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Motivations and aims

@ Floater and Hormann Rational Interpolant, shortly FHRI, is one of the
most efficient way of constructing a rational interpolant on equispaced and
non-equispaced points and, citing the paper by Floater and Hormann 2007,
it seems to be perfectly stable in practice. How to show this stability?
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Motivations and aims

@ Floater and Hormann Rational Interpolant, shortly FHRI, is one of the
most efficient way of constructing a rational interpolant on equispaced and
non-equispaced points and, citing the paper by Floater and Hormann 2007,
it seems to be perfectly stable in practice. How to show this stability?

@ The Lebesgue constant measures the quality and stability of interpolation
processes. What we know about the growth of the Lebesgue constant for
the FHRI?

@ The FHRI is also on Numerical Recepies, section 3.4.1
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General interpolation process

Given a function f: [a, b] — R, let g be its interpolant at the n + 1 (equispaced)
interpolation points
a=xg<x1<---<x,=b.

Given a set of basis functions b; which satisfy the Lagrange property
1, ifi=},
0, ifi#j,

n

the interpolant g can be written as g(x) = Z bi(x)f (x;)-
i=0

bi(xj) = b = {
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FHRI Floater-Hormann RI

Barycentric interpolation

@ Interpolation of 2 data points

Z Ai(x)yi

Z)\,‘(X)

, Ailx) = (el .

X — Xj

g(x) =
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FHRI Floater-Hormann RI

Barycentric interpolation

@ Interpolation of 2 data points

Z Ai(x)yi

g = A =L
ZA:‘(X)

@ Interpolation of n+ 1 data points

Z Ai(x)yi
gx) = ——,
> i)
i=0

1 -1 1 -1
Z)‘i(x): + + + 4+ xp < x < xq

X — Xp X —X1 X — X2 X — X3
N——

~nNn ~nNn
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FHRI Floater-Hormann RI

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, is very simple.

@ Choose any integer d, 0 < d <n

@ For each i =0,1,...,n— d let p; denote the unique polynomial of degree at
most d that interpolates a function f at d + 1 pts x;, ..., Xitqd
@ Then

ijm-(x)p,-(x)

gx)=——5—— .
. Ai(x)
where )\,‘(X) = (X — XI)(_l()); — X,'er).
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FHRI Floater-Hormann RI

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, is very simple.
@ Choose any integer d, 0 < d <n

@ For each i =0,1,...,n— d let p; denote the unique polynomial of degree at
most d that interpolates a function f at d + 1 pts x;, ..., Xitqd

@ Then
n—d
Z Ai(x)pi(x)
i=0
gx)="——F—— (1)
S0
i=0
_1)"
here \;j(x) = ( .
where i) = Ge=5) - (x = xr4)
Thus, g is a local blending of the polynomial interpolants pg, . .., pp—g With Ag, ..., A,_4 acting as the blending functions.

Notice: for d = n we get the classical polynomial interpolation.
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FHRI

Assume [a, b] = [0, 1] and interpolation points x; = i/n, i=0,...,n.
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FHRI Floater-Hormann RI

FHRI

Assume [a, b] = [0, 1] and interpolation points x; = i/n, i=0,...,n.
As basis functions we take

bi(x) Xi)f'/z _1)Jﬁf, i=0,...,n (2)

X =X

with Gg, ..., O, that are positive weights defined as

heo (5), ifj<d,
B = 4 2¢, ifd<j<n-—d, (3)
,Bn_j, if j>n—d.
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FHRI Floater-Hormann RI

The weights [

d=of
d=1}
d=2
d=3
d=4

1,1,...
1,2,2...
1,3,4,4,...
1,4,7,8,8,...

1,5,11,15,16,16, ...

tBerrut’s rational interpolant
td =1 and weights 1/2,1,...,1,1/2 in Berrut's paper and d > 1 Floater-Hormann's

rational interpolant

Stefano De Marchi (DMPA-UNIPD)
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,4,4,3,1
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FHRI Floater-Hormann RI

Basis functions

i
1
Basis functions for d=0 and n=4
Basis function b, (x) for d=0 and n=4 1
08
0.8
0.4)
02|
0
-0.2] /
e i : 1 r
o o1 02 0.3 04 K] 06 07 0B [+X°] 1 0 01 02 03 04 o5 08 07 (1] 08 i
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FHRI Floater-Hormann RI

Basis functions

Basia function for the case nzb and d=1

Basis funciions for n=5 and d=3
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Properties of the FHRI (cf. FH's paper, 2007)

© The FHRI can be written in barycentric form. Indeed, in (1), letting
w; = (—1)'§;, for the numerator we have

n—d n
Wk
DNl =D =)
i=0 k=0
where
itd 1
w=3C0 11 o
i€l JFkj=i J

k={ied, k—d<i<k}, J:={0,...,n—d}, and similarly for the
denominator
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Properties of the FHRI (cf. FH's paper, 2007)

© The FHRI can be written in barycentric form. Indeed, in (1), letting
w; = (—1)'§;, for the numerator we have

n—d n
Wk
DNl =D =)
i=0 k=0
where
itd 1
w=3C0 11 o
i€l JFkj=i J

k={ied, k—d<i<k}, J:={0,...,n—d}, and similarly for the

denominator
Wik
> ) =
- o X T Xk

Il
o
x

@ The rational interpolant g(x) has no real poles. For d = 0 was proved by
Berrut in 1998.

Stefano De Marchi (DMPA-UNIPD) Lebesgue constants of rat. interp. Padova, December 22, 2010 12 /45



FHRI Floater-Hormann RI

Properties of the FHRI (continue)

© The interpolant reproduces polynomials of degree at most d, while does not
reproduce rational functions (like Runge function)
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FHRI Floater-Hormann RI

Properties of the FHRI (continue)

© The interpolant reproduces polynomials of degree at most d, while does not
reproduce rational functions (like Runge function)

@ Approximation order O(h9*1) (for f € C9+2[0,1]), also for non-equispaced
points.
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Lebesgue constant when d = 0

We will derive upper and lower bounds for the Lebesgue function

Z‘b |_Z|Xﬁlx,/' X — X

that is A = m{g)i] An(x). Remember: when d =0, 5, =1, Vj.
x€|0,
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The Lebesgue Constant d=0

Lebesgue constant when d = 0

We will derive upper and lower bounds for the Lebesgue function

X//'Jzn;(;l)i?’ @)

M) = Sl = 3 2
i=0 i=0

|x

that is A = m{g)i] An(x). Remember: when d =0, 5, =1, Vj.
x€|0,

THEOREM

The Lebesgue constant is bounded as
cnlog(n+1) < A <2+ log(n).

where ¢, = 2n/(4 + n7) (lim,_ o ¢, = 2/7).
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The Lebesgue Constant d=0

Case d = 0: lower bound

We assume that the interpolation interval is [0, 1], so that the nodes are equally
spaced x; = jh=j-1/n, j=0,...,n.
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The Lebesgue Constant d=0

Case d = 0: lower bound

We assume that the interpolation interval is [0, 1], so that the nodes are equally

spaced x; = jh=j-1/n, j=0,...,n. Our goal is bounding below
it S
=1 A

S Nt R B
jz:;xfj/n §2nxf2j

by bounding N(x) from below and D(x) from above!
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The Lebesgue Constant Some plots of the Lebesgue function

The Lebesgue function for d = 0 on uniform points

28 28
28 28
24 . 24 i il i M

(LR R R S I 22 T 6 . S o T R il

Figure: Lebesgue function on [0,1]: n=10, i.e. 11 points (left) and n=11, i.e. 12
points (right) .
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: lower bound

Assume n =2k and let x* = (n+1)/2n=1/2+1/(2n).

1 1
N(x*) = - -
) = S

k 1 2k 1
= Y st D s
D ES TIPS e

Jj=k+1
k k—1
1 1
B ;2j+1+,§_:2j+1
1

v

5 (In(2k +3) +In(2k +1)) = In(2k + 1) = In(n + 1)
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: lower bound

A=)+l Gz 2k—)j)+1
k k—1 i k k—1
(=Y k- (1Y (-1 (-1
< EDY A Y A =Y e h Y s
j:021+1 J_021+1 j:O2J+1 120214—1
< (Tr ) (Ty
- 4  2k+3 4 2k+1
< z+ 2 7f+ 2
- 2 2k+1 2 n+1
% 2In(n+1
Hence, A, (x*) > Wi%).
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: lower bound

The same is true when n is odd considering x* = 1/2, instead.
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: lower bound

The same is true when n is odd considering x* = 1/2, instead.

In summary, for any n € N

21 1 21 1
Ap = max Ap(x) > n(n—i; ) > n(n—i; ) =
0<x<1 T+ L T+ W

cnin(n+1).
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

If x = xx for any k, then A,(x) = 1.
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

If x = xx for any k, then A,(x) = 1.
So let x;, < x < xi1 for some k and consider the function

(x = Xi) (Xk1 — Z |X —

Ny (x
M) = - Digxi )
(x ) (41— ) ZX_XJ
M) = (¢ — x)(xks1 — )30 —
Jj=0 {xij}
k n
=(x—xnm1—x)(2 SRR S 1)
o X — X Xka Xep1 =X 50, X T X

k—1 n
1 1
= (kg1 — ¥) + (= %) + (x = )01 — %) | D + >
j=0 X T Xi Sk X T X

J=0 X TN Sk X T X

k=1 n 1
= (k41— ) + (x — xk) (kg1 — %) (Z + > ) .
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

L L - for any i # j, and

xi—xj  h(i—j) i~

As the x; are equally spaced

(x — xk) (a1 — x) < (3)2 = 75> for x¢ < x < X¢11. Therefore,

k—1 n
1 1 1 1
Ne(x) £ =+ — > + >
no 4 j=0 Xk X jmk+2 X T Xk+1

k=1 n
1 n n
=+ =3 I D ——
> - -
4n (j:ok*J j:k+2j7k71)

1 /1 1 111 1
+—(—+—+»~+—+—+—+m+7)
an\k k-1 112 n—k—1

IN

3

i(Iog(2l< + 1) + log(2n — 2k — 1))
4n

1
+ o log((2k + 1)(2n — (2k + 1)))

+ 471n Iog((2n/2)2)

S| 3 |Rr3IF 3|k 3F

+ 2 og(n)
— log(n).
2ng
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

Let us consider the denominator D(x).
Ignoring the absolute value and assuming, for a moment that both k and n to be

i .
=)
(¢ = %) (k1 — ¥) Y
X — Xj
Jj=0 J
k—1 n j
-1 1 1 -1
e -0 [ N oy &
0 x— X xka X1 =X 50, X T X

j=0
-1 "o (—1)
V,z u)

_h+(xka)xk+17x)(z — P
p G j=k+2 X T

Dy(x) =

Pairing the positive and negative terms

S (w L=y

Sk(x) =
k(x) = T
1 1 1 1 1 1
X — Xg X — X3 X — x1 X — Xk_2 X — Xk_3 X — Xk_1
1 1 1 1 1
- + - ot - @)
X2 — X X3 — X Xkta — X Xp—1 — X Xp — X
22 / 45

Padova, December 22, 2010
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

Since both the leading term and all paired terms are positive, we have

1 1 1 1
Sk(x) > — - > - — = —2n
X = Xk—1  Xkg2 — X Xk = Xk—1  Xk4+2 — Xk+1

and further

Dilx) = h (x — xk)(xker — X)Se(3) = =+ 75 (-2m) = -~ o=

n 2n 2n

This bound also holds if nis odd and if k is odd.
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

Therefore, we have |Dy(x)| > 1/(2n) regardless of the parity of k and n, and
combining the bounds for numerator and denominator yields

1, 1
=+ 5-log(n
A= max ( max /\k(x)> < %g() = 2+ log(n).
k=0,...,n \ Xk <X<Xk41 5n

This completes the proof. [
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The Lebesgue Constant Upper and lower bounds for d = 0

The Lebesgue constant for d = 0 on uniform pts

d=0
a8 T T T T T T T
7+
[}
+— Lebesgue const
——— Lower bnd
1 g ~— Upper bnd 8

o | | L L L | |

1} 20 40 &0 a0 100 120 140 160 180 200

FIgU F€. Lebesgue constant compared with its lower and upper bounds.
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The Lebesgue Constant d>1

Lebesgue constant: case d > 1

We observe that
ﬂj S 2da VJ
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The Lebesgue Constant d>1

Lebesgue constant: case d > 1

We observe that

61' S 2da VJ
Then
Ni(x) = (x — xi) (xk+1 — Z |x -
G
. 1
S 2d(X — Xk)(Xk+1 - X)Z m (8)
j=0 J
1 1
<29 (=4 =1 ;
<20 (34 5 tog(m).
for any k.

Stefano De Marchi (DMPA-UNIPD) Lebesgue constants of rat. interp. Padova, December 22, 2010 26 / 45



The Lebesgue Constant d>1

The denominator

Du(x) = (x =) ~ 0 3 S

Jj=0

it will turn out that |Dy(x)| > 1/n

Stefano De Marchi (DMPA-UNIPD) Lebesgue constants of rat. interp. Padova, December 22, 2010 27 / 45



The Lebesgue Constant d>1

The denominator

Fundamental observation

(~1Y8; = w;d! h (9)
Then,
n
Dk(X) = (X — Xk)(Xk+1 — X) Z % d'hd .
j=0 !
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The Lebesgue Constant d>1

The denominator

Moreover, in Floater-Hormann's paper 2007,

n

DR 3PV

j=0 i=0

showing also that
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The Lebesgue Constant d>1

The denominator

Moreover, in Floater-Hormann's paper 2007,

DR V0

j=0 i=0

showing also that

S wj
— > .
E o > | Ak (x)]
J:O
Then,
d'hd

k+d

Di(x) = (x = x) (k1 — x)[Au(x)|d1h =
l:k+2(X/ - x)
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The Lebesgue Constant d>1

The denominator

Moreover, in Floater-Hormann's paper 2007,

n

DR PPN

j=0 i=0

showing also that

Then,
d'hd

k+d
l:k+2(X/ - x)

Di(x) = (x = x) (k1 — x)[Au(x)|d1h =
Maximizing over k we get
d'hd 1
Dk(X) 2 k"rd— - h = —.
/:k+2(X/ — Xk) n
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The Lebesgue Constant d>1

The lower bound

THEOREM
(Klein, Dec. 2010) Let d > 2, then,

A

v

4(d +1)!

(2d + 1)l log (g B 1)'

THEOREM
(Bos, Dec. 2010)

2
N> —log(n+2—2d).
T

This latter is better for d = 1.
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The Lebesgue Constant d>1

The theorem for d >1

THEOREM
Let d > 1 Then,

Qd+1)11 /n
ad+1) (

while for d = 1
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Numerical results Equispaced points

Lebesgue functions
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FIgLI Ie€. Lebesgue function for d = 1 (left) and d = 3 (right).
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Lebesgue constant growth

Lebesgue constants

Lebesgue constants and their upper and lower bounds for FH intorpolation for d=1 Lebesgue constants and their upper and lower bounds for FH interpolation for d=3
10
10° Upper bound ~ Upper bound
~Lebesgue const o Lebesgue const
Klein lower bound i Klein lower bound
Len Bos lower bound. Len Bos lower bound|
100 200 800 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
n n

Figure: Lebesgue constant growth d =1 (left) and d = 3 (right).
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Lebesgue constant growth

Lebesgue constant growth

Lebesgue constants and their upper and lower bounds for FH interpolation for d=8

jpper bound

Lebesgue constants and their upper and lower bounds for FH interpolation for d=16

100 200

700

— Upper bound
ebesgue const ~Lebesgue const
Klein lower bound o Klein lower bound|
800 900 1000 100 200 300 400 500 600 700 800 900
n

Figure: Lebesgue constant growth d =
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8 (left) and d

16 (right).
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Lebesgue constant growth

Lebesgue constant growth for non uniform pts

e

e

FIgU €. Lebesgue constant on logarithmically distributed points. Left: with weights (71)’.B,: Right: here the weights are
the ones constructed on non-equispaced points, garanteeing the approximation order d + 1
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Consider the interval | = [0,1] and a distribution function F € C1(/)

@ F(0)=0, F(1) =1 and F is strictly increasing.
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Consider the interval | = [0,1] and a distribution function F € C1(/)
@ F(0)=0, F(1) =1 and F is strictly increasing.
o F(x)= [, w(t)dt for a certain w € C[0,1], w(x) >0, x €/

@ Moreover, if F/(x) > 0 on /, we say F is non-singular.
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Consider the interval / = [0,1] and a distribution function F € C*(/)
@ F(0)=0, F(1) =1 and F is strictly increasing.
o F(x)= [, w(t)dt for a certain w € C[0,1], w(x) >0, x €/
@ Moreover, if F'(x) > 0 on [/, we say F is non-singular.

The points

in—F1<J)7 0<j<n
n

are said to be equally spaced according to F
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Consider the interval / = [0,1] and a distribution function F € C*(/)
@ F(0)=0, F(1) =1 and F is strictly increasing.
o F(x)= [, w(t)dt for a certain w € C[0,1], w(x) >0, x €/
@ Moreover, if F'(x) > 0 on [/, we say F is non-singular.

The points

in—F1<J)7 0<j<n
n

are said to be equally spaced according to F
Examples:

@ F(x) = x usual equally spaced pts,

@ F(x)=(1-cos(mx))/2, x € [0,1] the extended Chebyshev points for which
F'(0) = F'(1) =0, i.e. they form a singular distribution
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Lemma

If f € C[0,1] then

n

nIer;(j%Zf()g):/o f(x)w(x)dx

Jj=0
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Lemma

If f € C[0,1] then

nILngO%Zf(xj):/o f(x)w(x)dx

Proof The key observation is that + Y7 f(x) = £ 37 f(F~'(j/n)) is a
Riemann sum for f o F~1 € C[0, 1] and hence

n

1
nILmOO%Zf()g) :/0 F(F~(t))dt .

Jj=0

Since x = F~X(t), then dx = (£ F (1)) dt = w2y = wasy- Then,
dt = w(x)dx. O
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Lemma
Suppose that k,n — oo in such a way that x, = F~1(k/n) and
xk+1 = F~Y((k +1)/n) both tend to x = F~1(a). Then,

lim nhy, = (F_l)’(x) =

oo wx)

where hy = Xx11 — Xk.
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Lemma

Suppose that k,n — oo in such a way that x, = F~%(k/n) and
xk+1 = F~Y((k +1)/n) both tend to x = F~1(a). Then,

lim nhy = (Ffl)’(x) =

oo wx)

where hk = Xk+1 — Xk-

Proof

n hy n(xks1 — xx) = n (FY((k +1)/n) — F~*(k/n))

FH((k+1)/m) = FAk/n) oy {kﬂ K

1/n

n n

} = (F Y (ca), forc, €

Hence, lim nhy = lim (F7')(c,) = (F7*)(a) as ¢, — a. But
—1vif oy 1 _ 1 _ 1
(F7)(@) = 7y = wm@n — w00 U

Lebesgue constants of rat. interp.
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The non-equispaced case

Points equally spaced w.r.t. a distribution

o
w(F~1(1))

assumption) then there exist two positive constants ¢;, ¢, so that

Note also that, as (F~1)/(t) = > 0 and it is continuous (by

c1 < nhe < .
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The non-equispaced case

Points equally spaced w.r.t. a distribution

THEOREM

F and w as above and x =

Then, there is a constant C such that

F=1(/n), 0<j<n. Let

bi(x E - i=0,...
X—X, X—XJ
j=0

An(x) < C log(n), x €[0,1].
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The non-equispaced case

Points equally spaced w.r.t. a distribution

THEOREM

F and w as above andx = F71(j/n), 0<j<n. Let

_/ n
J o
i 3 9ocoglly An = i )
bi(x) = - x,/ P i=0 n (x) E |bi(x)]

Then, there is a constant C such that

An(x) < C log(n), x €[0,1].

A similar result holds for the singular case (cf. Bos, De Marchi and
Hormann, paper in progress).
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An application

Numerical Quadrature

On/l=[-1,1]

© we computed integrals with the quadrature based on the FHRI, on
equispaced points at different values of n end/or d
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An application

Numerical Quadrature

On/l=[-1,1]

© we computed integrals with the quadrature based on the FHRI, on
equispaced points at different values of n end/or d

@ to speed up the quadrature, the quadrature weights were computed by a
Gaussian quadrature rule (Gautschi software in Matlab)

© For d = 0 we have proven (a week ago!) that
(a) bi(x) = sinc(n(x — x;)) normalized so that ), bi(x) =1
(b)
1
lim na; =1, o = / bi(x)dx .
0

n—oo

that is the quadrature process asymptotically converges.
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An application

b; e sinc

04 I i L i i I i L i

Figure: Comparison of b,_1 and sinc(n(x — xp—1)) for n =10

err = 0.0101

nw =(1.10072,0.94272,1.03588,0.97972,1.00660,1.00660,0.97972,1.03588 0.94272,1.10072)
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An application

Numerical Quadrature

The table below shows the quadrature relative errors for d = 0 (left) and d = 3
(right) at different n, for the Runge function. errS=quadrature relative error by

using cubic splines

n err (d=0) err (d=3) || errS

10 | 3.5e-3 1.1e-2 7.2e-3
30 1.1e-4 1.6e-6 5.9e-5
50 | 7.6e-6 2.6e-8 3.2e-7
100 | 3.6e-7 7.9e-10 2.4e-8
150 | 4.9e-7 1.0e-10 1.5e-9
200 | 5.4e-7 2.4e-11 6.4e-11
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An application

Numerical Quadrature

About the quadrature weights: Klein and Berrut have proven numerically
that the weights are all positive at least for d < n <1250 and 0 < d <5.
For other values of d and n, there might be a few negative weights, the
number of which increases slowly with d and n.
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An application

THANK YOU
FOR YOUR KIND ATTENTION
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