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Motivations

Motivations and aims

Floater and Hormann Rational Interpolant, shortly FHRI, is one of the
most efficient way of constructing a rational interpolant on equispaced and
non-equispaced points and, citing the paper by Floater and Hormann 2007,
it seems to be perfectly stable in practice. How to show this stability?

The Lebesgue constant measures the quality and stability of interpolation
processes. What we know about the growth of the Lebesgue constant for
the FHRI?

The FHRI is also on Numerical Recepies, section 3.4.1
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FHRI Floater-Hormann RI

General interpolation process

Given a function f : [a, b]→ R, let g be its interpolant at the n + 1 (equispaced)
interpolation points

a = x0 < x1 < · · · < xn = b.

Given a set of basis functions bi which satisfy the Lagrange property

bi (xj) = δij =

{
1, if i = j ,

0, if i 6= j ,

the interpolant g can be written as g(x) =
n∑

i=0

bi (x)f (xi ).
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FHRI Floater-Hormann RI

Barycentric interpolation

Interpolation of 2 data points

g(x) =

1∑
i=0

λi (x)yi

1∑
i=0

λi (x)

, λi (x) =
(−1)i

x − xi
.

Interpolation of n + 1 data points

g(x) =

n∑
i=0

λi (x)yi

n∑
i=0

λi (x)

, λi (x) =
(−1)i

(x − xi )
.

n∑
i=0

λi (x) =
1

x − x0︸ ︷︷ ︸
>0

+
−1

x − x1
+

1

x − x2︸ ︷︷ ︸
>0

+
−1

x − x3
+ · · ·︸ ︷︷ ︸

>0

x0 < x < x1
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FHRI Floater-Hormann RI

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, is very simple.

Choose any integer d , 0 ≤ d ≤ n

For each i = 0, 1, . . . , n− d let pi denote the unique polynomial of degree at
most d that interpolates a function f at d + 1 pts xi , . . . , xi+d

Then

g(x) =

n−d∑
i=0

λi (x)pi (x)

n−d∑
i=0

λi (x)

(1)

where λi (x) =
(−1)i

(x − xi ) · · · (x − xi+d)
.

Thus, g is a local blending of the polynomial interpolants p0, . . . , pn−d with λ0, . . . , λn−d acting as the blending functions.

Notice: for d = n we get the classical polynomial interpolation.

Stefano De Marchi (DMPA-UNIPD) Lebesgue constants of rat. interp. Padova, December 22, 2010 7 / 45



FHRI Floater-Hormann RI

The Floater-Hormann Rational Interpolant (FHRI)

The construction of FHRI, is very simple.

Choose any integer d , 0 ≤ d ≤ n

For each i = 0, 1, . . . , n− d let pi denote the unique polynomial of degree at
most d that interpolates a function f at d + 1 pts xi , . . . , xi+d

Then

g(x) =

n−d∑
i=0

λi (x)pi (x)

n−d∑
i=0

λi (x)

(1)

where λi (x) =
(−1)i

(x − xi ) · · · (x − xi+d)
.

Thus, g is a local blending of the polynomial interpolants p0, . . . , pn−d with λ0, . . . , λn−d acting as the blending functions.

Notice: for d = n we get the classical polynomial interpolation.

Stefano De Marchi (DMPA-UNIPD) Lebesgue constants of rat. interp. Padova, December 22, 2010 7 / 45



FHRI Floater-Hormann RI

FHRI

Assume [a, b] = [0, 1] and interpolation points xi = i/n, i = 0, ..., n.

As basis functions we take

bi (x) =
(−1)i

βi

x − xi

/ n∑
j=0

(−1)j
βj

x − xj
, i = 0, . . . , n (2)

with β0, . . . , βn that are positive weights defined as

βj =


∑j

k=0

(
d
k

)
, if j ≤ d ,

2d , if d ≤ j ≤ n − d ,

βn−j , if j ≥ n − d .

(3)
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FHRI Floater-Hormann RI

The weights βs

d = 0† 1, 1, . . . , 1, 1

d = 1‡ 1, 2, 2 . . . , 2, 2, 1

d = 2 1, 3, 4, 4, . . . , 4, 4, 3, 1

d = 3 1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1

d = 4 1, 5, 11, 15, 16, 16, . . . , 16, 16, 15, 11, 5, 1

†Berrut’s rational interpolant
‡d = 1 and weights 1/2, 1, . . . , 1, 1/2 in Berrut’s paper and d ≥ 1 Floater-Hormann’s

rational interpolant
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FHRI Floater-Hormann RI

Basis functions
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FHRI Floater-Hormann RI

Basis functions
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FHRI Floater-Hormann RI

Properties of the FHRI (cf. FH’s paper, 2007)

1 The FHRI can be written in barycentric form. Indeed, in (1), letting
wi = (−1)iβi , for the numerator we have

n−d∑
i=0

λi (x)pi (x) =
n∑

k=0

wk

x − xk
f (xk)

where

wk =
∑
i∈Ik

(−1)i
i+d∏

j 6=k,j=i

1

xk − xj

Ik = {i ∈ J, k − d ≤ i ≤ k}, J := {0, ..., n − d}, and similarly for the
denominator

n−d∑
i=0

λi (x) =
n∑

k=0

wk

x − xk

2 The rational interpolant g(x) has no real poles. For d = 0 was proved by
Berrut in 1998.
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FHRI Floater-Hormann RI

Properties of the FHRI (continue)

1 The interpolant reproduces polynomials of degree at most d , while does not
reproduce rational functions (like Runge function)

2 Approximation order O(hd+1) (for f ∈ Cd+2[0, 1]), also for non-equispaced
points.
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The Lebesgue Constant d = 0

Lebesgue constant when d = 0

We will derive upper and lower bounds for the Lebesgue function

Λn(x) =
n∑

i=0

|bi (x)| =
n∑

i=0

βi

|x − xi |

/∣∣∣∣ n∑
j=0

(−1)j
βj

x − xj

∣∣∣∣. (4)

that is Λ = max
x∈[0,1]

Λn(x). Remember: when d = 0, βj = 1, ∀j .

Theorem

The Lebesgue constant is bounded as

cn log(n + 1) ≤ Λ ≤ 2 + log(n).

where cn = 2n/(4 + nπ) (limn→∞ cn = 2/π).
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The Lebesgue Constant d = 0

Case d = 0: lower bound

We assume that the interpolation interval is [0, 1], so that the nodes are equally
spaced xj = jh = j · 1/n, j = 0, . . . , n.

Our goal is bounding below

Λn(x) =

n∑
j=0

1

|x − j/n|∣∣∣∣∣
n∑

j=0

(−1)j

x − j/n

∣∣∣∣∣
=

n∑
j=0

1

|2nx − 2j |∣∣∣∣∣
n∑

j=0

(−1)j

2nx − 2j

∣∣∣∣∣
:=

N(x)

D(x)
. (5)

by bounding N(x) from below and D(x) from above!
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The Lebesgue Constant Some plots of the Lebesgue function

The Lebesgue function for d = 0 on uniform points

Figure: Lebesgue function on [0,1]: n=10, i.e. 11 points (left) and n=11, i.e. 12
points (right) .
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: lower bound

Assume n = 2k and let x∗ = (n + 1)/2n = 1/2 + 1/(2n).

N(x∗) =
n∑

j=0

1

|n + 1− 2j |

2k∑
j=0

1

|2(k − j) + 1|

=
k∑

j=0

1

|2(k − j) + 1|
+

2k∑
j=k+1

1

|2(k − j) + 1|

=
k∑

j=0

1

2j + 1
+

k−1∑
j=0

1

2j + 1

≥ 1

2
(ln(2k + 3) + ln(2k + 1)) ≥ ln(2k + 1) = ln(n + 1)
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: lower bound

D(x∗) =

∣∣∣∣∣
n∑

j=0

(−1)j

n + 1− 2j

∣∣∣∣∣ =

∣∣∣∣∣
2k∑
j=0

(−1)j

2(k − j) + 1

∣∣∣∣∣
=

∣∣∣∣∣
k∑

j=0

(−1)j

2(k − j) + 1
+

2k∑
j=k+1

(−1)j

2(k − j) + 1

∣∣∣∣∣
≤

∣∣∣∣∣(−1)k
k∑

j=0

(−1)j

2j + 1

∣∣∣∣∣+

∣∣∣∣∣(−1)k
k−1∑
j=0

(−1)j

2j + 1

∣∣∣∣∣ =
k∑

j=0

(−1)j

2j + 1
+

k−1∑
j=0

(−1)j

2j + 1

≤
(
π

4
+

1

2k + 3

)
+

(
π

4
+

1

2k + 1

)
≤ π

2
+

2

2k + 1
=
π

2
+

2

n + 1
.

Hence, Λn(x∗) ≥ 2 ln(n+1)

π+ 4
n+1

.
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: lower bound

The same is true when n is odd considering x∗ = 1/2, instead.

In summary, for any n ∈ N

Λn = max
0≤x≤1

Λn(x) ≥ 2 ln(n + 1)

π + 4
n+1

≥ 2 ln(n + 1)

π + 4
n

= cn ln(n + 1) .

where cn = 2n
4+πn .
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

If x = xk for any k , then Λn(x) = 1.

So let xk < x < xk+1 for some k and consider the function

Λk(x) =

(x − xk)(xk+1 − x)
n∑

j=0

1

|x − xj |∣∣∣∣∣(x − xk)(xk+1 − x)
n∑

j=0

(−1)j

x − xj

∣∣∣∣∣
:=

Nk(x)

Dk(x)
. (6)

Nk (x) = (x − xk )(xk+1 − x)
n∑

j=0

1∣∣x − xj

∣∣
= (x − xk )(xk+1 − x)

k−1∑
j=0

1

x − xj

+
1

x − xk

+
1

xk+1 − x
+

n∑
j=k+2

1

xj − x


= (xk+1 − x) + (x − xk ) + (x − xk )(xk+1 − x)

k−1∑
j=0

1

x − xj

+
n∑

j=k+2

1

xj − x


= (xk+1 − xk ) + (x − xk )(xk+1 − x)

k−1∑
j=0

1

x − xj

+
n∑

j=k+2

1

xj − x

 .
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound
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xk+1 − x
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n∑
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1

xj − x
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= (xk+1 − x) + (x − xk ) + (x − xk )(xk+1 − x)

k−1∑
j=0

1

x − xj
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n∑

j=k+2

1

xj − x


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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

As the xi are equally spaced 1
xi−xj

= 1
h(i−j) = n

i−j for any i 6= j , and

(x − xk)(xk+1 − x) ≤
(

h
2

)2
= 1

4n2 for xk < x < xk+1. Therefore,

Nk (x) ≤
1

n
+

1

4n2

k−1∑
j=0

1

xk − xj

+
n∑

j=k+2

1

xj − xk+1


=

1

n
+

1

4n2

k−1∑
j=0

n

k − j
+

n∑
j=k+2

n

j − k − 1


=

1

n
+

1

4n

(
1

k
+

1

k − 1
+ · · · +

1

1
+

1

1
+

1

2
+ · · · +

1

n − k − 1

)
≤

1

n
+

1

4n

(
log(2k + 1) + log(2n − 2k − 1)

)
=

1

n
+

1

4n
log
(
(2k + 1)(2n − (2k + 1))

)
≤

1

n
+

1

4n
log
(
(2n/2)2

)
=

1

n
+

1

2n
log(n).
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

Let us consider the denominator Dk(x).
Ignoring the absolute value and assuming, for a moment that both k and n to be
even

Dk (x) = (x − xk )(xk+1 − x)
n∑

j=0

(−1)j

x − xj

= (x − xk )(xk+1 − x)

k−1∑
j=0

(−1)j

x − xj

+
1

x − xk

+
1

xk+1 − x
−

n∑
j=k+2

(−1)j

xj − x


= h + (x − xk )(xk+1 − x)

k−1∑
j=0

(−1)j

x − xj

−
n∑

j=k+2

(−1)j

xj − x

 .
Pairing the positive and negative terms

Sk (x) =

k−1∑
j=0

(−1)j

x − xj

−
n∑

j=k+2

(−1)j

xj − x

=
1

x − x0

+

(
1

x − x2

−
1

x − x1

)
+ · · · +

(
1

x − xk−2

−
1

x − xk−3

)
−

1

x − xk−1

−
1

xk+2 − x
+

(
1

xk+3 − x
−

1

xk+4 − x

)
+ · · · +

(
1

xn−1 − x
−

1

xn − x

)
(7)
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

Since both the leading term and all paired terms are positive, we have

Sk(x) > − 1

x − xk−1
− 1

xk+2 − x
≥ − 1

xk − xk−1
− 1

xk+2 − xk+1
= −2n

and further

Dk(x) = h + (x − xk)(xk+1 − x)Sk(x) ≥ 1

n
+

1

4n2
(−2n) =

1

n
− 1

2n
=

1

2n
.

This bound also holds if n is odd and if k is odd.
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The Lebesgue Constant Some plots of the Lebesgue function

Case d = 0: upper bound

Therefore, we have |Dk(x)| ≥ 1/(2n) regardless of the parity of k and n, and
combining the bounds for numerator and denominator yields

Λ = max
k=0,...,n

(
max

xk<x<xk+1

Λk(x)

)
≤

1
n + 1

2n log(n)
1
2n

= 2 + log(n).

This completes the proof. �
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The Lebesgue Constant Upper and lower bounds for d = 0

The Lebesgue constant for d = 0 on uniform pts

Figure: Lebesgue constant compared with its lower and upper bounds.
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The Lebesgue Constant d ≥ 1

Lebesgue constant: case d ≥ 1

We observe that
βj ≤ 2d , ∀ j .

Then

Nk(x) = (x − xk)(xk+1 − x)
n∑

j=0

βj

|x − xj |

≤ 2d(x − xk)(xk+1 − x)
n∑

j=0

1

|x − xj |

≤ 2d

(
1

n
+

1

2n
log(n)

)
,

(8)

for any k .
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The Lebesgue Constant d ≥ 1

The denominator

Dk(x) = (x − xk)(xk+1 − x)
n∑

j=0

(−1)jβj

x − xj
,

it will turn out that |Dk(x)| ≥ 1/n

Stefano De Marchi (DMPA-UNIPD) Lebesgue constants of rat. interp. Padova, December 22, 2010 27 / 45



The Lebesgue Constant d ≥ 1

The denominator

Fundamental observation
(−1)jβj = wj d! hd (9)

Then,

Dk(x) = (x − xk)(xk+1 − x)

∣∣∣∣∣∣
n∑

j=0

wj

x − xj

∣∣∣∣∣∣ d!hd .

Stefano De Marchi (DMPA-UNIPD) Lebesgue constants of rat. interp. Padova, December 22, 2010 28 / 45



The Lebesgue Constant d ≥ 1

The denominator

Moreover, in Floater-Hormann’s paper 2007,

n∑
j=0

wj

x − xj
=

n−d∑
i=0

λi (x)

showing also that ∣∣∣∣∣∣
n∑

j=0

wj

x − xj

∣∣∣∣∣∣ ≥ |λk(x)| .

Then,

Dk(x) = (x − xk)(xk+1 − x)|λk(x)|d!hd =
d!hd∏k+d

l=k+2(xl − x)

Maximizing over k we get

Dk(x) ≥ d!hd∏k+d
l=k+2(xl − xk)

= h =
1

n
.
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The Lebesgue Constant d ≥ 1

The lower bound

Theorem

(Klein, Dec. 2010) Let d ≥ 2, then,

Λ ≥ (2d + 1)!!

4(d + 1)!
log
(n

d
− 1
)
.

Theorem

(Bos, Dec. 2010)

Λ ≥ 2

π
log(n + 2− 2d).

This latter is better for d = 1.
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The Lebesgue Constant d ≥ 1

The theorem for d ≥ 1

Theorem

Let d > 1 Then,

(2d + 1)!!

4(d + 1)!
log
( n

d
− 1
)
≤ Λ ≤ 2d−1

(
2 + log(n)

)
.

while for d = 1
2

π
log(n) ≤ Λ ≤ 2 + log(n).
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Numerical results Equispaced points

Lebesgue functions

Figure: Lebesgue function for d = 1 (left) and d = 3 (right).
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Lebesgue constant growth

Lebesgue constants

Figure: Lebesgue constant growth d = 1 (left) and d = 3 (right).
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Lebesgue constant growth

Lebesgue constant growth

Figure: Lebesgue constant growth d = 8 (left) and d = 16 (right).
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Lebesgue constant growth

Lebesgue constant growth for non uniform pts

Figure: Lebesgue constant on logarithmically distributed points. Left: with weights (−1)iβi . Right: here the weights are
the ones constructed on non-equispaced points, garanteeing the approximation order d + 1
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Consider the interval I = [0, 1] and a distribution function F ∈ C1(I )

F (0) = 0, F (1) = 1 and F is strictly increasing.

F (x) =
∫ x

0
w(t)dt for a certain w ∈ C[0, 1], w(x) > 0, x ∈ I

Moreover, if F ′(x) > 0 on I , we say F is non-singular.

The points

xj := F−1

(
j

n

)
, 0 ≤ j ≤ n

are said to be equally spaced according to F
Examples:

F (x) = x usual equally spaced pts,

F (x) = (1− cos(πx))/2, x ∈ [0, 1] the extended Chebyshev points for which
F ′(0) = F ′(1) = 0, i.e. they form a singular distribution
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Lemma

If f ∈ C[0, 1] then

lim
n→∞

1

n

n∑
j=0

f (xj) =

∫ 1

0

f (x)w(x)dx

Proof The key observation is that 1
n

∑n
j=0 f (xj) = 1

n

∑n
j=0 f (F−1(j/n)) is a

Riemann sum for f ◦ F−1 ∈ C[0, 1] and hence

lim
n→∞

1

n

n∑
j=0

f (xj) =

∫ 1

0

f (F−1(t))dt .

Since x = F−1(t), then dx =
(

d
dt F
−1(t)

)
dt = dt

F ′(F−1(t)) = dt
w(x) . Then,

dt = w(x)dx . �
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Lemma

Suppose that k , n→∞ in such a way that xk = F−1(k/n) and
xk+1 = F−1((k + 1)/n) both tend to x = F−1(a). Then,

lim
n→∞

nhk = (F−1)′(x) =
1

w(x)
.

where hk = xk+1 − xk .

Proof

n hk = n(xk+1 − xk) = n
(
F−1((k + 1)/n)− F−1(k/n)

)
=

F−1((k + 1)/n)− F−1(k/n)

1/n
= F−1

[
k + 1

n
,
k

n

]
= (F−1)′(cn), for cn ∈

[
k + 1

n
,
k

n

]
.

Hence, lim
n→∞

n hk = lim
n→∞

(F−1)′(cn) = (F−1)′(a) as cn → a. But

(F−1)′(a) = 1
F ′(F−1(a)) = 1

w(F−1(a)) = 1
w(x) , �
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Note also that, as (F−1)′(t) =
1

w(F−1(t))
> 0 and it is continuous (by

assumption) then there exist two positive constants c1, c2 so that

c1 < nhk < c2 .
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The non-equispaced case

Points equally spaced w.r.t. a distribution

Theorem

F and w as above and x
(n)
j = F−1(j/n), 0 ≤ j ≤ n. Let

bi (x) =
(−1)iβi

x − xi

/ n∑
j=0

(−1)jβj

x − xj
, i = 0, . . . , n, Λn(x) =

n∑
i=0

|bi (x)| ,

(10)
Then, there is a constant C such that

Λn(x) ≤ C log(n), x ∈ [0, 1] . (11)

A similar result holds for the singular case (cf. Bos, De Marchi and
Hormann, paper in progress).
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An application

Numerical Quadrature

On I = [−1, 1]

1 we computed integrals with the quadrature based on the FHRI, on
equispaced points at different values of n end/or d

2 to speed up the quadrature, the quadrature weights were computed by a
Gaussian quadrature rule (Gautschi software in Matlab)

3 For d = 0 we have proven (a week ago!) that

(a) bi (x) = sinc(n(x − xi )) normalized so that
∑

i bi (x) = 1
(b)

lim
n→∞

nαi = 1, αi =

∫ 1

0

bi (x)dx .

that is the quadrature process asymptotically converges.
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An application

bi e sinc

Figure: Comparison of bn−1 and sinc(n(x − xn−1)) for n = 10

err = 0.0101
nw =(1.10072,0.94272,1.03588,0.97972,1.00660,1.00660,0.97972,1.03588 0.94272,1.10072)
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An application

Numerical Quadrature

The table below shows the quadrature relative errors for d = 0 (left) and d = 3
(right) at different n, for the Runge function. errS=quadrature relative error by
using cubic splines

n err (d=0) err (d=3) errS
10 3.5e-3 1.1e-2 7.2e-3
30 1.1e-4 1.6e-6 5.9e-5
50 7.6e-6 2.6e-8 3.2e-7
100 3.6e-7 7.9e-10 2.4e-8
150 4.9e-7 1.0e-10 1.5e-9
200 5.4e-7 2.4e-11 6.4e-11

Stefano De Marchi (DMPA-UNIPD) Lebesgue constants of rat. interp. Padova, December 22, 2010 43 / 45



An application

Numerical Quadrature

About the quadrature weights: Klein and Berrut have proven numerically
that the weights are all positive at least for d ≤ n ≤ 1250 and 0 ≤ d ≤ 5.
For other values of d and n, there might be a few negative weights, the
number of which increases slowly with d and n.
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An application

THANK YOU
FOR YOUR KIND ATTENTION
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