient (if there's any possibility), maybe by using ChebFun2 (Nick Trefethen's definition of efficiency: 10 digits, 5 sec. and 1 page!)

# THANK YOU FOR YOUR KIND ATTENTION